Maja Tasković

Assistant Professor
Department of Mathematics
Emory University



    Publications

  1. M.-P. Gualdani, N. Guillen, N. Pavlović, M. Tasković, N. Zamponi
    The fuzzy Landau equation: global well-posedness and Fisher information.
    (Preprint) arXiv

  2. C. Henderson, S. Snelson, A. Tarfulea, M. Tasković
    Global regularity and decay estimates for the relativistic Landau equation.
    (Submitted) arXiv

  3. F. U. Caja, M. G. Delgadino, M.-P. Gualdani, M. Tasković
    Contractivity of Wasserstein distance and exponential decay for the Landau equation with Maxwellian molecules.
    (Preprint) arXiv

  4. N. Pavlović, M. Tasković, L. Velasco
    Inhomogeneous six-wave kinetic equation in exponentially weighted L spaces.
    (Submitted) arXiv

  5. I. Ampatzoglou, I. M. Gamba, N. Pavlović, M. Tasković
    Moment estimates and well-posedness of the binary-ternary Boltzmann equation.
    (Submitted) arXiv

  6. R. J. Alonso, I. M. Gamba, M. Tasković
    Exponentially-tailed regularity and time asymptotic for the homogeneous Boltzmann equation.
    Nonlinear Anal. 262 (2026), Paper No. 113920. arXiv

  7. I. Ampatzoglou, J. K. Miller, N. Pavlović, M. Tasković
    Inhomogeneous wave kinetic equation and its hierarchy in polynomially weighted L spaces.
    Comm. Partial Differential Equations 50 (2025), no. 6, 723-765. arXiv

  8. I. Ampatzoglou, J. K. Miller, N. Pavlović, M. Tasković
    On the global in time existence and uniqueness of solutions to the Boltzmann hierarchy.
    J. Funct. Anal. 289 (2025), no. 9, Paper No. 111079. arXiv

  9. I. Ampatzoglou, I. M. Gamba, N. Pavlović, M. Tasković
    Global well-posedness of a binary-ternary Boltzmann equation.
    Ann. Inst. H. Poincaré Anal. Non Linéaire 39 (2022), no. 2, pp. 327-369. arXiv

  10. R. M. Strain, M. Tasković
    Entropy dissipation estimates for the relativistic Landau equation, and applications.
    J. Funct. Anal. 277 (2019), no. 4, 1139-1201. arXiv

  11. I. M. Gamba, N. Pavlović, M. Tasković
    On pointwise exponentially weighted estimates for the Boltzmann equation
    SIAM J. Math. Anal. 51 (2019), no. 5, 3921-3955. arXiv

  12. M. Pavić-Čolić, M. Tasković
    Propagation of exponential moments for the Kac equation and the Boltzmann equation for Maxwell molecules. Kinet. Relat. Models 11 (2018) no. 3, 597-613. arXiv

  13. M. Tasković, R. J. Alonso, I. M. Gamba, N. Pavlović
    On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff.
    SIAM J. Math. Anal. 50 (2018), no. 1, 834-869. arXiv

  14. Y. Hong, M. Tasković
    On dispersive blow-ups for the nonlinear Schrödinger equation.
    Differential and Integral Equations, Volume 29 (2016), 875-888, arXiv

  15. M. Budinčević, D. Perišić, M. Tasković
    Structural theorems for Gelfand-Shilov spaces.
    Integral Transforms Spec. Funct. 20 (2009), no. 3-4, 223-229

  16. Z. Lozanov-Crvenković, D. Perišić, M. Tasković
    Gelfand-Shilov spaces, Structural and Kernel theorems.
    arXiv:0706.2268, arXiv

    Ph.D. Thesis

  17. M. Tasković
    Mittag-Leffler moments and weighted L estimates for solutions to the Boltzmann equation for hard potentials without cutoff, Ph.D. Thesis, The University of Texas at Austin (2016), pdf