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In this thesis we study analytic properties of solutions to the spatially

homogeneous Boltzmann equation for collision kernels corresponding to hard

potentials without the angular cutoff assumption, i.e. the angular part of the

kernel is non-integrable with prescribed singularity rate. We study behavior

in time of such solutions for large velocities i.e. their tails. We do this in two

settings - L1 and L∞.

In the L1 setting, we study Mittag-Leffler moments of solutions of the

Cauchy problem under consideration. These moments, obtained by integrating

the solution against a Mittag-Leffler function, are a generalization of exponen-

tial moments since Mittag-Leffler functions asymptotically behave like expo-

nential functions. Mittag-Leffler moments can be also represented as infinite
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sums of renormalized polynomial moments. However, instead of considering

renormaliztion by integer factorials that would lead to classical exponential

moments, we renormalize by Gamma functions with non-integer arguments.

By analyzing the convergence of partial sums sequences of these infinite sums,

we prove the propagation and generation in time of Mittag-Leffler moments.

In the case of propagation, orders of these moments depend on the singular-

ity rate of the angular collision kernel. In the case of generation, the orders

depend on the potential rate of the kernel. The proof uses a subtle combina-

tion of angular averaging and angular singularity cancellation, to show that

partial sums satisfy an ordinary differential inequality with a negative term of

the highest order while controlling all positive terms, whose solutions are uni-

formly bounded in time and number of terms. These techniques apply to both

generation and propagation of Mittag-Leffler moments. This part of the thesis

is partly based on the joint project with Alonso, Gamba and Pavlović [10].

In the L∞ setting, we prove that solutions to the Boltzmann equation

that satisfy propagation in time of weighted L1 bounds also satisfy propagation

in time of weighted L∞ bounds. This result is partly based on the joint project

with Gamba and Pavlović [36]. To emphasize that the propagation in time of

weighted L∞ bounds relies on the propagation in time of weighted L1 bounds,

we express our main result using certain general weights. Consequently we

apply the main result to exponential and Mittag-Leffler weights, for which

propagation of weighted L1 bounds holds. Hence we obtain propagation in

time of exponentially or Mittag-Leffler weighted L∞ bounds on the solution.
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Chapter 1

Introduction

In this chapter we briefly describe main results of the thesis. We also

outline the organization of the thesis and gather notation used throughout it.

1.1 A brief description of the results in this thesis

In this thesis we study generation and propagation in time of high en-

ergy tail behavior of solutions to the spatially homogeneous Boltzmann equa-

tion with collision kernels (or probability transition rates) given by hard poten-

tials without the angular cutoff assumption. This integro-differential equation

models the evolution of a probability density function f(t, v) of particles in a

rarefied gas. The angular kernel of its integral operator has a non-integrable

singularity in many cases. However, most of the mathematical theory of the

Boltzmann equation has been developed under the assumption that the an-

gular kernel is integrable (the so called cutoff case). In last 20 years, a lot of

attention has been placed on the non-integrable case, and it has been recently

shown that in such a regime the solution is regularized. This motivates further

study of the non-cutoff case and it is the setting we study in this thesis. The

details of the model under the consideration are presented in Section 2.
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By the high energy tail behavior we mean decay properties of the so-

lution f(t, v) for large speeds or corresponding energies. A natural way to

quantify a tail behavior is by studying weighted L∞ norms of f(t, v) since

finiteness of such norms would imply that the solution has pointwise decay

comparable to the inverse of the weight function. Historically, however, (poly-

nomially) weighted L1 norms were studied first. This is natural thing to do

since solutions to the Boltzmann equation are probability density functions

f(t, v) whose polynomially weighted L1 norms, i.e. its statistical moments or

observables, play a significant role for further studies of the solution behav-

ior. One can also study more general moments, and from now on, we refer to

exponentially weighted L1 norms as exponential moments.

Definition 1.1.1. A polynomial moment of order q is defined by

mq(t) :=

∫
Rd
f(t, v) 〈v〉q dv, (1.1)

where 〈v〉 =
√

1 + |v|2. An exponential moment of order s and rate α is

defined by

Mα,s(t) :=

∫
Rd
f(t, v) eα 〈v〉

s

dv. (1.2)

Since the equilibrium state of the Boltzmann equation is a Maxwellian

distribution, i.e. a Gaussian distribution in velocity space, we are particularly

interested in the study of propagation and generation of the exponential tail

behavior of f(t, v), both in L1 and L∞ setting. In other words, we study ex-

ponentially weighted L1 norms (i.e. exponential moments) and exponentially

weighted L∞ norms.
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By the propagation of the tail behavior we mean the following: given an

initial datum with a certain decay rate for large velocities, the corresponding

solution to the Boltzmann equation has the tail behavior of the same order

with possibly different rates. For example, in the case of exponential moments,

i.e. exponentially weighted L1 norms, propagation in time can be expressed

as follows:∫
Rd
f(0, v) eα0 〈v〉sdv < C0 for some α0, s > 0 (P-exp-1)

⇒ ∃C > 0, ∃0 < α ≤ α0, ∀t ≥ 0 :

∫
Rd
f(t, v) eα 〈v〉

s

dv < C.

By generation of the tail behavior we mean the following: given an ini-

tial datum with only a first few finite polynomial moments, the corresponding

solution to the Boltzmann equation acquires stronger decay property instan-

taneously. For example, generation of exponential moments of order s means∫
Rd
f(0, v) 〈v〉q dv < C0, for some q ∈ N (G-exp-1)

⇒ ∃s, α, C > 0, ∀t > 0 :

∫
Rd
f(t, v) eα 〈v〉

s

dv < C.

Historically, propagation and generation of polynomial moments has

been studied first in the following works [25, 32, 47, 60, 61]. This progress was

used, among other things, to develop the existence theory for the angular

cutoff Boltzmann equation under minimal conditions on the initial data [47].

Then, in 1972 Arkeryd posed a question [14] of whether it can be shown that

if the initial data lies pointwise below a Maxwellian, then the solution remains

under a possibly different Maxwellian. This question motivated the study
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of exponential tails. Even though Arkeryd’s question was posed in the L∞

setting, the first result in this direction was proved in the L1 setting. Namely,

Bobylev [17] proved propagation of Maxwellian moments, i.e. (P-exp-1) with

s = 2, for the Boltzmann equation for hard spheres potentials. Since this first

L1 result, it took more than two decades until the first L∞ result by Gamba,

Panferov and Villani [35] that addresses the original question of Arkeryd under

the cutoff assumption.

Main results of this thesis are related to the questions of both L1 and

L∞ exponentially weighted norms of solutions to the Boltzmann equation,

both studied in the non-cutoff regime. In the next two subsections we briefly

explain what has been done prior to our work and what is our contribution in

L1 and L∞ setting, respectively.

1.1.1 L1 theory: Exponential and Mittag-Leffler moments

We now briefly review previous results on the exponential moments,

and describe our contribution. Details are provided in Chapter 2.

Exponential moments, i.e. exponentially weighted L1 norms, in the

case of hard potentials γ > 0 were first studied for the Boltzmann equation

whose angular kernel is integrable, the so called cutoff case. The first result

was by Bobylev [17], who proved propagation (P-exp-1) of exponential mo-

ments of order s = 2 for the hard spheres model of the Boltzmann equation

(Bobylev’s prior works [15,16] considered Mawell molecules and used a Fourier

transform technieques). This groundbreaking work [17] conceived the idea of
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controlling exponential moments by proving the summability of the power

series expansion whose coefficients are classical polynomial moments of the

distribution function f(t, v) renormalized by Gamma functions. This strategy

was motivated by formally commuting integration in v-space and the Taylor

series representation of the exponential function in v-space∫
Rd
f(t, v) eα 〈v〉

s

dv =

∫
Rd
f(t, v)

∞∑
q=0

αq〈v〉sq

q!
dv =

∞∑
q=0

αq msq(t)

Γ(q + 1)
. (1.3)

Estimating this infinite sum requires estimates on each polynomial moment

msq(t), which is done by establishing an ordinary differential inequality for

msq, which in turn is derived from the corresponding polynomial moment of

the collision operator. Gamba, Panferov and Villani [35] extended Bobylev’s

result to more general cutoff models (variable hard potentials). Mouhot [48]

proved generation of exponential moments (G-exp-1) of order s ≤ γ/2, where

γ is a potential rate of the collision kernel of the Boltzmann equation. This

has been improved by Alonso, Gamba, Cañizo and Mouhot [6], where the

generation (G-exp-1) was established for exponential moments of order s ≤ γ.

In [6], authors also established propagation of exponential moments (P-exp-1)

of general order s ≤ 2, not just Gaussian moments.

On the other hand, exponential moments for the non-cutoff Boltzmann

equation were studied only recently by Lu and Mouhot [44], where generation

of exponential moments (G-exp-1) was proved for orders s ≤ γ. However,

no results were known about exponential moments of higher orders in the

non-cutoff regime.
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This brings us to the first part of the thesis, Chapter 3, which is partly

based on the joint work with Alonso, Gamba and Pavlović [10], and where

we extend the work of [44] to obtain propagation of exponential moments of

orders γ < s < 2 in the non-cutoff case.

One of the novelties of our result is the introduction of Mittag-Leffler

moments, which are L1 norms weighted with Mittag-Leffler functions, and

are meant to generalize the concept of exponential moments. Namely, our

calculations lead to expressions similar to that of (1.3), yet having Γ(aq +

1) with non-integer a > 1 in place of factorials q!. This motivated us to

use Mittag-Leffler functions, as they generalize the Taylor expansion of the

exponential function precisely by replacing factorials with non-integer Gamma

functions. More precisely, for a parameter a > 0, a Mittag-Leffler function is

defined via

Ea(x) :=
∞∑
q=0

xq

Γ(aq + 1)
. (1.4)

When a = 1, this coincides with the Taylor expansion of the classical expo-

nential function ex. When a > 0, it is well known (see e.g. [33], page 208.)

that the Mittag-Leffler function Ea asymptotically behaves like an exponential

function of order 1/a, that is

Ea(x) ∼ ex
1/a

, asx→∞,

and thus

E2/s(α
2/sx2) ∼ eαx

s

, asx→∞.
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Because of this asymptotic behavior, finiteness of eαx
s
-weighted L1 norm is

equivalent to finiteness of E2/s(α
2/sx2)-weighted L1 norm.

Studying Mittag-Leffler moments, i.e. Mittag-Leffler weighted L1 norms,

enabled us to extend the range of orders of exponential moments that can be

propagated uniformly in time for the non-cutoff case. Namely, we will be able

to prove an analogue of (P-exp-1) for orders s larger than γ, where instead of

exponential weights we use the corresponding Mitta-Leffler weights, that is∫
Rd
f(0, v) E2/s(α

2/s
0 〈v〉2)dv < C0 for some α0, s > 0 (P-ML-1)

⇒ ∃C > 0, ∃0 < α ≤ α0, ∀t ≥ 0 :

∫
Rd
f(t, v) E2/s(α

2/s 〈v〉2) dv < C.

Another important aspect of our main result is that the highest order

s of the Mittag-Leffler moment which can be propagated in time as (P-ML-1),

depends continuously on the singularity rate of the angular cross-section. The

less singular the angular kernel is, the higher order Mittag-Leffler moment can

be propagated.

1.1.2 L∞ theory: Pointwise behavior of tails

We now briefly review previous results on the upper pointwise bounds

for solutions to the Boltzmann equation, and describe our contribution. Details

are provided in Chapter 4.

After the behavior of weighted L1-norms is understood, the next nat-

ural question is to obtain information about weighted point-wise (in velocity)

bounds on solutions to the Boltzmann equation. This has been achieved in the
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cutoff case for the polynomial weights by Arkeryd [13], and later for exponen-

tial weights, again in the Grad’s cutoff case, in the work of Gamba, Panferov

and Villani [35]. More precisely, in [35] authors prove that if an initial data

is below a Maxwellian point-wise, the same is true uniformly in time for the

corresponding solution of the homogeneous cutoff Boltzmann equation (for a

possibly different Maxwellian), i.e. for s = 2 they show

f(0, v) ≤ e−α0|v|s+c0 , for some α0, c0 > 0 (P-exp-∞)

⇒ ∃C > 0, ∃0 < α ≤ α0,∀ t ≥ 0 : f(t, v) ≤ e−α|v|
s+c,

or equivalently,

‖f(0, v)eα0|v|s‖L∞v < C0, for some α0, C0 > 0

⇒ ∃C > 0, ∃0 < α ≤ α0, ∀t ≥ 0 : ‖f(t, v)eα|v|
s‖L∞v < C.

A remarkable aspect of the work of Gamba, Panferov, Villani [35] is that it

established a comparison principle for the Boltzmann equation, and then used

it to prove the desired point-wise bounds by exploiting the propagation in

time of the corresponding weighted L1 bounds of the solution. This can be

understood in the spirit of an important step in the De-Giorgi-Nash-Moser

argument, in the sense that weighted L1 bounds are used to prove weighted

L∞ bounds.

No results of the type (P-exp-∞), even with s other than two, were

available in the non-cutoff setting.

This brings us to the second topic of this thesis, Chapter 4, which is

partly based on the joint project with Gamba and Pavlović [36], and where
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we show propagation in time of weighted L∞ bounds for solutions to the

homogeneous Boltzmann equation in the non-cutoff case. Our results can be

understood as an extension of [35] to the non-cutoff case. We too exploit our

weighted L1 bounds in the non-cutoff case to obtain the propagation of the

corresponding L∞ bounds for the non-cutoff Boltzmann equation.

For solutions to the non-cutoff Boltzmann equation, Silvestre, in a

recent work [52], established propagation in time of L∞ bounds (without a

weight) on solutions to (not necessarily homogeneous) Boltzmann equation by

introducing at the level of the Boltzmann equation techniques motivated by the

theory of integro-differential equations, which “replace” the role of the com-

parison principle of Gamba, Panferov and Villani [35]. Furthermore, Silvestre

obtained certain regularity results which can be understood as a companion to

regularization mechanisms of solutions to the non-cutoff Boltzmann equation

(e.g. [26, 28,29,43]) previously obtained via harmonic analysis methods.

Our main result in Chapter 4 can also be understood as a generalization

of [52] to exponentially decaying pointwise upper bounds on the solution. In

our proof we modify the contradiction argument of Silvestre [52] to take advan-

tage of known results on propagation in time of exponentially or Mittag-Leffler

weighted L1 bounds of the solution.

In order to emphasize the transition from weighted L1 bounds to weighted

L∞ bounds, we state the main theorem in terms of certain general weights that

mimic exponential decay. Consequently we apply this result to cases of expo-

nential and Mittag-Leffler weights, for which propagation in time of weighted

9



L1 norms holds, see Corollary 4.1.2. Hence we obtain unconditional propa-

gation in time of exponentially or Mittag-Leffler weighted L∞ bounds on the

solution. More precisely, for a range of s for which (P-exp-1) or (P-ML-1)

holds, we obtain pointwise bounds (P-exp-∞) and∫
Rd
f(0, v) E2/s(α

2/s
0 〈v〉2)dv < C0 for some α0, s > 0 (P-ML-∞)

⇒ ∃C > 0, ∃0 < α ≤ α0, ∀t ≥ 0 :

∫
Rd
f(t, v) E2/s(α

2/s 〈v〉2) dv < C.

We make a remark here that our result is a priori in the sense that

our proof requires sufficiently nice solutions that are not yet know to exist.

Silvestre [52] too needed nice solutions. In that paper Schwartz class solutions

are good enough, and they are known to exist for certain range of potentials.

In our case, however, we would need somewhat stronger solutions due to the

added weight in the norms we consider.

1.2 Organization of the thesis

In Chapter 2 we review the Boltzmann equation. Our first main result,

related to exponential and Mittag-Leffler moments, is discussed in Chapter 3.

The precise statement can be found in Section 3.1, while the relevant history

of the problem is recalled in Section 3.2. In Section 3.3 we outline the strategy

of the proof, while Section 3.4 contains some combinatorial inequalities used

for the proof of the main result. The angular averaging and cancellation are

explained in Section 3.5, which is then used in Section 3.6 to derive differential

10



inequalities for polynomial moments. The last two sections contain proofs of

propagation of moments and generation of moments, respectively.

Chapter 4 is dedicated to our second main result, namely the pointwise

upper bounds of solutions to the Boltzmann equation. Section 4.1 contains the

precise statement of the main result and its corollary. Section 4.2 recalls the

relevant previous results. Proof of the main theorem is in Section 4.3, while

the proof of the corollary is contained in Section 4.4.

1.3 Notation

In this section we gather notation used throughout the thesis. We start by

commonly used notation. For any x, a, b ∈ R and v ∈ Rd:

• bxc = the largest integer less than or equal to x

• 〈v〉 =
√

1 + |v|2

• a ≈ b ⇐⇒ ∃c, C > 0 : c b ≤ a ≤ C b

Functional spaces:

• L1
k =

{
f ∈ L1(Rd) :

∫
Rd
f〈v〉kdv =

∫
Rd
f
(
1 + |v|2

)k/2
dv <∞

}
, ∀k ∈ R.

• L logL =

{
f : Rd → R+ :

∫
Rd
f (1 + log f) dv <∞

}

11



Special functions:

• Gamma function: Γ(t) =

∫ ∞
0

xt−1 e−x dx, t ∈ R

• Beta function: B(x, y) =

∫ 1

0

tx−1 (1− t)y−1 dt, x, y ∈ R

12



Chapter 2

The Boltzmann equation

The Boltzmann equation, first described by J. C. Maxwell [45] in 1867

and a few years later by L. W. Boltzmann [19, 20], models the evolution of a

dilute monoatomic gas containing a large number of particles which interact

via predominantly binary collisions. Instead of following each particle in their

phase spaces separately, the Boltzmann equation takes a statistical approach

and considers the evolution of the density function of the particles, which is

denoted by f(t, x, v), for time t, position x and velocity v.

Rigorous derivation of the Boltzmann equation is an active filed of

research. First breakthoughs were made by Lanford [42] and King [41], whose

works have been later completed by Gallagher, Saint-Raymond and Texiera

[34], and Pulvirenti, Saffirio and Simonella [51]. See also [24,53]. These results

studied hard spheres and short range potentials, and are valid for short times.

Extensions of the time of the validity and the study of long range potentials

are still challenging problems.

The evolution of the density f(t, x, v) is influenced by the transport

and collision effects. Accordingly, the Boltzmann equation reads

∂tf(t, x, v) + v · ∇xf(t, x, v) = Q(f, f)(t, x, v). (2.1)

13



2.1 The collision operator Q(f, f)

The effect of collisions on the density function f(t, x, v) is captured by

the collision operator Q(f, f). Since it is assumed that the gas is rarefied

enough that collisions are predominantly binary, the collision operator Q(f, f)

is quadratic. More precisely, it is a bilinear integral operator which acts on v

and which is local in t and x. It is defined via

Q(f, f)(t, x, v) =

∫
Rd

∫
Sd−1

(
f ′f ′∗ − ff∗

)
B(|u|, û · σ) dσ dv∗, (2.2)

where we employ the abbreviated notation

f∗ = f(t, x, v∗),

f ′ = f(t, x, v′),

f ′∗ = f(t, x, v′∗).

v∗
u

u′

û
v

v′

v′∗

σ

O

For a pair of particles, vectors v′, v′∗ denote

their pre-collision velocities, while v, v∗ are their

corresponding post-collision velocities. Relative

velocities are denoted by

u′ = v′ − v′∗, u = v − v∗,

while the corresponding unit vectors in the direc-

tion of these relative velocities are denoted by

σ =
u′

|u′|
, û =

u

|u|
.

14



The unit vector σ ∈ Sd−1 is referred to as the scattering direction, while the

angle between two relative velocities, that is, between σ and û, is denoted by

θ, and it is referred to as the scattering angle.

For elastic interactions momentum and energy are conserved, that is,

v + v∗ = v′ + v′∗,

|v|2 + |v∗|2 = |v′|2 + |v′∗|2,

which implies the following relation between pre and post collision velocities

v′ =
v + v∗

2
+
|u|
2
σ, (2.3)

v′∗ =
v + v∗

2
− |u|

2
σ. (2.4)

Also, it is possible to represent these relations as functions of the relative

velocity u and the scattering direction σ via

v′ − v =
1

2
(|u| σ − u),

v′∗ − v∗ = −1

2
(|u| σ − u).

The kernel B(|u|, û · σ), which due to the physical considerations de-

pends on the magnitude of the relative velocity |u| and the cosine of the scat-

tering angle û · σ = cos θ, carries the essential information about the gas as

it encodes the likelihood of collisions. It is usually referred to as the colli-

sion kernel or the cross section. Already Maxwell [45] calculated the collision

kernel in the case of hard spheres (billiard-like model) and for the so-called

inverse-power law model. In the latter case the interactions between particles
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are guided by the forces proportional to an inverse power of their distances

φ(x) = Cx−(p−1), C > 0, p > 2. In dimension d = 3, Maxwell found that the

collision kernel then takes the following form:

B(|u|, û · σ) = |u|γ b(û · σ) = |u|γ b(cos θ),

b(cos θ) sin θ ∼ C θ−1−ν , θ → 0+,

ν =
2

p− 1
, γ =

p− 5

p− 1
, p > 2. (2.5)

As is the case in the above model, we assume that the collision kernel

B(|u|, û · σ) takes a factorized form

B(|u|, û · σ) = |u|γ b(cos θ), (2.6)

throughout the manuscript. We work with variable hard potentials, that is

0 < γ ≤ 1. (2.7)

For completeness we mention that the parameter γ can more generally

be in the range γ ∈ (−d, 1], where d is the dimension of the velocity space.

When γ has a negative value, the potential is said to be soft, while the case

γ = 0 is referred to as the Maxwell molecules.

We assume that the angular kernel b(û·σ) is given by a positive measure

over the sphere Sd−1. In many models this function is not integrable in σ. For

example, in the case of inverse power forces it is never integrable.
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2.2 Cutoff vs. non-cutoff

In 1963, Grad [39] proposed considering a bounded angular kernel

b(cos θ) and pointed out that different cutoff conditions could be implemented

too. This is why when the angular kernel is integrable it is often said to satisfy

a Grad’s angular cutoff condition. On the other hand, its non-integrability is

referred to as an angular non-cutoff. The convenience in assuming that the

angular kernel is integrable lies in the possibility of splitting the collision op-

erator into two integrals, so called the gain Q+(f, f) and the loss Q−(f, f)

terms, which then can be analyzed separately

Q(f, f) = Q+(f, f)−Q−(f, f), (2.8)

where

Q+(f, f)(t, v) =

∫
Rd

∫
Sd−1

f ′f ′∗B(|u|, û · σ) dσ dv∗,

Q−(f, f)(t, v) = f(v)

∫
Rd

∫
Sd−1

f∗B(|u|, û · σ) dσ dv∗.

For several decades the theory of the Boltmann equation has been devel-

oping under angular cutoff conditions with the belief that removing the singu-

larity of the angular kernel should not affect properties of the equation. How-

ever, since the late 1990s it has been observed (see for example [26,28,29,43])

that the singularity of b(cos θ) carries regularizing properties. This fact, in

addition to the technical challenge of not being allowed to separate the gain

and the loss term, motivated further study of the non-cutoff regime, which

will be the setting we study here. More precisely, in this thesis we work in
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the following non-cutoff setting. While the angular kernel is non-integrable,

we assume that for some β ∈ (0, 2] the following weighted integral is finite

Aβ :=

∫
Sd−1

b(û · σ) sinβ θ dσ

= Vd−2

∫ π

0

b(cos θ) sinβ θ sind−2 θ dθ <∞, (2.9)

where Vd−2 = π(d−2)/2

Γ((d−1)/2)
is the volume of the d − 2 dimensional unit sphere.

When β = 0, this condition would coincide with Grad’s cutoff assumption.

The typical non-cutoff assumption in the literature is the condition (2.9)

with β = 2. However, we work in the non-cutoff regime where the parameter

β ∈ (0, 2] is allowed to vary and we will see how the strength of the singularity

of b influences our main results. In this setting, the splitting (2.8) is not valid,

which is one of the technical challenges that non-cutoff setting brings. In order

to address this obstacle we exploit angular cancellation properties (for details

see Section 3.5).

2.3 Weak formulation of the collision operator

Thanks to the symmetries associated to the collision operator Q(f, f),

defined in the strong form (2.2), the collision operator has a weak formulation

that is very important for the analytical manipulation of the equation. Indeed,

for any test function φ(v), v ∈ Rd, one has (see for example [23])∫
Rd

Q(f, f)(t, v)φ(v)dv =
1

2

∫∫
R2d

f(v) f(v∗) Gφ(v, v∗) dv∗ dv, (2.10)
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where

Gφ(v, v∗) =

∫
Sd−1

(φ(v′) + φ(v′∗)− φ(v)− φ(v∗))B(|u|, û · σ) dσ. (2.11)

The key aspect of the equation in the weak formulation is expressed

in the weight Gφ as it carries all the information about collisions through the

collision kernel B, which is averaged over the unit sphere against test functions

∆φ = φ(v′) + φ(v′∗)− φ(v)− φ(v∗).

Crucial estimates on the function Gφ referred to in the Boltzmann

equation literature as Povzner estimates. In the Grad’s cutoff case, posi-

tive and negative contributions are treated separately and such estimates are

used to estimate the positive part of Gφ. A sharp form of angular averaged

Povzner estimates from [17, 18, 35] is obtained for general test functions φ(v)

which are positive and convex. They are crucial for the study of moments

summability, the main point of this thesis. When φ(v) = (1 + |v|2)k/2 = 〈v〉k,

these estimates, originally developed by Povzner [50], yield ordinary differen-

tial inequalities for moment estimates that lead to an existence theory and

generation and propagation of moments as developed in Elmroth [32], Desvil-

lettes [25] Wennberg [61] and Mischler, Wennberg [47]. These estimates were

also obtained in the non-cutoff case by Wennberg [60] for hard potentials.

Uniqueness theory to solutions of the Boltzmann equation for hard potentials

was first developed by Di Blassio in [30].

When the angular part of the collision kernel is not integrable, i.e.

the non-cutoff case, one needs to expand ∆φ in terms of v′ − v and v′∗ − v∗,
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since both are a multiples of |u| sin θ/2. For this strategy to succeed, the

spherical integration variable σ ∈ Sd−1 must be decomposed as σ = û cos θ +

ω sin θ, corresponding to the polar direction of the relative velocity u, and the

azimuthal direction ω ∈ Sd−1 satisfying u · ω = 0. This decomposition also

plays a fundamental role in our derivation of the angular averaged Povzner

with singularity cancellation in the proof of Lemma 3.5.1.

Remark 2.3.1. We note that the identity (2.10) can also be expressed in a

double mixing (weighted) convolutional form (see e.g. [7, 9, 37])∫
Rd

Q(f, f)(t, x, v)φ(v)dv =
1

2

∫∫
R2d

f(v)f(v − u) Gφ(v, u) du dv

Gφ(v, u)

∫
Sd−1

(φ(v′) + φ(v′ − u′)− φ(v)− φ(v − u))B(|u|, û · σ) dσ

since both v′ and v′∗ can be written as functions of v, u and σ from (2.3), and

so the weight function Gφ(v, u) is an average over σ ∈ Sd−1.

Remark 2.3.2. A classical consequence of the weak formulation of the Boltz-

mann equation is Boltzmann’s well-known H-theorem. Taking φ = log f as a

test function in v and exploiting symmetries of the collision operator, yields

the following estimate on the entropy dissipation functional D(f) which is

defined by
∫
Rd Q(f, f) log f dv = −D(f):∫

Rd
Q(f, f) log f dv (2.12)

= −1

4

∫∫∫
R3d×Sd

(f ′f ′∗ − f f∗) log
f ′f ′∗
f f∗

B(|u|, cos θ) dσ dv∗ dv

≤ 0. (2.13)
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The last inequality holds due to since

(log x− log y)(x− y) ≥ 0, for any x, y > 0.

Therefore, Boltzmann’s H functional (or entropy) defined as

H(f) =

∫∫
Rd×Rd

f log f dvdx (2.14)

satisfies

dH

dt
=

∫
Rd×Rd

Q(f, f) log fdvdx

= −
∫
Rd
D(f) dx ≤ 0. (2.15)

The inequality (2.15) encodes the time-irreversibility property of the Boltz-

mann equation as it states that H(t) functional is non-increasing. Moreover,

Boltzmann’s inequality (2.15) becomes equality if and only if f is a Maxwellian

distribution. In other words, the statistical equilibrium of the Boltzmann equa-

tion is Maxwellian distribution (or Gaussian distribution).

2.4 Homogeneous case

Another significant simplification of the Boltzmann equation, which

still keeps the problem challenging, is the situation where the probability den-

sity that is being modeled does not depend on the spatial variable x. We work

in this setting, which is referred to as the spatially homogeneous regime. In

this case, the Cauchy problem for the Boltzmann equation simplifies to{
∂tf(t, v) = Q(f, f)(t, v),

f(0, v) = f0(v).
(2.16)
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In summary, we study the spatially homogeneous Boltzmann equation

(2.16) with the collision kernel (2.6) corresponding to hard potentials γ ∈ (0, 1]

and the non-cutoff condition (2.9) with β ∈ (0, 2]. We study the tail behavior

of solutions to the spatially homogeneous Boltzmann equation (2.16) with hard

potentials (2.6)-(2.7) and the angular non-cutoff assumption (2.9).

2.5 Existence theory in the non-cutoff case

The first existence result in the non-cutoff regime was due to Ark-

eryd [12], where the existence of weak solutions was established for γ > −1.

Goudon [38] and Villani [55] extended Arkeryd’s proof to the range γ > −2.

More recently, Alexandre, Morimoto, Ukai, Xu and Yang [4] proved that these

weak solutions are in fact of Schwartz class provided that moments of all or-

ders remain finite. This condition is known to be satisfied. In fact, for hard

potentials exponential moments of certain order are generated instantaneously

and remain uniformly bounded in time.

Villani [55] introduced H-solutions, which allow the study of the very

soft potentials γ ∈ (−4,−2) via the entropy production. Alexandre and Villani

[5] extended the concept of renormalized solutions of DiPerna-Lions [31] to the

non-cutoff case. Lu and Mouhot [44] obtained existence of the measure weak

solutions. Ukai [54] established local existence in the Gevrey class (in v) spaces.

In the perturbative regime around the equilibrium state (for not necessarily

homogeneous equation), Gressman and Strain [40] and Alexandre, Morimoto,

Ukai, Xu and Yang [3] established global existence of classical solutions.
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Chapter 3

L1 theory: Mittag-Leffler moments

In this chapter we present details of our first main result regarding ex-

ponential and Mittag-Leffler moments, which is partly based on the joint work

with Alonso, Gamba and Pavlović [10]. We start with the precise statement

of the result, which is followed by an overview of the previous relevant results.

Next we outline the strategy of the proof and present the main tools. Finally,

we show details in deriving an ordinary differential inequality for polynomial

moments and use that in the last two subsection to complete the proof of prop-

agation of Mittag-Leffler moments and generation of exponential moments.

3.1 Statement of the main result

Our main result in this chapter consists of two parts. First, under

the non-cutoff assumption (2.9) with β = 2, we provide a new proof of the

generation of exponential moments of order s ∈ (0, γ], where 0 < γ ≤ 1 is the

potential rate in the collision kernel (2.6). Second, we show the propagation

in time of the Mittag-Leffler moments of order s ∈ (γ, 2). When s ∈ (γ, 1],

non-cutoff (2.9) with β = 2 is assumed. When s ∈ (1, 2), the angular kernel

is assumed to be less singular.
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Before we state the theorem, we remind the reader of the following

notation

L1
k = {f ∈ L1(Rd) :

∫
Rd
f〈v〉kdv <∞}.

This is the natural Banach space to solve the Boltzmann equation.

We also recall the definition of the weak solution, whose existence in

three dimensions and in the non-cutoff case (2.9) with β ∈ (0, 2] is proved

in [12,55].

Definition 3.1.1. Let f0 ≥ 0 be a function defined in Rd with finite mass,

energy and entropy∫
Rd
f0(v)

(
1 + |v|2 + log(1 + f0(v))

)
dv < +∞. (3.1)

Then we say f is a weak solution to the Cauchy problem (2.16) if it satisfies

the following conditions:

• f ≥ 0, f ∈ C(R+;D′(Rd)) ∩ L1([0, T ];L1
2+max{γ,0})

• f(0, v) = f0(v)

• ∀t ≥ 0:
∫
f(t, v)ψ(v)dv =

∫
f0(v)ψ(v)dv, for ψ(v) = 1, v1, ..., vd, |v|2

• f(t, ·) ∈ L logL and ∀t ≥ 0 :
∫
f(t, v) log f(t, v)dv ≤

∫
f0(v) log f0dv

• ∀φ(t, v) ∈ C1(R+, C∞0 (R3)), ∀t ≥ 0 we have that∫
Rd
f(t, v)φ(t, v)dv −

∫
Rd
f0(v)φ(0, v)dv −

∫ t

0

dτ

∫
Rd
f(τ, v)∂τφ(τ, v)dv

=

∫ t

0

dτ

∫
Rd
Q(f, f)(τ, v)φ(τ, v)dv.
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Finally, we recall that a Mittag-Leffler function, for a parameter a > 0,

is defined via

Ea(x) :=
∞∑
q=0

xq

Γ(aq + 1)
. (3.2)

When a = 1, it coincides with the Taylor expansion of ex, while for any a > 0

(see e.g. [33], page 208.), it asymptotically behaves like an exponential function

of order 1/a, that is

Ea(x) ∼ ex
1/a

, asx→∞.

Since 〈v〉2 is the building block of our calculations, we prefer to have

x2 as the argument of the Mittag-Leffler function when generalizing eαx
s
,

E2/s(α
2/s x2) ∼ eαx

s

, forx→∞. (3.3)

Hence, they satisfy the following, with some positive constants c, C

c eαx
s ≤ E2/s(α

2/sx2) ≤ C eαx
s

. (3.4)

This motivates our definition of Mittag-Leffler moments.

Definition 3.1.2 (Mittag-Leffler moment). A Mittag-Leffler moment of order

s and rate α > 0 of a function f is introduced via∫
Rd
f(t, v) E2/s(α

2/s 〈v〉2) dv. (3.5)

Remark 3.1.1. In the rest of the paper we will use the fact that Mittag-Leffler

moments can be represented as the following sum, which follows from (3.2)∫
Rd
f(t, v) E2/s(α

2/s 〈v〉2) dv =
∞∑
q=0

m2q(t)α
2q/s

Γ(2
s
q + 1)

. (3.6)
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The following theorem is based in part on the joint work with Alonso,

Gamba and Pavlović [10].

Theorem 3.1.1 (Generation and Propagation of Mittag-Leffler moments).

Suppose f is a weak solution to the Boltzmann equation (2.16) with the collision

kernel of the form (2.6) for hard potentials (2.7), corresponding to the initial

data f0 ∈ L1
2 ∩ L logL.

(a) (Generation of exponential moments) If the angular kernel satisfies the

non-cutoff condition (2.9) with β = 2, then the exponential moment of

order γ is generated with a rate α min{t, 1}. More precisely, there are

positive constants C, α, depending only on b, γ and initial mass and

energy, such that∫
Rd
f(t, v) eα min{t,1} |v|γ dv ≤ C, for t ≥ 0. (3.7)

(b) (Propagation of Mittag-Leffler moments) Let s ∈ (0, 2) and suppose that

the Mittag-Leffler moment of order s of the initial data f0 is finite with

a rate α0, that is, for some M0 > 0,∫
Rd
f0(v) E2/s(α

2/s
0 〈v〉2) dv ≤M0. (3.8)

Suppose also that the angular cross-section satisfies assumption (2.9)

with β = 2, if s ∈ (0, 1]

with β ≤ 4

s
− 2, if s ∈ (1, 2). (3.9)
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Then, there exist positive constants C, α, depending only on M0, α0, b,

γ and initial mass and energy such that the Mittag-Leffler moment of

order s and rate α remains uniformly bounded in time, that is∫
Rd
f(t, v) E2/s(α

2/s 〈v〉2) dv ≤ C, for t ≥ 0. (3.10)

Remark 3.1.2. The angular singularity condition β = 4
s
− 2 in the case of

Mittag-Leffler moments of order s ∈ (1, 2), continuously changes from β = 2

(for s = 1) to β = 0 (for s = 2). Hence condition β = 4
s
−2 continuously inter-

polates between the most singular kernel typically considered in the literature,

which is (2.9) with β = 2, and the Grad’s cutoff condition, which corresponds

to (2.9) with β = 0. This also tells us that in the most singular case one can

propagate exponential moments of order s ≤ 1, while in the Grad’s cutoff case

one can propagate exponential moments of order s ≤ 2 (to be completely rig-

orous, Theorem 3.1.1 goes up to β > 0, i.e. s < 2, but [6] already established

the case β = 0 i.e. s = 2). In other words, the less singular the angular kernel

is, the higher the order the exponential moment propagates in time.

0.5 1 1.5 2

1

2

γ

β

4
2+β

Remark 3.1.3. The propagation result of

the theorem can be interpreted in two ways.

First, for a Mittag-Leffler (or exponential)

moment of order s to be propagated, the sin-

gularity of b should be such that it satisfies

(2.9) with β = 4
s
−2. On the other hand, given an angular kernel b that satisfies

condition (2.9) with a parameter β ∈ (0, 2], one can propagate Mittag-Leffler
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(and exponential) moments of order s ≤ 4
β+2

.

Remark 3.1.4. Since Mittag-Leffler functions asymptotically behave like ex-

ponentials (3.4), finiteness of the exponential moment of order s is equivalent

to finiteness of the corresponding Mittag-Leffler moment. Therefore, Theorem

3.1.1 (b) implies the propagation of classical exponential moments.

γ = p−5
p−1

s = 2− 2
p

p0

1

2

2 3 4 5 6 7 8 9 10 11 12 13 14

Remark 3.1.5. In

the case of the

inverse-power law

model described

via (2.5), in which

hard potentials cor-

respond to p > 5, the non-cutoff condition (2.9) is satisfied for β > ν. Hence,

Mittag-Leffler moments of orders s < 2 − 2
p

can be propagated in time. In

the graph below the y-axis represents the order of the exponential tails. The

dashed red line marks the highest order of exponential moments that can be

generated, while the blue line marks the highest order of Mittag-Leffler mo-

ments that can be propagated in time. This graph visually confirms that our

propagation result indeed goes beyond the rate of potentials γ.

3.2 Relevant previous results

In this subsection we provide a detailed overview of the previous results

on exponential moments for the Boltzmann equation with hard potentials.
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After the theory of polynomial moments had developed for some time,

it was the work of Bobylev [17] that made the first contribution to the theory

of exponential moments. There the Taylor series expansion of the exponential

weight was used to make the connection between exponential and polynomial

moments by representing exponential moments as infinite sums of polynomial

moments weighted by Gamma functions∫
Rd
f(t, v) eα 〈v〉

s

dv =

∫
Rd
f(t, v)

∞∑
q=0

αq〈v〉sq

q!
dv =

∞∑
q=0

αq msq(t)

Γ(q + 1)
. (3.11)

Bobylev [17] proved that the spatially homogeneous Boltzmann equation for

hard spheres, i.e. with γ = 1 and constant angular kernel b, has the property

that if the initial data has finite exponential moment (3.11) of order s = 2

and rate α0, then its unique solution has the same property with the same

order s = 2 and rate α for some α < α0 depending on a few moments of

the initial state. To achieve such bounds for the sum (3.11), Bobylev found

ordinary differential inequalities for polynomial moments msq by exploiting the

weak formulation of the Boltzmann equation and the Povzner inequality type

estimates. This was then used to show that the sum (3.11) can be estimated

term-by-term by a summable geometric series.

A few years later, Bobylev, Gamba and Panferov [18] established the

angular averaged Povzner inequality for elastic or inelastic collisions, by a

reduced argument that could be extended to a non-constant, bounded angular

part in the collision kernel. They showed that stationary solutions of the

spatially homogeneous inelastic Boltzmann equation for hard spheres (i.e. γ =
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1), with stochastic heating sources corresponding to diffusion, shear flow and

homogeneous cooling states, have bounded exponential moments in the sense

that (1.3) was satisfied, with a constant in time rate α > 0 and order s < 2.

In the case of stochastic diffusing heating with a drift source the order was

s = 2.

The uniform propagation in time of Maxwellian moments for solutions

to the homogeneous Boltzmann equation in d dimensions with intramolec-

ular potentials corresponding to values of γ ∈ (0, 1] and an angular kernel

b ∈ L1+(Sd−1), was established by Gamba, Panferov and Villani [35]. More

precisely, they showed the propagation in time of estimates (1.3) with s = 2,

and rates α < α0 depending on the rate α0 of the initial data and few mo-

ments of the initial state. In that manuscript the authors also gave a proof

of propagation of L∞-Maxwellian weighted bounds, uniformly in time. This

is a revealing fact which implies that any solution of the elastic initial value

problem for the d-dimensional Boltzmann equation, with variable hard poten-

tials and integrable angular cross section b ∈ L1+(Sd), decays in L∞(Rd) like

a Maxwellian with a constant rate α2, uniformly in time, as long as the initial

state has finite L∞ exponentially weighted norm with a rate α0. The constant

α2 depends on the first few moments of the initial state, and it is smaller than

α, where α < α0 is the rate of the Maxwellian weight from the L1 propaga-

tion result. Their results follow from the application of a maximum principle

of parabolic type, due to the dissipative nature of the collision integral, and

estimates of the classical Carleman representation of the gain (positive) part
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of the collision operator that depend on the L1-Maxwellian weighted bounds

uniformly propagated in time.

These techniques were also used by Alonso and Gamba [8] to show both

propagation of L1-Maxwellian and L∞-Maxwellian weighted estimates for all

derivatives of the solution to the initial value problem to space homogeneous

Boltzmann equations under the same conditions as in [35]. In addition, Alonso

and Lods [11] used these techniques to show the Haff law of decay rate to

homogeneous cooling states for the inelastic Boltzmann equation for rarefied

granular flows.

The techniques from [17,18,35] were also used by Mouhot [48] to estab-

lish, for the elastic case under the same assumptions on the angular function

as in [18], the instantaneous generation of L1-exponential bounds uniformly

in time, with only L1
2 ∩ L2 initial data, with the exponential of order up to

s = γ/2, with γ being the variable hard potential exponent, and a time de-

pendent rate α(t).

Recently Alonso, Cañizo, Gamba and Mohout [6] introduced a new

technique (based on analyzing partial sums corresponding to the infinite sum

appearing in (3.11)), to prove the generation of exponential moments with

orders up to s = γ and the propagation of exponential moments with orders

0 < s ≤ 2. This was done under the Grad’s cutoff assumption of just b ∈

L1(Sd). It is interesting that these results do not rely on the rate of Povzner

estimates for angular averaging, which was the case in the above mentioned

works.
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The only existing result in the non-cutoff case was established by Lu and

Mouhot [44], where they showed only generation of exponential moments of

order up to s = γ. No information was available about exponential moments of

higher orders s ∈ (γ, 2], which is what together with the partial sum technique

of Alonso, Cañizo, Gamba and Mohout [6] motivated our project.

3.3 A strategy of the proof

Here we outline our strategy for proving the propagation of moments,

Theorem 3.1.1 (b). Proof of the generation of moments is similar. Details are

provided in Section 3.7 and Section 3.8. The proof is inspired by the recent

work of Alonso, Cañizo, Gamba, Mouhot [6], where the partial sum technique

was developed to show propagation and generation of exponential moments

(1.3) for the Grad’s cutoff case.

Our goal is to prove that a solution f(t, v) of the Boltzmann equation

for hard potentials and an angular non-cutoff condition admits L1-Mittag-

Leffler moments (3.1.2) of order s and some rate α(t). Our proof is based on

studying partial sums of these moments. To this end, we work with the n-th

partial sum defined as

En
a (α, t) :=

n∑
q=0

m2q(t) α
aq

Γ(aq + 1)
, (3.12)

where

a =
2

s
.
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Given s ∈ (0, 2), we need to prove that there exits a positive rate α(t)

so that En
a (t) is uniformly bounded in time and in n, so that the sequence of

finite sums converges as n→∞. The value of α and the bound of the partial

sums are found and shown to depend on parameters of the collision kernel

and properties of the initial data. This uniform bound of En
a (t) is proved by

a “continuity argument”. Define the time Tn by:

Tn := sup {t ≥ 0 | En
a (α, τ) < 4M0, for all τ ∈ [0, t)} , (3.13)

where the constant M0 is the one from the initial condition (3.8).

If Tn is well-defined and positive (which will be checked later), then

En
a (t) < 4M0 holds for t ∈ [0, Tn). We will prove that in fact the inequality is

true on the closed interval [0, Tn], so by continuity of En
a (t) it actually holds

on a slightly larger interval. Unless Tn = +∞, this would contradict the fact

that Tn was the largest time for which the bound holds.

In order to achieve all of this, we derive a differential inequality for

En
a = En

a (α, t). The proof proceeds in the following steps. All inequalities

that follow are valid on the closed interval [0, Tn].

Step 1. Derive ODI for polynomial moments. The first step is

to obtain differential inequalities for moments m2q(t), by studying the balance

m′2q(t) =

∫
Rd
Q(f, f)(t, v) 〈v〉2qdv, (3.14)

which is a consequence of the Boltzmann equation. The right hand side re-

quires finding the estimates of the weak formulation of the collision operator
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(2.10) with test functions φ(v) = 〈v〉2q. Consequently, we need to estimate the

angular integration∫
Sd−1

(
〈v′〉2q + 〈v′∗〉2q − 〈v〉2q − 〈v∗〉2q

)
b(cos θ)dσ. (3.15)

This will require the key tool of the proof - the angular averaged Povzner

estimate for the non-cutoff case. This is the key ingredient of the proof and is

explained in details in Section 3.5. These estimates will lead to the following

differential inequalities for polynomial moments:

m′2q ≤ −K1m2q+γ + K2m2q

+K3 εq q (q − 1)

b q+1
2
c∑

k=1

(
q − 2

k − 1

)(
m2k+γm2(q−k) +m2km2(q−k)+γ

)
,

(3.16)

where K1 = A2Cγ, with A2 as defined in (3.30) and Cγ depending on the rate

of potentials γ. Similarly K2 and K3 depend on these parameters as well. The

key property of this inequality is that the highest order moment of the right-

hand side comes with a negative sign which is crucial for moment propagation

and generation. Another important aspect of this differential inequality is the

presence of the factor q(q−1) in the last term, which was absent in the Grad’s

cutoff case. Because of it, it will be of great importance to know the decay

rate for εq.

Step 2. Derive ODI for partial sums - part 1. The second step

consists in the derivation of a differential inequality for partial sums En
a =

En
a (α, t) obtained by adding n inequalities corresponding to (3.16) for the
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renormalized polynomial moments m2q(t)α
aq/Γ(aq + 1). This will yield

d

dt
En
a ≤ cq0 +

(
−K1 I

n
a,γ + K1 cq0 + K2E

n
a + εq0 q

2−a
0 K3C E

n
a I

n
a,γ

)
. (3.17)

In particular we obtain an ordinary differential inequality for the partial sum

En
a that depends on a shifted partial sum Ina,γ, defined by

Ina,γ(α, t) =
n∑
q=0

m2q+γ(t) α
aq

Γ(aq + 1)
. (3.18)

The derivation of the last term in the right hand side of (3.17) requires a

decay property of combinatoric sums of Beta functions. These estimates are

presented in detail in Lemma 3.4.4 and Lemma 3.4.5. The constants K1, K2

and K3 only depend on the singularity conditions (2.9), and so they are in-

dependent of n and on any moment q. The constant cq0 depends only on a

finite number q0 of moments of the initial data. The choice of q0 is crucial to

control the long time behavior of solutions to inequality (3.17), and it is done

so that εq0 q
2−a
0 K3 < K1/2, after using the decay property of εq0 (3.32) in

Lemma 3.5.1.

Step 3. Derive ODI for partial sums - part 2. Finally, after

showing that Ina,γ(α, t) is bounded below by the sum of two terms depending

linearly on En
a (α, t) and on mass m0, and nonlinearly on the rate α, we obtain

the following differential inequality for partial sums in the case of propagation

of Mittag-Leffler moments

d

dt
En
a (t) ≤ − K1

2α
γ
2

En
a (t) +

K1m0 e
αa−1

2α
γ
2

+ K0 (Propagation estimate).
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The constant K0 depends on parameters characterizing q0, cq0 and Ki, i =

1, 2, 3.. In addition, for the generation case, we obtain

d

dt
En
γ ≤ −

1

t

(
K1(En

γ −m0)

2α
− Cq0

)
+ K0 (Generation estimate).

Thus, the differential inequalities (3.17) are reduced to linear ones. Both

inequalities have desired uniform bounds for a sufficiently small parameter α,

which is independent of n and time t, and will depend on q0, which depends

only on data parameters.

3.4 Useful tools for the proof

In this subsection we gather several inequalities related to binomial co-

efficients and binomial sums. The first two lemmas focus on elementary poly-

nomial inequalities that will be used to derive ordinary differential inequalities

for polynomial moments in Section 3.6.

Lemma 3.4.1 (Polynomial inequality I). Let b ≤ a ≤ s
2
. Then for any

x, y ≥ 0,

xays−a + xs−aya ≤ xbys−b + xs−byb. (3.19)

Remark 3.4.1. This lemma is useful for comparing products of moments.

Namely, as its consequence, we have that for a fixed s, the sequence {mk ms−k}k

is decreasing in k, for k = 1, 2, ..., bs/2c := Integer Part of s/2. For example,

if s ≥ 4, then m2ms−2 ≤ m1ms−1.

Proof: Note that a, b and s satisfy a−b ≥ 0 and s−a−b ≥ 0. Therefore(
ya−b − xa−b

)
xbyb

(
ys−a−b − xs−a−b

)
≥ 0,
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which is easily checked to be equivalent to the inequality (3.19). �

Lemma 3.4.2 (Polynomial inequality II, Lemma 2 in [18]). Assume p > 1,

and let kp = b(p+ 1)/2c. Then for all x, y > 0 the following inequalities hold

kp−1∑
k=1

(
p

k

)
(xkyp−k + xp−kyk) ≤ (x+ y)p − xp − yp ≤

kp∑
k=1

(
p

k

)
(xkyp−k + xp−kyk).

Remark 3.4.2. Using this lemma, it is easy to see a coarse, but useful estimate

kp∑
k=0

(
p

k

)
(xkyp−k + xp−kyk) ≤ 2(x+ y)p. (3.20)

Next, we recall the basic definitions and properties of the Gamma func-

tion Γ(x) and the Beta function B(x, y), which are useful for our further esti-

mates. They are defined via

Γ(x) =

∫ ∞
0

tx−1 e−t dt, and B(x, y) =

∫ 1

0

tx−1 (1− t)y−1 dt. (3.21)

Two fundamental properties of these well-know functions are

Γ(x+ 1) = xΓ(x), and B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
(3.22)

The following classic result for estimates of generalized Laplace trans-

forms will be needed to estimate the combinatoric sums of Beta functions to

be shown in the subsequent Lemma 3.4.4.

Lemma 3.4.3. Let 0 < α,R < ∞, g ∈ C([0, R]) and S ∈ C1([0, R]) be such

that S(0) = 0 and S ′(x) < 0 for all x ∈ [0, R]. Then for any λ ≥ 1 we have∫ R

0

xα−1 g(x) eλS(x) dx = Γ(α)

(
1

−λ S ′(0)

)α
(g(0) + o(1)).
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The proof of this estimate is a direct application of the Laplace’s

method for asymptotic expansion of integrals that can be found in [49], page

81, Theorem 7.1.

The next two lemmas estimate a combinatoric sum of Beta functions. These

estimates are inspired by [18, Lemma 4] and [44, Lemma 3.3]. However, in

our context, the arguments of Beta functions are shifted, so we compute exact

decay rates for our situation. These estimates are crucial to control the growth

in q of the ordinary differential inequality of partial sums of renormalized

moments.

The first lemma will be used for the proof of propagation of moments

with a = 2/s, while the second will be used for the generation of moments

with s = γ.

Lemma 3.4.4 (First estimate on combinatoric sums of Beta Functions ). Let

q ≥ 3 and kq = [(q + 1)/2]. Then for any a > 1 we have

kq∑
k=1

(
q − 2

k − 1

)
B(ak + 1, a(q − k) + 1) ≤ Ca

(aq)1+a
, (3.23)

where the constant Ca depends only on a.

Proof: Reindexing the summation by changing k − 1 into k and rear-

38



ranging the integral forms defining Beta functions, yields

kq∑
k=1

(
q − 2

k − 1

)
B(ak + 1, a(q − k) + 1)

=

kq−1∑
k=0

(
q − 2

k

)
B(a(k + 1) + 1, a(q − k − 1) + 1)

=
1

2

∫ 1

0

kq−1∑
k=0

(
q − 2

k

)(
xa(k+1) (1− x)a(q−k−1) + xa(q−k−1) (1− x)a(k+1)

)
dx

=
1

2

∫ 1

0

xa(1− x)a
kq−2∑
k=0

(
q − 2

k

)(
xak (1− x)a(q−2−k) + xa(q−2−k) (1− x)ak

)
dx

=
1

2

∫ 1

0

xa(1− x)a
kp∑
k=0

(
p

k

)(
xak (1− x)a(p−k) + xa(p−k) (1− x)ak

)
dx

after setting q − 2 = p in the last integral. In particular using the estimate

(3.20), the right hand side of the above sum is estimated by

1

2

∫ 1

0

xa(1− x)a 2 (xa + (1− x)a)p dx =

∫ 1

0

xa(1− x)a (xa + (1− x)a)q−2 dx

= 2

∫ 1/2

0

xa g(x) eqS(x) dx,

where g(x) = (1−x)a (xa + (1− x)a)−2 and S(x) = log(xa + (1−x)a), for x ∈

[0, 1/2]. Finally, applying Lemma 3.4.3 for these g(x) and S(x) as indicated,

and noting that g(0) = 1 and S ′(0) = −a, yields the desired estimate

kq∑
k=1

(
q − 2

k − 1

)
B(ak + 1, a(q − k) + 1) ≤ Ca Γ(a+ 1)

(
1

aq

)a+1

. (3.24)

�

Lemma 3.4.5 (Second estimate on combinatoric sums of Beta Functions).

Let 0 < s ≤ 1 and q ≥ 3. Denote kp = [(p+ 1)/2], for any p ∈ R. Then, there
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exits a constant C, independent of q, such that

1+k q
2−

2
s∑

k=1

( q
2
− 2

s

k − 1

)
B(2k + 1, q − 2k + 1) ≤ C

q3
. (3.25)

Proof: First we note a simple property of binomial coefficients. For any

integer k ∈ N0 and any real numbers ã, a ∈ R that satisfy ã ≥ a ≥ k,(
a

k

)
≤
(
ã

k

)
. (3.26)

This is easily proved by noting that the binomial coefficient
(
a
k

)
(and similarly(

ã
k

)
) can be computed as(

a

k

)
=
a (a− 1) (a− 2) . . . (a− k + 1)

k!
.

Next, since s ≤ 1,

q

2
− 2

s
≤ q

2
− 2. (3.27)

Therefore,

1+k q
2−

2
s∑

k=1

( q
2
− 2

s

k − 1

)
B(2k + 1, q − 2k + 1)

≤
1+k q

2−2∑
k=1

( q
2
− 2

k − 1

)
B(2k + 1, q − 2k + 1) (3.28)

=

k q
2∑

k=1

( q
2
− 2

k − 1

)
B
(

2k + 1, 2
(q

2
− k
)

+ 1
)
.

Now applying (3.23) yields (3.25). �
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3.5 Angular averaging lemma

In this section we prove the key ingredient of the proof of Theorem

3.1.1, namely the angular averaging estimate for the non-cutoff case. This

lemma gives an estimate of the weight function Gφ in the weak formulation

(2.10) when the test function is a monomial φ(v) = 〈v〉rq. We denote this

weight function by

Grq := G〈v〉rq :=

∫
Sd−1

(〈v′〉rq + 〈v′∗〉rq − 〈v〉rq − 〈v∗〉rq)B(|u|, û · σ) dσ.

(3.29)

Due to the presence of the non-integrable angular singularity, subtle cancella-

tions between the gain and the loss terms need to be exploited.

Lemma 3.5.1. Suppose that the angular kernel b(cos θ) satisfies the non-cutoff

condition (2.9) with β = 2. Let r, q > 0. Then the weight function satisfies

Grq(v, v∗) ≤ |v − v∗|γ
[
−A2

(
〈v〉rq + 〈v∗〉rq

)
+ A2

(
〈v〉rq−2〈v∗〉2 + 〈v〉2〈v∗〉rq−2

)
+ εqr/2A2

qr

2

(qr
2
− 1
)
〈v〉2〈v∗〉2

(
〈v〉2 + 〈v∗〉2

) qr
2
−2
]
, (3.30)

where the constant A2 = |Sd−2|
∫ π

0
b(cos θ) sind θ dθ is finite by (2.9). The

sequence εqr/2 =: εq, defined as

εq :=
2

A2

|SN−2|
∫ π

0

(∫ 1

0

t

(
1− sin2 θ

2
t

)q−2

dt

)
b(cos θ) sind θ dθ, (3.31)

has the following decay properties. If b(cos θ) satisfies the non-cutoff assump-

tion (2.9) with β ∈ (0, 2], then

0 < εq q1−β
2 → 0, as q→∞. (3.32)
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Remark 3.5.1. The sequence εq is the same as in [44]. Its decay properties

(3.32) are also proved in [44], after invoking angular averaging and the domi-

nated convergence theorem. Condition (3.32) is crucial for finding the highest

order s of Mittag-Leffler moment that can be propagated in time.

Remark 3.5.2. The decay rate of εq is fundamental for the success of summa-

bility arguments, yet is not relevant for the generation and propagation of

polynomial moments. In the Grad’s cutoff case when term-by-term techniques

were used, the corresponding constant had a rate εq ≈ q−r, with r depending

on the integrability of b, see [17, 18, 35]. When the partial sum technique was

employed in [6], the precise rate was not needed any longer. Here however, in

the non-cutoff case, the knowledge of the precise decay rate of εq becomes im-

portant again because of the extra power of q in the last term of the right-hand

side of (3.5.1).

Our proof of Lemma 3.5.1, while inspired by the one given in [44],

produces an improvement that enable us, among other things, to obtain expo-

nential and Mittag-Leffler moments up to order s < 2. This improvement is a

direct consequence of the following estimate on symmetrized convex binomial

expansions. namely the angular averaged Povzner estimate for the non-cutoff

case.

Lemma 3.5.2. [Symmetrized convex binomial expansions estimate]
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Let a, b ≥ 0, t ∈ [0, 1] and p ∈ (0, 1] ∪ [2,∞). Then(
ta+ (1− t)b

)p
+
(

(1− t)a+ tb
)p
− ap − bp

≤ − 2t(1− t)
(
ap + bp

)
+ 2t(1− t)

(
abp−1 + ap−1b

)
.

(3.33)

Proof: Suppose p ≥ 2. The case p ∈ (0, 1] can be done analogously.

Due to the symmetry of the inequality (3.33), we may without the loss of

generality assume that a ≥ b. Since all the terms have homogeneity p, the

inequality (3.33) is equivalent to showing

F (z) ≥ 0, ∀z ≥ 1,

where F (z) is defined by

F (z) :=
(

1−2t(1−t)
)(
zp+1

)
+ 2t(1−t)

(
z+zp−1

)
−
(
tz+(1−t)

)p
−
(

(1−t)z+t
)p
.

It is easy to check that

F ′′(z) = (p− 1)

[
p
(

1− 2t(1− t)
)
zp−2 + 2t(1− t)(p− 2)zp−3

− pt2
(
tz + (1− t)

)p−2

− p(1− t)2
(

(1− t)z + t
)p−2

]
.

As tz + (1− t) and (1− t)z + t are two convex combinations of z and 1, and

since z ≥ 1, we have that tz + (1− t) ≤ z and (1− t)z + t ≤ z. Since p ≥ 2,

this implies (tz + (1− t))p−2 ≤ zp−2 and ((1− t)z + t)p−2 ≤ zp−2. Therefore,

F ′′(z)

p− 1
≥ p
(
1− 2t(1− t)

)
zp−2 + 2t(1− t)(p− 2)zp−3 − pt2zp−2 − p(1− t)2zp−2

= 2t(1− t)(p− 2)zp−3

≥ 0.
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Thus, F ′′(z) ≥ 0 for z ≥ 1. So, F ′(z) is increasing. Since F ′(1) = 0, we have

that F ′(z) ≥ 0 for z ≥ 1. Finally using the fact that F (1) = 0, we conclude

F (z) ≥ 0 for z ≥ 1. �

We are now ready to prove the new form of the angular averaged lemma.

Proof of Lemma 3.5.1 Recall the definition of the weight Grq

Grq(v, v∗) := |v − v∗|γ
∫
Sd−1

b(cos θ) sind−2 θ ∆〈v〉rq dσ, (3.34)

where ∆〈v〉rq = 〈v′〉rq + 〈v′∗〉rq − 〈v〉rq − 〈v∗〉rq.

û

σ

ωj

V̂

θ

Sd−2

Sd−1

Figure 3.1:
Decomposition of σ.

This integral is rigorous even in cases when∫
Sd−1 B(|u|, cos θ) dσ is unbounded, by an angular

cancellation. A natural way of handling the cancel-

lation is to decompose σ ∈ Sd−1 into θ ∈ [0, π] and

its corresponding azimuthal variable ω ∈ Sd−2, i.e.

σ = cos θ û+ sin θ ω,

where Sd−2(û) = {ω ∈ Sd−1 : ω · û = 0}.

This decomposition allows handling the lack of integrability concen-

trated at the origin of the polar direction θ = 0. To see this, a specific way

of decomposing 〈v′〉2 and 〈v′∗〉2 that separates the part that depends on ω is

convenient. More precisely, 〈v′〉2 and 〈v′∗〉2 are decomposed into a sum of a

convex combination of the local energies proportional to a function of the polar
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angle θ, and another term depending on both the polar angle and ω

〈v′〉2 = Ev,v∗(θ) + P (θ, ω), (3.35)

〈v′∗〉2 = Ev,v∗(π − θ) − P (θ, ω).

Here

P (θ, ω) = |v × v∗| sin θ (j · ω),

where the vector j ∈ Sd−2 is obtained by projecting the center of mass V =

v+v∗
2

, or its unit direction V̂ . P (θ, ω) is a null form in ω by averaging, i.e.∫
Sd−2

P (θ, ω)dω = 0,

and Ev,v∗(θ) is a convex combination of 〈v〉2 and 〈v′∗〉2 given by

Ev,v∗(θ) = t 〈v〉2 + (1− t) 〈v∗〉2, where t = sin2 θ

2
.

To verify the representation of, for example 〈v′〉2, in (3.35), recall that

v′ =
v + v∗

2
+

1

2
|u|σ.

Hence,

〈v′〉2 = 1 +
|v + v∗|2

4
+
|v − v∗|2

4
+

1

2
|u|σ

= 1 +
|v|2 + |v∗|2

2
+

1

2
|u|(v + v∗) · (û cos θ + ω sin θ)

= 1 +
|v|2 + |v∗|2

2
+

1

2
(v + v∗) · (v − v∗) cos θ +

1

2
|u||V | sin θ(V̂ · ω)

= 1 + |v|2 cos2 θ

2
+ |v∗|2 sin2 θ

2
+

1

2
|u||V | sin θ(j · ω) sinα

= 〈v〉2 cos2 θ

2
+ 〈v∗〉2 sin2 θ

2
+ |v × v∗| sin θ(j · ω),
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which coincides with the representation of 〈v′〉2 in (3.35).

The decomposition (3.35), of local energies into a convex combination

and a null form in ω, make the weight function Grq(v, v∗) well defined for every

v and v∗ for sufficiently smooth test functions (φ ∈ C2(Rd)) even under the

non-cutoff assumption (2.9) with β = 2. In fact Taylor expansions associated

to 〈v′〉rq are a sum of a power of Ev,v∗(θ), plus a null form in the azimuthal

direction, plus a residue proportional to sin2 θ that will secure the integrability

of the angular cross section with respect to the scattering angle θ.

While some of these estimates are found also in [44], we still provide

details below for completeness. Indeed, we Taylor expand 〈v′〉rq around E(θ)

up to the second order to obtain

〈v′〉rq =
(
Ev,v∗(θ) + h sin(θ) (j · ω)

) rq
2

(3.36)

=
(
Ev,v∗(θ)

)rq/2
+
rq

2

(
Ev,v∗(θ)

) rq
2
−1
h sin θ (j · ω)

+
rq

2

(rq
2
− 1
)
h2 sin2 θ (j · ω)2

∫ 1

0

(1− t)
[
E(θ) + t h sin θ (j · ω)

] rq
2
−2
dt.

A similar identity can be obtained for 〈v′∗〉rq.

Since the collision cross section is independent of the azimuthal direc-

tion ω, and since
∫
Sd−2 j · ω dω = 0, we can write Grq(v, v∗) as the sum of

two integrals on the Sd−1 sphere, whose first integrand contains the zero-order

term of the Taylor expansion of both 〈v′∗〉rq and 〈v′〉rq subtracted by their

corresponding un-primed forms, while the second integrand is just the second
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order term of the Taylor expansion (3.37)

Grq(v, v∗) = I1 + I2 (3.37)

=

∫ π

0

∫
Sd−2

(
Ev,v∗(θ)

rq/2 + Ev,v∗(π − θ)rq/2 − 〈v〉rq − 〈v∗〉rq
)
b(cos θ) sind−2 θ dω dθ

+
rq

2

(rq
2
− 1
)
h2

∫ π

0

sind θ b(cos θ)

∫
Sd−2

(j · ω)2

∫ 1

0

(1− t)([
Ev,v∗(θ) + t h sin θ (j · ω)

] rq
2
−2

+
[
Ev,v∗(π − θ) − t h sin θ

] rq
2
−2
)
dtdωdθ.

At this point we use polynomial inequality (3.33) to estimate the first integral

I1. We use it with a = 〈v〉2, b = 〈v∗〉2 and t = cos2 θ
2
, and this yields

I1 ≤
∣∣Sd−2

∣∣ ∫ π

0

−sin2 θ

2

(
〈v〉rq + 〈v∗〉rq

)
b(cos θ) sind−2 θ dθ

+

∫ π

0

sin2 θ

2

(
〈v〉rq−2〈v∗〉2 + 〈v〉2〈v∗〉rq−2

)
b(cos θ) sind−2 θ dθ

= −A2

(
〈v〉rq + 〈v∗〉rq

)
+ A2

(
〈v〉rq−2〈v∗〉2 + 〈v〉2〈v∗〉rq−2

)
.

(3.38)

The constant A2 was defined after (3.30).

For the second order term I2, we use that (j ·ω)2 ≤ 1 and h = |v×v∗| ≤

〈v〉 〈v∗〉, and that (see [44])

∣∣Ev,v∗(θ) + th sin θ (j · ω)
∣∣ ≤ (〈v〉2 + 〈v∗〉2

)(
1− t

4
sin2 θ

)
, (3.39)

to conclude

I2(r) ≤ rq

2

(rq
2
− 1
)
〈v〉2〈v∗〉2

∣∣Sd−2
∣∣ ∫ π

0

sind θ b(cos θ)·

·
∫ 1

0

2(1− t)
(
〈v〉2 + 〈v∗〉2

) rq
2
−2
(

1− 1− t
4

sin2 θ

) rq
2
−2

dt dθ.
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After a simple change of variables (t 7→ 1 − t) and recalling the definition of

constant εrq/2 in (3.31), we see that

I2(r) ≤ εrq/2A2
rq

2

(rq
2
− 1
)
〈v〉2〈v∗〉2

(
〈v〉2 + 〈v∗〉2

) rq
2
−2

. (3.40)

Putting together the estimate for I1 and for I2, we obtain the desired estimate

on the weight Grq(v, v∗).

3.6 Ordinary differential inequalities for moments

In this section we present two differential inequalities for polynomial moments

(Proposition 3.6.1) which will be essential for the proof of Theorem 3.1.1. We

also state and prove a result about generation of polynomial moments in the

non-cutoff case (Proposition 3.6.2). Before we state the proposition, we recall

the “floor function” of a real number, which in the case of a positive real

number x ∈ R+ coincides with the integer part of x

bxc := integer part of x. (3.41)

Proposition 3.6.1. Suppose all the assumptions of Theorem 3.1.1 are sat-

isfied. Let q ∈ N, and define kp = bp+1
2
c for any p ∈ R to be the integer

part of (p + 1)/2. Then for some constants K1, K2, K3 > 0 (depending on γ,

b(cos θ), dimension d, and initial mass and energy) we have the following two

ordinary differential inequalities for polynomial moments of the solution f to

the Boltzmann equation
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(a) The “mγk version” needed for the generation of exponential moments

m′γq(t) ≤ −K1mγq+γ + K2mγq +K3 ε qγ
2

qγ

2

(qγ
2
− 1
)
· (3.42)

·

1+k q
2−

2
γ∑

k=1

( q
2
− 2

γ

k − 1

)
(m2γk+γmγq−2γk +m2γkmγq−2γk+γ) .

(b) The “m2k version” needed for propagation of Mittag-Leffler moments

m′2q ≤−K1m2q+γ + K2m2q (3.43)

+ K3 εq q(q − 1)

kq∑
k=1

(
q − 2

k − 1

)(
m2k+γm2(q−k) +m2km2(q−k)+γ

)
.

In both cases, the constant K1 = A2Cγ, where A2 was defined in (3.30) and

Cγ, to be defined in the proof below, only depends on the γ rate of the hard

potentials. Similarly K2 and K3, also depend on data, through the dependence

on A2 and Cγ.

Proof: We begin the proof by analyzing mrq with a general monomial

weight 〈v〉rq. Then by setting r = γ we shall derive (a) and by setting r = 2

we shall obtain (b).

Recall that after multiplying the Boltzmann equation (2.16) by 〈v〉rq,

the weak formulation (2.10) yields

m′rq(t) =
1

2

∫∫
R2d

ff∗ Grq(v, v∗) dv dv∗. (3.44)

In fact, since a polynomial φ(v) = 〈v〉rq is not admissible test function in the

definition of a weak solution (Definition 3.1.1), an approximation argument is
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needed to rigorously show (2.10). Such a procedure is standard and can be

found for example in [44, Section 4].

The weight function Grq can be estimated as in Proposition 3.5.1, which

yields

m′rq(t) ≤ −
A2

2

∫
Rd

∫
Rd
f f∗ |v − v∗|γ

(
〈v〉rq + 〈v∗〉rq

)
dvdv∗

+
A2

2

∫
Rd

∫
Rd
f f∗ |v − v∗|γ

(
〈v〉rq−2〈v∗〉2 + 〈v〉2〈v∗〉rq−2

)
dvdv∗

+
A2

2
ε qγ

2

rq

2

(rq
2
− 1
)∫∫

R2d

f f∗ |v − v∗|γ 〈v〉2〈v∗〉2
(
〈v〉2 + 〈v∗〉2

) rq
2
−2

dvdv∗.

(3.45)

We estimate |v − v∗|γ via elementary inequalities

|v − v∗|γ ≤ C−1
γ

(
〈v〉γ + 〈v∗〉γ

)
and |v − v∗|γ ≥ Cγ〈v〉γ − 〈v∗〉γ, (3.46)

where Cγ = min{1, 21−γ} (see for example [6]). As an immediate consequence

|v − v∗|γ
(
〈v〉rq + 〈v∗〉rq

)
≥
(
Cγ〈v〉γ − 〈v∗〉γ

)
〈v〉rq +

(
Cγ〈v∗〉γ − 〈v〉γ

)
〈v∗〉rq

= Cγ

(
〈v〉rq+γ + 〈v∗〉rq+γ

)
−
(
〈v〉rq〈v∗〉γ + 〈v〉γ〈v∗〉rq

)
, (3.47)

and

|v − v∗|γ
(
〈v〉rq−2〈v∗〉2 + 〈v〉2〈v∗〉rq−2

)
≤ C−1

γ

(
〈v〉γ + 〈v∗〉γ

) (
〈v〉rq−2〈v∗〉2 + 〈v〉2〈v∗〉rq−2

)
≤ 2C−1

γ

(
〈v〉rq〈v∗〉γ + 〈v〉γ〈v∗〉rq

)
, (3.48)

where the last inequality uses Lemma 3.4.1.
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Combining (3.45) with (3.47) and (3.48) we obtain

m′rq(t) ≤ −
A2

2
Cγ

∫
Rd

∫
Rd
ff∗

(
〈v〉rq+γ + 〈v∗〉rq+γ

)
dvdv∗

+
A2

2
(1 + 2C−1

γ )

∫
Rd

∫
Rd
f f∗

(
〈v〉rq〈v∗〉γ + 〈v〉γ〈v∗〉rq

)
dvdv∗

+
A2 εrq/2

2Cγ

rq

2

(rq
2
− 1
)
·

·
∫∫

R2d

ff∗

(
〈v〉γ + 〈v∗〉γ

)
〈v〉2〈v∗〉2

(
〈v〉2 + 〈v∗〉2

) rq
2
−2

dvdv∗

≤ − A2 Cγm0(t)mrq+γ(t) + A2(1 + 2C−1
γ )mγ(t)mrq(t)

+
A2 εrq/2

2Cγ

rq

2

(rq
2
− 1
)
·

·
∫∫

R2d

ff∗

(
〈v〉γ + 〈v∗〉γ

)
〈v〉2〈v∗〉2

(
〈v〉2 + 〈v∗〉2

) rq
2
−2

dvdv∗.

The mass is conserved m0(t) = m0(0), and since 0 < γ ≤ 1, monotonicity of

moments and conservation of energy implies mγ(t) ≤ m2(0). Using these facts

in the above estimate yields

m′rq(t) ≤ −K1mrq+γ(t) +K2mrq(t) +
K3

2
εrq/2

rq

2

(rq
2
− 1
)

(3.49)∫∫
R2d

ff∗

(
〈v〉γ + 〈v∗〉γ

)
〈v〉2〈v∗〉2

(
〈v〉2 + 〈v∗〉2

) rq
2
−2

dvdv∗,

where K1 = A2Cγm0(0), K2 = A2 (1 + 2C−1
γ )m2(0) and K3 = A2

Cγ
. Thus,

these constants depend on the initial mass and energy, on the rate of the

potential γ and the constant A2 determined by (2.9).

From here, we proceed to prove (a) and (b) separately.

(a) Setting r = γ in (3.49), applying the following elementary polynomial

inequality which is valid for γ ∈ (0, 1](
〈v〉2 + 〈v∗〉2

) γq
2
−2

≤
(
〈v〉2γ + 〈v∗〉2γ

) q
2
− 2
γ
, (3.50)
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and using the polynomial Lemma 3.4.2 yields

m′γq(t) ≤ − K1 mγq+γ +K2 mγq +
K3

2
εγq/2

γq

2

(γq
2
− 1
)

∫∫
R2d

f f∗

(
〈v〉γ + 〈v∗〉γ

)
〈v〉2〈v∗〉2

(
〈v〉2γ + 〈v∗〉2γ

) q
2
− 2
γ
dvdv∗

≤ − K1 mγq+γ +K2 mγq +
K3

2
εγq/2

γq

2

(γq
2
− 1
)∫∫

R2d

f f∗

(
〈v〉γ + 〈v∗〉γ

)
k q
2−

2
γ∑

k=0

( q
2
− 2

γ

k

)(
〈v〉2γk+2〈v∗〉γq−2γk−2 + 〈v〉γq−2γk−2〈v∗〉2γk+2

)
dvdv∗

≤ − K1 mγq+γ +K2 mγq + K3 εγq/2
γq

2

(γq
2
− 1
)
·

k q
2−

2
γ∑

k=0

( q
2
− 2

γ

k

)(
m2γk+2+γmγq−2γk−2 +mγq−2γk−2+γm2γk+2

)
dvdv∗.

Finally, re-indexing k to k − 1 and applying Lemma 3.4.1 yields

m′γq(t) ≤ − K1 mγq+γ +K2 mγq + K3 εγq/2
γq

2

(γq
2
− 1
)

1+k q
2−

2
γ∑

k=1

( q
2
− 2

γ

k − 1

)(
m2γk+γmγq−2γk +mγq−2γk+γm2γk

)
dvdv∗.

which completes proof of (a).

52



(b) Now, we set r = 2 in (3.49) and apply Lemma 3.4.2 to obtain

m′2q(t) ≤ − K1 m2q+γ +K2 m2q + K3 εq q(q − 1)

∫∫
R2d

f f∗

(
〈v〉γ + 〈v∗〉γ

)

〈v〉2〈v∗〉2
kq−2∑
k=0

(
q − 2

k

)(
〈v〉2k 〈v∗〉2(q−2)−2k + 〈v〉2(q−2)−2k〈v∗〉2k

)
dvdv∗

= − K1 m2q+γ +K2 m2q + K3 εq q(q − 1)

∫∫
R2d

f f∗ (〈v〉γ + 〈v∗〉γ)

kq−2∑
k=0

(
q − 2

k

)(
〈v〉2k+2〈v∗〉2q−2k−2 + 〈v〉2q−2k−2〈v∗〉2k+2

)
dvdv∗

= − K1 m2q+γ +K2 m2q + K3 εq q(q − 1)

kq∑
k=1

(
q − 2

k − 1

)(
m2k+γm2q−2k +m2km2q−2k+γ

)
.

The last equality is obtained by re-indexing k to k−1 and using that 1+kq−2 =

kq. This completes proof of (b). �

Proposition 3.6.2 (Polynomial moment bounds for the non-cutoff case). Sup-

pose all the assumptions of Theorem 3.1.1 are satisfied. Let f be solution to

the homogeneous Boltzmann equation (2.16) associated to the initial data f0.

1. Let the initial mass and energy be finite, i.e. m2(0) bounded, then for

every p > 0 there exists a constant Brp ≥ 0, depending on 2rp, γ, m2(0)

and A2 from condition (2.9), such that

mrp(t) ≤ Brp max{1, t−rp/γ}, for all r ∈ R+ and t ≥ 0 . (3.51)

2. Furthermore, if mrp(0) is finite, then the control can be improved to

mrp(t) ≤ Brp, for all r ∈ R+ and t ≥ 0. (3.52)
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Proof: These statements can be shown by studying comparison theo-

rems for initial value problems associated with ordinary differential inequalities

of the type

y′(t) + Ay1+c(t) ≤ By(t),

and comparing them to classical Bernoulli’s differential equations for the same

given initial y(0). In our context, these inequalities are a result of estimating

moments for variable hard potentials, i.e. γ > 0 as indicated in (2.7). Com-

parison with Bernoulli type differential equations was classically used in the

Grad’s angular cutoff case in [6, 47, 60, 61]. Also it was used in the proof of

propagation of L1 exponential tails for the derivatives of the solution of the

Boltzmann equation by means of geometric series methods in [8, 18,35].

In fact, the extension to the non-cutoff case follows in a straightforward

way from the moments estimates in Proposition 3.6.1. This was also used

in [44] to establish generation of moments, yet for completeness purposes we

include the proof here.

Applying Lemma 3.4.2 to the binomial factor in the last term of the

estimate (3.49), distributing all products in that term and noticing that the

resulting products of moments are each less than mrq yields

m′rp ≤ Brpmrp −K1mrp+γ (3.53)

where K1 = K1(γ,m0(0), A2) with 0 < γ ≤ 1, and A2 from the angular

integrability condition (2.9); and Brp = Brp(K2, 2
rpK3), where K2 and K3 also

depend on the initial data and collision kernel through γ and A2.
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Since γ > 0, an application of the classical Jensen’s inequality with the

convex function ϕ(x) = x1+γ/(rp) yields

mrp+γ(t) ≥ m
−γ/(rp)
0 (0)m1+γ/(rp)

rp (t), for all t ≥ 0 .

Applying this estimate to the negative term in (3.53) yields

m′rp ≤ Brpmrp −K4m
1+γ/(rp)
rp , (3.54)

where K4 = K1m
−γ/(rp)
0 (0). Therefore, as in [60], we set y(t) := mrp(t), A :=

K4, B := Brp and c = γ/(rp). and look for an upper solution by considering

the associated Bernoulli ODE

y′(t) = By(t)− Ay1+c(t).

Thus for any t > 0

mrp(t) ≤
[
m−γ/(rq)rp (0) e−t γB/(rp) +

A

B
(1− e−t γB/(rp))

]−rp/γ
≤
[
A

B
(1− e−t γB/(rp))

]−rp/γ
≤
(
A

B

)−rp/γ
(
γB
rp
e−γB/rp

)−rp/γ
t−rp/γ, t < 1,

(1− e− γB/(rp))−rp/γ, t ≥ 1.

≤ Brp max{1, t−rp/γ}, (3.55)

where Brp :=
(
K4

Brp

)−rp/γ
max

{(
γBrp
rp
e−γBrp/rp

)−rp/γ
, (1− e− γBrp/(rp))−rp/γ

}
.

Now, if mrp(0) is finite, then the continuity of mrp(t) as function of time

and the bound for strictly positive times we just obtained in (3.55) implies

mrp(t) ≤ Brp. (3.56)
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for possibly different constants Brp. We finally stress that constants Brp de-

pend on 2rp, γ,m2(0) and A2 from condition (2.9). �

3.7 Proof of Mittag-Leffler moments’ propagation

Proof of Theorem 3.1.1 (b). Let us recall representation (3.6) of the Mittag-

Leffler moment of order s and rate α in terms of infinite sums∫
Rd
f(t, v) E2/s(α

2/s 〈v〉2) dv =
∞∑
q=0

m2q(t)α
2q/s

Γ(2
s
q + 1)

. (3.57)

We introduce abbreviated notation a = 2
s
. Since s ∈ (0, 2), we have

1 < a :=
2

s
<∞. (3.58)

We consider the n-th partial sum, denoted by En
a , and the corresponding sum,

denoted by Ina,γ, in which polynomial moments are shifted by γ. In other

words, we consider

En
a (α, t) =

n∑
q=0

m2q(t) α
aq

Γ(aq + 1)
, Ina,γ(α, t) =

n∑
q=0

m2q+γ(t) α
aq

Γ(aq + 1)
.

For each n ∈ N, define

Tn := sup {t ≥ 0 | En
a (α, τ) < 4M0, for all τ ∈ [0, t)} , (3.59)

where the constant M0 is the one from the initial condition (3.8).

The number Tn is well-defined and positive. Indeed, since α will be

chosen to be, at least, smaller than α0, then at time t = 0 we have

En
a (0) =

n∑
q=0

m2q(0) αaq

Γ(aq + 1)
<

∞∑
q=0

m2q(0) αaq0

Γ(aq + 1)
=

∫
f0(v)E2/s(α

2/s
0 〈v〉2) dv < 4M0,
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uniformly in n. Therefore, since partial sums are continuous functions of time

(they are finite sums and each m2q(t) is also continuous function in time t),

En
a (α, t) < 4M0 holds for t on some positive time interval denoted [0, tn) with

tn > 0 (and hence Tn > 0).

Next, we look for an ordinary differential inequality that the partial

sum En
a (α, t) satisfies, following the steps presented in Subsection 3.3. We

start by splitting d
dt
En
a (α, t) into the following two sums, where index q0 will

be fixed later, and then apply the moment differential inequality (3.43)

d

dt
En
a (α, t) =

q0−1∑
q=0

m′2q(t)α
aq

Γ(aq + 1)
+

n∑
q=q0

m′2q(t) α
aq

Γ(aq + 1)

≤
q0−1∑
q=0

m′2q(t)α
aq

Γ(aq + 1)
− K1

n∑
q=q0

m2q+γ(t)α
aq

Γ(aq + 1)
+ K2

n∑
q=q0

m2q(t)α
aq

Γ(aq + 1)

+ K3

n∑
q=q0

εq q(q − 1)αaq

Γ(aq + 1)

kq∑
k=1

(
q − 2

k − 1

)(
m2k+γm2(q−k) +m2km2(q−k)+γ

)
=: S0 − K1 S1 + K2 S2 + K3 S3. (3.60)

We estimate each of the four sums S0, S1, S2 and S3 separately, with the goal

of comparing each of them to the functions En
a (α, t) and Ina,γ(α, t). We remark

that the most involved term is S3. It resembles the corresponding sum in the

Grad’s cutoff case [6], with a crucial difference that our sum S3 has two extra

powers of q, namely q(q − 1). Therefore, a sharp calculation is required to

control the growth of S3 as a function of the number q of moments. This is

achieved by an appropriate renormalization of polynomial moments within S3

and also by invoking the decay rate of associated combinatoric sums of Beta

functions developed in Section 3.4.
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The term S0 can be bounded by a constant that depends on q0, the

initial data and the parameters of the collision cross section. Indeed, from

Lemma 3.6.2, the propagated polynomial moments can be estimated as follows:

mp ≤ Bp and m′p ≤ Bp Bp, for any p > 0, (3.61)

where the constant Bp defined in (3.55) depends on γ, the initial p-polynomial

moment mp(0) and A2 from condition (2.9).

In particular, for 0 < γ < 1, we can fix q0, to be chosen later, such that

the constant

cq0 := max
p∈Iq0
{Bp, Bp Bp}, with Iq0 = {0, . . . , 2q0 + 1} (3.62)

depends only on q0, γ, A2 from condition (2.9), and the initial polynomial

moments mq(0), for q ∈ Iq0 . Thus, due to the monotoncity of L1
k norms with

respect to k, both the 2q-moments and its derivatives, as well as the shifted

moments of order 2q + γ, are controlled by cq0 as follows:

m2q(t), m2q+γ(t), m
′
2q(t) ≤ cq0 , for all q ∈ {0, 1, 2, ...q0}. (3.63)

Therefore, for q0 fixed, to be chosen later, S0 is estimated by

S0 :=

q0−1∑
q=0

m′2q α
aq

Γ(aq + 1)
≤ cq0

q0−1∑
q=0

αaq

Γ(aq + 1)

≤ cq0

q0−1∑
q=0

(αa)q

Γ(q + 1)
≤ cq0 e

αa ≤ 2 cq0 ,

(3.64)

for the parameter α small enough to satisfy

α < (ln 2)1/a , or equivalently, eα
a ≤ 2. (3.65)
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The second term S1 is crucial, as it brings the negative contribution that

will yield uniform in n and global in time control to an ordinary differential

inequality for En
a (α, t). In fact, S1 is controlled from below by Ina,γ(α, t) as

follows:

S1 :=
n∑

q=q0

m2q+γ α
aq

Γ(aq + 1)
= Ina,γ −

q0−1∑
q=0

m2q+γ α
aq

Γ(aq + 1)
.

So using (3.63) and the estimate just obtained for S0 in (3.64), yields the

bound from below

S1 ≥ Ina,γ − cq0

q0−1∑
q=0

αaq

Γ(aq + 1)
≥ Ina,γ − 2cq0 . (3.66)

The sum S2 is a part of the partial sum En
a , so

S2 ≤ En
a . (3.67)

Finally, we estimate S3 and show that it can be bounded by the product

of En
a (α, t) and Ina,γ(α, t). We work out the details of the first term in the sum

S3 := S3,1 + S3,2, that is the one with m2k+γm2(q−k). The other sum with

m2km2(q−k)+γ can be bounded by following a similar strategy. In order to

generate both the partial sum En
a (α, t) and the shifted one Ina,γ(α, t), we make

use of the following well known relations between Gamma and Beta functions.

B(ak + 1, a(q − k) + 1) =
Γ(ak + 1) Γ(a(q − k) + 1)

Γ( (ak + 1) + (a(q − k) + 1) )

(3.68)

=
Γ(ak + 1) Γ(a(q − k) + 1)

Γ(aq + 2)
.
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Therefore, multiplying and dividing products of moments m2k+γm2(q−k) in S3,1,

by Γ(ak + 1)Γ(a(q − k) + 1) yields

S3,1 :=
n∑

q=q0

εq q (q − 1)αaq

Γ(aq + 1)

kq∑
k=1

(
q − 2

k − 1

)
m2k+γm2(q−k)

=
n∑

q=q0

εq q (q − 1)

kq∑
k=1

(
q − 2

k − 1

)
m2k+γα

ak

Γ(ak + 1)

m2(q−k)α
a(q−k)

Γ(a(q − k) + 1)

B(ak + 1, a(q − k) + 1)
Γ(aq + 2)

Γ(aq + 1)
.

Note that the factors
m2k+γα

ak

Γ(ak+1)
and

m2(q−k)α
a(q−k)

Γ(a(q−k)+1)
are the building blocks of

Ina,γ(α, t) and En
a (α, t), respectively.

Next, since Γ(aq+2)/Γ(aq+1) = aq+1, using the inequality
∑

k ak bk ≤∑
k ak

∑
k bk, it follows that

S3,1 ≤
n∑

q=q0

εq (aq + 1) q (q − 1)

(
kq∑
k=1

(
q − 2

k − 1

)
B(ak + 1, a(q − k) + 1)

)
(

kq∑
k=1

m2k+γα
ak

Γ(ak + 1)

m2(q−k)α
a(q−k)

Γ(a(q − k) + 1)

)
.

(3.69)

Next we show that the factor

(aq + 1) q (q − 1)

(
kq∑
k=1

(
q − 2

k − 1

)
B(ak + 1, a(q − k) + 1)

)

on the right hand side of (3.69) grows at most as q2−a. Indeed, using Lemma

3.4.4, the sum of the Beta functions is bounded by Ca(aq)
−(1+a). Therefore,
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S3,1 is estimated by

S3,1 ≤ Ca

n∑
q=q0

εq q
2−a

(
kq∑
k=1

m2k+γα
ak

Γ(ak + 1)

m2(q−k)α
a(q−k)

Γ(a(q − k) + 1)

)
, (3.70)

where Ca is a (possibly different) constant that depends on a. Now, by Lemma

3.5.1, the factor εq q
2−a decreases monotonically to zero as q → ∞ provided

that the angular kernel b(cos θ) satisfies (2.9) with β = 2a − 2. This indeed

was an assumption (3.9) in the theorem. Hence,

εq q
2−a ≤ εq0 q

2−a
0 , for any q ≥ q0 , (3.71)

and thus the term S3,1 is further estimated by

S3,1 ≤ Ca εq0 q
2−a
0

n∑
q=q0

kq∑
k=1

m2k+γα
ak

Γ(ak + 1)

m2(q−k)α
a(q−k)

Γ(a(q − k) + 1)
.

Finally, inspired by [6], we bound this double sum by the product of partial

sums En
a I

n
a,γ. To achieve that, change the order of summation to obtain

S3,1 ≤ Ca εq0 q
2−a
0

kn∑
k=0

n∑
max{q0,2k−1}

m2k+γα
ak

Γ(ak + 1)

m2(q−k)α
a(q−k)

Γ(a(q − k) + 1)

≤ Ca εq0 q
2−a
0

kn∑
k=0

m2k+γα
ak

Γ(ak + 1)

n∑
max{q0,2k−1}

m2(q−k)α
a(q−k)

Γ(a(q − k) + 1)

≤ Ca εq0 q
2−a
0 Ina,γ E

n
a ,

(3.72)

obtaining the expected control of S3,1. As mentioned above the estimate of

the companion sum S3,2 follows in a similar way, so we can assert

S3 ≤ Ca εq0 q
2−a
0 En

a (t) Ina,γ(t). (3.73)
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Next we obtain an ordinary differential inequality for En
a (t) depending

only on data parameters and Ina,γ(t). Indeed, combining (3.64), (3.66), (3.67)

and (3.72) with (3.60) yields

d

dt
En
a ≤ −K1 I

n
a,γ + 2 cq0(1 +K1) + K2E

n
a + εq0 q

2−a
0 CaK3 I

n
a,γ E

n
a . (3.74)

Since, by the definition of time Tn, the partial sum En
a is bounded by

the constant 4M0 on the time interval [0, Tn], we can estimate, uniformly in

n, the following two terms in (3.74)

2 cq0(1 +K1) +K2E
n
a ≤ 2 cq0(1 +K1) + 4K2M0 =: K0, (3.75)

where K0 depends only on the initial data and q0 (still to be determined).

Thus, factoring out En
a,γ from the remaining two terms in (3.74) yields

d

dt
En
a ≤ − Ina,γ

(
K1 − εq0 q

2−a
0 CaK3E

n
a

)
+ K0

≤ − Ina,γ
(
K1 − 4εq0 q

2−a
0 CaK3M0

)
+ K0, (3.76)

where in the last inequality we again used that, by the definition of Tn, we

have En
a ≤ 4M0 on the closed interval [0, Tn]. Now, since εq0 q

2−a
0 converges

to zero as q0 tends to infinity (by Lemma 3.5.1 as b(cos θ) satisfies (2.9) with

β = 2a− 2 ), we can choose large enough q0 so that

K1 − 4εq0 q
2−a
0 CaK3M0 >

K1

2
. (3.77)

For such choice of q0 we then have

d

dt
En
a ≤ −

K1

2
Ina,γ + K0 . (3.78)
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The final step consists in finding a lower bound for Ina,γ in terms of En
a .

The following calculation follows from a revised form of the lower bound given

in [6],

Ina,γ(t) :=
n∑
q=0

m2q+γ α
aq

Γ(aq + 1)
≥

n∑
q=0

∫
〈v〉≥ 1√

α

〈v〉2q+γ αaq

Γ(aq + 1)
f(t, v) dv

≥ 1
αγ/2

n∑
q=0

∫
〈v〉≥ 1√

α

〈v〉2q αaq

Γ(aq + 1)
f(t, v) dv

= 1
αγ/2

(
n∑
q=0

∫
Rd

〈v〉2q αaq

Γ(aq + 1)
f(t, v) dv −

n∑
q=0

∫
〈v〉< 1√

α

〈v〉2q αaq

Γ(aq + 1)
f(t, v) dv

)

≥ 1
αγ/2

(
En
a (t) −

n∑
q=0

∫
Rd

α−q αaq

Γ(aq + 1)
f(t, v) dv

)

≥ 1
αγ/2

(
En
a (t) − m0

∞∑
q=0

αq(a−1)

Γ(aq + 1)

)

> 1

α
γ
2
En
a (t) − 1

α
γ
2
m0 e

αa−1
.

(3.79)

Therefore, applying inequality (3.79) to (3.78) yields the following lin-

ear differential inequality for the partial sum En
a

d

dt
En
a (t) ≤ − K1

2α
γ
2

En
a (t) +

K1m0 e
αa−1

2α
γ
2

+ K0.

Then, by the maximum principle for ordinary differential inequalities,

En
2/s(t) = En

a (t) ≤ M0 +
2αγ/2

K1

(
K1m0 e

αa−1

2α
γ
2

+ K0.

)
= M0 + m0 e

αa−1
+ 2αγ/2

K1
K0

< 4M0,
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provided that α is chosen sufficiently small so that

m0 e
αa−1

+
2αγ/2

K1

K0 < 3M0 . (3.80)

Such choice of α is possible since m0 e
αa−1

+ 2αγ/2

K1
K0 → m0 < M0 as α→ 0.

Thus, by choosing α sufficiently small, (3.80) holds. Let us denote an α for

which (3.80) holds by α1.

In conclusion, if q0 is chosen according to (3.77), and hence depending

only on the initial data, initial Mittag-Leffler moment, γ and A2 from (2.9),

and if α = min{α0, (ln 2)1/a, α1}, where α1 satisfies (3.80), we have that the

strict inequality En
a (t) < 4M0 holds on the closed interval [0, Tn] uniformly

in n. Therefore, invoking the global continuity of En
a (t) once more, the set

of time t for En
a (t) < 4M0 holds on a slightly larger half-open time interval

[0, Tn + µ), with µ > 0. This would contradict maximality of the definition of

Tn, unless Tn = +∞. Hence, we conclude that Tn = +∞ for all n. Therefore,

we in fact have that

En
a (α, t) < 4M0, for all t ≥ 0, for all n ∈ N.

Thus, by letting n → +∞, we conclude that E∞a (α, t) < 4M0 for all t ≥ 0.

That is, ∫
Rd
f(t, v) E2/s(α

2/s 〈v〉2) dv < 4M0, for all t ≥ 0. (3.81)

Estimate (3.81) shows that the solution of the Boltzmann equation

with finite initial Mittag-Leffler moment of order s and rate α0, will propa-

gate Mittag-Leffler moments with the same order s and rate α satisfying α =

min{α0, (ln 2)1/a, α1}. This concludes the proof part(b) of Theorem 3.1.1.
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Part(a) of Theorem 3.1.1 concerns the generation of Mittag-Leffler or

exponential moments. This is proven in the next section.

3.8 Proof of exponential moments’ generation

Proof of Theorem 3.1.1 (a). The notation and strategy are similar to those in

the proof of Theorem 3.1.1 (b), contained in Section 3.7. The goal is to find

a positive and bounded real valued number α such that the solution f(v, t) of

the Boltzmann equation will have an exponential moment, of order γ and rate

αmin{t, 1}, generated for every positive time t, from the fact that the initial

data f0(v) has finite energy given by M∗
0 := m2(0).

The proof works with exponential weights of order γ. From this view-

point, the difference compared to the propagation of Mittag-Leffler moments

result obtained in the previous section is that the propagation result had to

be established for every order s ∈ (0, 2), while now the generation of Mittag-

Leffler moments of order s and rate α implies generation of such moments for

all smaller orders 0 < s. Thus, it suffices to consider just the order s = γ.

For an arbitrary positive number α, we denote the n-th partial sum of

the exponential moment of order γ by En
γ (αt, t) and the corresponding one in

which polynomial moments are shifted by γ by Inγ,γ(αt, t), that is

En
γ (αt, t) =

n∑
q=0

mγq(t) (αt)q

Γ(q + 1)
=

n∑
q=0

mγq(t) (αt)q

q!
, (3.82)

Inγ,γ(αt, t) =
n∑
q=0

mγq+γ(t) (αt)q

Γ(q + 1)
=

n∑
q=0

mγq+γ(t) (αt)q

q!
. (3.83)
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The sum En
γ (αt, t) is the partial sum of the exponential moment of order γ

with rate α of the probability density f in the Mittag-Leffler representation.

Define the time T ∗n as follows

T ∗n := min
{

1, sup
{
t ≥ 0 | En

γ (ατ, τ) < 4M∗
0 , for all τ ∈ [0, t)

}}
, (3.84)

where now the constant M∗
0 is the sum of the initial conserved mass and

energy, i.e. M∗
0 := M∗

0 (t) =
∫
f(v, t)〈v〉2dv =

∫
f0(v)〈v〉2dv. Since polynomial

moments are generated instantenously for the hard potential case, even for

the angular non-cutoff case (see [60]), thus every finite sum En
a (αt, t) is well

defined and continuous in time. Note that for t = 0, we have that En
γ (α0, 0) =

m0 < 4M∗
0 . Then, as in the previous case, continuity in time of partial sums

En
a (αt, t) implies that En

a (αt, t) < 4M∗
0 holds for t on some positive time

interval [0, t∗n), which implies that T ∗n > 0. In addition, the definition (3.84)

implies that T ∗n ≤ 1 for all n ∈ N.

As we did in the previous section for the proof of propagation of Mittag-

Leffler moments, we search for an ordinary differential inequality for En
γ (αt, t),

depending only on data parameters and on Inγ,γ(αt, t), for a positive and

bounded real valued α to be found and characterized.

To this end, we start by computing

d

dt
En
γ (αt, t) = α

n∑
q=1

mγq(t) (αt)q−1

(q − 1)!
+

n∑
q=0

m′γq(t) (αt)q

q!
(3.85)

= α

n∑
q=1

mγq(t) (αt)q−1

(q − 1)!
+

q0−1∑
q=0

m′γq(t) (αt)q

q!
+

n∑
q=q0

m′γq(t) (αt)q

q!
,
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where index q0 will be fixed later. The first sum in this identity is reindexed

by from q − 1 to q and estimated by Inγ,γ(αt, t) (defined in (3.83)), as follows:

n−1∑
q=0

mγq+γ(t) (αt)q

q!
≤

n∑
q=0

mγq+γ(t) (αt)q

q!
= Inγ,γ(αt, t).

Next, replacing the term m′γq(t), but just on the sums starting from q0,

by the upper bound given via (3.42), for α > 0, and for

kq∗ := bq
4
− 1

γ
+

3

2
c := integer part of

q

4
− 1

γ
+

3

2
, (3.86)

we have

d

dt
En
γ (αt, t) ≤ αInγ,γ(αt, t) +

q0−1∑
q=0

m′γq(t) (αt)q

q!

− K1

n∑
q=q0

mγq+γ(t) (αt)q

q!
+ K2

n∑
q=q0

mγq(t) (αt)q

q!
(3.87)

+ K3

n∑
q=q0

εγq/2
γq
2

(γq
2
− 1) (αt)q

q!

kq∗∑
k=1

( q
2
− 2

γ

k − 1

)
(

(m2γk+γ(t)mγq−2γk(t) + m2γk(t)mγq−2γk+γ(t)
)

=: αInγ,γ(αt, t) + S0 −K1 S1 + K2 S2 + K3 S3 .

We stress that the positive constant K1 = A2m0(0)Cγ depends only

on the collision cross section with A2 defined in (3.30), inital mass m0(0) and

Cγ only depending on 0 < γ ≤ 1. In the sequel, we will estimate the terms in

(3.87) to show that the negative one dominates, for a choice of α and q0 that

depend only on the initial and the collision kernel.
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The bounds of the term S0 depends on the initial data and the param-

eters of the collision cross section. Indeed, from Lemma 3.6.2, setting r = γ

in (3.55), the generated polynomial moments can be estimated by

mγq(t) ≤ Bγq max
t>0
{1, t−q}, (3.88)

m′γq(t) ≤ Bγqmγq(t) ≤ Bγq Bγq max
t>0
{1, t−q},

where the constant Bγq, now from (3.55), also depends on m2(0), γ, q and A2

from condition (2.9). Next, for q0 fixed, to be chosen later, set

c∗q0 := max
q∈{0,...,q0−1}

{Bγq, Bγq Bγq} , (3.89)

and then, both the 2q-moments and its derivatives are controlled in terms of

c∗q0 as follows:

mγq(t),m
′
γq(t) ≤ c∗q0 max

t>0
{1, t−q}, for all q ∈ {0, . . . , q0 − 1} . (3.90)

Thus we can estimate S0, for a fixed q0 to be defined later, by

S0 :=

q0−1∑
q=0

m′γq(t) (αt)q

q!

≤ c∗q0 max
t>0
{1, t−q}

q0−1∑
q=0

(αt)q

q!

≤ c∗q0 max
t>0
{tq, 1}

q0−1∑
q=0

αq

q!
(3.91)

≤ c∗q0e
α ≤ 2 c∗q0 , (3.92)

uniformly in t ∈ [0, T ∗n ] ⊂ [0, 1], for any α ≤ ln 2. To obtain inequality (3.91)

we used t ≤ T ∗n ≤ 1.
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The sum S2 is a part of the partial sum En
γ , hence

S2 :=
n∑

q=q0

mγq(αt)
q

q!
≤ En

γ (αt, t). (3.93)

The sum S1 needs to be bounded from below because of the negativity

of the term K1 S1. To this end, using again the time dependent estimates

for moments from Proposition 3.6.2, the estimate from below follows for t ∈

(0, T ∗n ] ⊂ (0, 1] as

S1 :=
n∑

q=q0

mγq+γ(t) (αt)q

q!
= Inγ,γ(αt, t)−

q0−1∑
q=0

mγq+γ(αt)
q

q!

≥ Inγ,γ(αt, t)− c∗q0
q0−1∑
q=0

max0<t≤1{1, t−(γq+γ)/γ}(αt)q

q!

≥ Inγ,γ(αt, t)− c∗q0
q0−1∑
q=0

t−q−1(αt)q

q!

= Inγ,γ(αt, t)−
c∗q0
t

q0−1∑
q=0

αq

q!

≥ Inγ,γ(αt, t)−
c∗q0
t
eα

≥ Inγ,γ(αt, t)−
2c∗q0
t
.

(3.94)

The estimate for the double sum term in S3 uses an analogous treat-

ment to the one in the previous section to obtain Mittag-Leffler moment’s

propagation. More precisely, we set S3 := S3,1 + S3,2, and use the identity

(3.22) written in the following format:

Γ(2k + 1)Γ(q − 2k + 1) = B(2k + 1, q − 2k + 1) Γ(q + 2) (3.95)
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to obtain

S3,1 :=
n∑

q=q0

εγq/2
γq

2

(γq
2
− 1
) kq∗∑
k=1

( q
2
− 2

γ

k − 1

)
m2γk+γ(t) (αt)2k

Γ(2k + 1)

mγq−2γk(t) (αt)q−2k

Γ(q − 2k + 1)

B(2k + 1, q − 2k + 1)
Γ(q + 2)

Γ(q + 1)

≤ εγq0/2

n∑
q=q0

(q + 1)
γq

2

(γq
2
− 1
)( kq∗∑

k=1

m2γk+γ(t) (αt)2k

Γ(2k + 1)

mγq−2γk(t) (αt)q−2k

Γ(q − 2k + 1)

)
(

kq∗∑
k=1

( q
2
− 2

γ

k − 1

)
B(2k + 1, q − 2k + 1)

)
. (3.96)

The last inequality was obtained via the inequality
∑

k akbk ≤
∑

k ak
∑

k bk,

and the fact that εq decreases in q. Again, using the estimate of Lemma 3.4.5,

the sum of the Beta functions is bounded by Cq−3, with C a uniform constant

independent of q. Therefore,

(q + 1)
γq

2

(γq
2
− 1
)( kq∗∑

k=1

( q
2
− 2

γ

k − 1

)
B(2k + 1, q − 2k + 1)

)
≤ (q + 1)

γq

2

(γq
2
− 1
)
q−3 ≤ Cγ , (3.97)

uniformly in q. Then, estimating the right hand side of (3.96) by the estimate

(3.97) just above, yields

S3,1 ≤ K3 Cγ εγq0/2

n∑
q=q0

(
kq∗∑
k=1

m2γk+γ(t) (αt)2k

Γ(2k + 1)

mγq−2γk(t) (αt)q−2k

Γ(q − 2k + 1)

)
. (3.98)

Finally, as was the case for the propagation estimates in the previous

section, changing the order of summation in the right hand side of (3.98) yields

a control by a factor En
γ (αt, t) Inγ,γ(αt, t) as follows. Recalling the definition of
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kq∗ from (3.86), and evaluating it for n instead of q yields

S3,1 ≤ Cγ εγq0/2

[n4 + 3
2
− 1
γ ]∑

k=0

n∑
q=max{q0,4k−2}

m2γk+γ (αt)2k

Γ(2k + 1)

mγq−2γk(αt)
q−2k

Γ(q − 2k + 1)

= Cγ εγq0/2

[n4 + 3
2
− 1
γ ]∑

k=0

m2γk+γ(t) (αt)2k

Γ(2k + 1)

 n∑
q=max{q0,4k−2}

mγq−2γk(t)(αt)
q−2k

Γ(q − 2k + 1)


≤ Cγ εγq0/2

[n4 + 3
2
− 1
γ ]∑

k=0

m2γk+γ(t) (αt)2k

Γ(2k + 1)
En
γ (αt, t)

≤ Cγ εγq0/2 I
n
γ,γ(αt, t)E

n
γ (αt, t) .

Analogous estimate can be obtained for S3,2, so overall we have

S3 ≤ 2Cγεγq0/2 I
n
γ,γ(αt, t) E

n
γ (αt, t). (3.99)

Therefore, combining estimates (3.92), (3.94), (3.93) and (3.99) with (3.87)

yields the following differential inequality for En
γ = En

γ (αt, t) depending on

Inγ,γ = Inγ,γ(αt, t),

d

dt
En
γ ≤ 2c∗q0 +

(
−K1 I

n
γ,γ +K1

2 c∗q0
t

+K2 E
n
γ + 2εγq0/2CγK3E

n
γ I

n
γ,γ

)
+αInγ,γ.

This inequality is the analog to the one in (3.74) for the propagation argument.

Since the partial sum En
γ (αt, t) is bounded by 4M∗

0 on the interval [0, T ∗n ],

uniformly in n and T ∗n ≤ 1, the right hand side of the above inequality is

controlled by

d

dt
En
γ (αt, t) ≤ −Inγ,γ(αt, t)

(
K1−8M∗

0 εγq0/2CγK3−α
)

+4M∗
0 K2+

2K1 c
∗
q0

t
+2c∗q0 .
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Next, since t ≤ T ∗n ≤ 1, then t−1 ≥ 1, thus

d

dt
En
γ (αt, t) ≤ −Inγ,γ(αt, t)

(
K1 − 8M∗

0 εγq0/2CγK3 − α
)

+
Kq0

t
,

with 0 < Kq0 = 2c∗q0 + 4M∗
0K2 + 2K1c

∗
q0

only depending on data parameters,

including q0, independent of n.

Finally, since εγq0/2 converges to zero as q0 goes to infinity, we can

choose large enough q0 and small enough α so that

K1 − 8εq0 q
2−a
0 K3 − α >

K1

2
, (3.100)

which yields

d

dt
En
γ (α1t, t) ≤ −

K1

2
Inγ,γ(αt, t) +

Kq0

t
. (3.101)

Therefore, the final step consists in finding a lower bound for Inγ,γ(αt, t)

in terms of En
γ (αt, t) as follows

Inγ,γ(αt, t) =
n∑
q=0

mγ(q+1)(t) (αt)q

q!
=

n+1∑
q=1

mγq(t) (αt)q

q!

q

αt

≥ 1

αt

n∑
q=3

mγq(t) (αt)q

q!
=

En
γ (t, αt)−M∗

0

αt
. (3.102)

Combining (3.101) and (3.102) yields

d

dt
En
γ (αt, t) ≤ −1

t

(
K1(En

γ −M∗
0 )

2α
−Kq0

)
= −K1

2αt

(
En
γ −M∗

0 −
2α

K1

Kq0

)
.

Then choosing a small enough α such that

M∗
0 +

2α

K1

Kq0 < 2M∗
0 or, equivalently, α <

K1M
∗
0

2Kq0

, (3.103)
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yields

d

dt
En
γ (αt, t) ≤ −K1

2αt

(
En
γ (αt, t)− 2M∗

0

)
. (3.104)

Therefore, we set α = min{ln 2, α1}, having in mind (3.92), and with

α1 satisfying the condition (3.103) that depends on the initial data, γ, the

collision kernel and A2 from the integrability condition (2.9). This α is a

positive real number. For such α, the estimate (3.104) holds.

Then, by a comparison argument, whenever En
γ (αt, t) > 2M∗

0 , we have

d
dt
En
γ < 0, and so En

γ (αt, t) decreases in t. Since at the initial time the partial

sum is less that the threshold, i.e. En
γ (0, 0) = m0 < 2M∗

0 and since it is

continuous for all times, we have that the strict inequality En
γ (αt, t) ≤ 2M∗

0 <

4M∗
0 holds uniformly on the closed interval [0, T ∗n ]. By continuity of the partial

sum, this strict inequality En
γ (αt, t) < 4M∗

0 then holds on a slightly larger

interval, which would contradict maximality of T ∗n from the definition (3.84),

unless T ∗n = 1. Hence, we conclude that T ∗n = 1 for all n. Therefore, we in fact

have that

En
γ (αt, t) < 4M∗

0 , for all t ∈ [0, 1] for all n ∈ N.

Thus, by letting n→ +∞, we conclude that E∞γ (αt, t) < 4M∗
0 for all t ∈ [0, 1].

That is,∫
Rd
f(t, v) E2/γ((αt)

2/γ 〈v〉2) dv < 4M0, for all t ∈ [0, 1]. (3.105)

Then, note that the above inequality implies that at the time t = 1, the

Mittag-Leffler moment of order γ and rate αt = α is finite. Now, starting the
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argument from t = 1 on, we bring ourselves into the setting of the propagation

and conclude that for t ≥ 1, the Mittag-Leffler moment of the same order γ

and potentially smaller α than the one found on time interval [0, 1], remain

uniformly bounded for all t ≥ 1.

In conclusion,∫
Rd
f(t, v) E2/γ((αt)

2/γ 〈v〉2) dv < C, for all t ∈ [0, 1], (3.106)

and ∫
Rd
f(t, v) E2/γ(α

2/γ 〈v〉2) dv < C, for all t ≥ 1. (3.107)

Therefore, we conclude that for all t ≥ 0, we have∫
Rd
f(t, v) E2/γ((αmin{1, t})2/γ 〈v〉2) dv < C. (3.108)

In particular, this asserts that the solution of the Boltzmann equa-

tion with an initial mass and energy, will develop Mittag-Leffler moments, or

equivalently, exponential high energy tails of order γ with rate r = αmin{t, 1}.

Therefore the proof of Theorem 3.1.1 is now complete.
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Chapter 4

L∞ theory: Pointwise behavior of tails

In this chapter we present our result on the pointwise upper bounds

of solutions to the Boltzmann equation, which is based in part on the joint

project with Gamba and Pavlović [36]. We begin by stating the main theorem

and its corollary. We then discuss the main tools of the proof. Finally we

present the proof of the main theorem and the corollary.

4.1 Statement of the main result

In this section we state our main result - an a priori estimate on the

propagation in time of weighted L∞ bounds of solutions to the homogeneous

Boltzmann equation in the non-cutoff setting. As is often the case with results

in the L∞ setting, the assumption on the angular cross section b(cos θ) is not

given by the integral behavior (2.9). Instead, its singular behavior is described

pointwise

b(cos θ) ≈ (sin θ)−(d−1)−ν , with ν ∈ (0, 2]. (4.1)

A kernel that satisfies (4.1) will automatically satisfy the integral condition

(2.9) if and only if ν < β.
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Due to symmetries of the collisional kernel Q(f, f), its value remains

the same if B is replaced with B̃, provided that

B(|u|, θ) + B(|u|, θ + π) = B̃(|u|, θ) + B̃(|u|, θ + π).

In the case when both B and B̃ are factorized, i.e. B(|u|, θ) = |u|γ b(θ) and

B̃(|u|, θ) = |u|γ b̃(θ) with the same parameter γ, this condition reduces to

b(θ) + b(θ + π) = b̃(θ) + b̃(θ + π). (4.2)

Given b(θ) as in (4.1), there are many ways to construct b̃ that satisfies (4.2).

A frequent choice is to set

b̃(cos θ) =

{
2b(cos θ), if cos θ > 0

0, if cos θ < 0,

thus reducing the support of the angular kernel to half of the sphere. We,

however, will use the following behavior on half spheres, as was the case in [52]

b̃(cos θ) ≈

{
| sin θ|−(d−1)−ν , if cos θ > 0

| sin θ|1+γ+ν , if cos θ < 0.
(4.3)

This particular choice is tailored for the proof of Lemma 4.2.3. From now on,

with the abuse of notation, we write b(cos θ) instead of b̃(cos θ).

Our main result is valid for exponential and Mittag-Leffler weight func-

tions, and in both cases the proof relies on the corresponding weighted L1

bounds. To emphasize this, and to make the presentation clean, we state the

result for a general weight, which is defined in such a way as to mimic the

exponential asymptotic behavior. So, the weight w, a function of velocity v,
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is defined via two parameters α > 0 and p ∈ (0, 2]. One can think of α and p

as describing the exponential behavior eα〈v〉
p
. More precisely, we assume that

the weight function w(v;α, p) has the following properties:

(P1) w(v;α, p) is strictly positive, radially increasing in v, increasing in α.

(P2) For every α, α′, p > 0 there exists a constant C = C(α, α′, p) and c2 =

c2(p), so that for every v ∈ Rd

w(v;α, p) w(2v;α′, p) ≤ C w(v;α + c2α
′, p).

(P3) Given δ ∈ [0, 1], and α, α′, p > 0 and k ≥ 0, there exist constants

C = C(δ, k, α, α′, p) and D = D(δ, k, α, α′, p) so that ∀v ∈ Rd

If δα < α′, then
w(v;α, p)δ

w(v;α′, p)
≤ C

〈v〉k

If δα > α′, then
w(v;α, p)δ

w(v;α′, p)
≥ D 〈v〉k.

(P4) For every α, p > 0 there is a constant C = C(α, p), so that ∀v ∈ Rd∣∣∣∣∇v

(
1

w(v;α, p)

)∣∣∣∣ ≤ C〈v〉.

Before we state the main theorem, we define a “w-suitable solution” to

the Boltzmann equation as the one for which the modification of some of the

techniques of Silvestre [52] can be applied. It needs to be in Schwartz class

and w-weighted L1 space, both locally in time. Moreover, for every time f the

w-weighted L1 norm of the solutions needs to be attained for some velocity v

(depending on time t).
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Definition 4.1.1. For a weight function w(v), we say that a weak solution

f(t, v) (see Definition 3.1.1) to the Cauchy problem (2.16) with the cross sec-

tion satisfying (2.6) and (2.9) is a w-suitable if

(i) for every t > 0, T > t: f ∈ L∞([t, T ]; S(Rd))

(ii) for every t > 0, the norm ‖f(t, v) w(v)‖L∞v is finite (not necessarily

uniformly in time) and the norm is attained for some v.

Remark 4.1.1. For any α1, α2, p > 0 with α2 < α1 we have that if f is

w(·;α1, p)-suitable solutions, then it is also w(·;α2, p)-suitable solution. To

prove this claim, it suffices to show that if f satisfies condition (ii) in Definition

4.1.1 with w(·;α1, p), then condition (ii) also holds for the weight w(·;α2, p).

So, suppose that for every time t, ‖f(t, v) w(v;α1, p)‖L∞v is finite (not neces-

sarily uniformly in time) and the norm is attained for some v. Then, thanks

to the property (P3), for every t we have

f(t, v) w(v;α2, p) = f(t, v) w(v;α1, p)
w(v;α2, p)

w(v;α1, p)

≤ Cf(t, v) w(v;α1, p)
1

〈v〉2

≤ C

〈v〉2
‖f(t, v) w(v;α1, p)‖L∞v . (4.4)

Therefore, ‖f(t, v) w(v;α2, p)‖L∞v is finite for every t. Now, to see that this

supremum is achieved, fix an arbitrary time t0, suppose that

‖f(t0, v) w(v;α2, p)‖L∞v = C0
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and suppose on contrary that this supremum is not attained. That is, suppose

that there is a sequence {vn}n so that

‖f(t0, vn) w(vn;α2, p)‖L∞v < C0

‖f(t0, vn) w(vn;α2, p)‖L∞v → C0, as n→∞.

Velocities vn cannot be inside of a ball BR of finite radius R, because then

they would converge to some v∗ ∈ BR, and at that point we would have that

‖f(t0, v∗) w(v∗;α2, p)‖L∞v = C0, which would contradict the assumption that

the supremum is not achieved. Hence, there exists a subsequence, which we

still call vn, so that |vn| → ∞ and

C0/2 < ‖f(t0, vn) w(vn;α2, p)‖L∞v < C0.

This contradicts the decay in (4.4) as f(t0, vn) w(vn;α2, p) ≤ C〈vn〉−2 → 0, so

the lower bound could not hold. This concludes the proof of the remark.

In the case of hard potentials that we consider, Alexandre, Morimoro,

Ukai, Xu and Yang [4] proved that if all polynomial moments are finite, then

the weak solution is of Schwartz class. Their result holds even for certain range

of negative values γ. More precisely,

Theorem (Alexandre-Morimoto-Ukai-Xu-Yang [4]). Suppose the cross section

B is in the form (2.6) and satisfies (4.1), and suppose that γ > max{−ν,−1}.

Let f be a weak solution to the Cauchy problem (2.16). For 0 ≤ T0 < T1, if f

satisfies

|v|lf ∈ L∞([T0, T1];L1(Rd)), for any l ∈ N, (4.5)
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then

f ∈ L∞([t0, T1]; S(Rd)]), (4.6)

for any t0 ∈ (T0, T1).

In the case of hard potentials, the condition (4.5) is automatically sat-

isfied since the exponential moment of order γ is generated and remains uni-

formly bounded in time. Therefore, the weak solutions is really of the Schwartz

class and the condition (i) of Definition 3.1.1. is satisfied.

We are now ready to state out main result, which is in part based on

the joint work with Gamba and Pavlović [36].

Theorem 4.1.1. (Propagation of L∞w tails) Let α0 > 0, p ∈ (0, 2] and let

w(v;α0, p) be a weight function that satisfies properties (P1)− (P4). Suppose

f is a w(·;α0, p)-suitable solution to the Cauchy problem (2.16) with the cross

section (2.6) with 0 < γ ≤ 1, the angular kernel (4.3) with ν ∈ (0, 1] and the

initial data f0(v) which has finite mass, energy and entropy.

Suppose that propagation of w-moments of f holds. More precisely,

suppose that for every α > 0 there exists 0 < α1 < α and a constant C1 > 0

(uniform in time) so that

if ‖f0(v)w(v;α, p)‖L1
v
<∞,

then ‖f(t, v)w(v;α1, p)‖L1
v
< C1, ∀t ≥ 0. (4.7)
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Then for any given α0 > 0, there exists 0 < α2 < α0 and a constant C (uniform

in time, depending on C1, p, α0, initial data and the cross section) so that

if ‖f0(v)w(v;α0, p)‖L∞v <∞,

then ‖f(t, v)w(v;α2, p)‖L∞v < C, ∀t ≥ 0. (4.8)

In Section 4.4 we provide examples of functions that satisfy properties

(P1)-(P4). They will include exponentials and Mittag-Leffler functions, for

which it has already been established that the corresponding moments (i.e.

weighted L1 bounds) propagate in time, and thus satisfy the assumption (4.7)

of the Theorem 4.1.1. As a consequence, we will be able to prove the following

statement.

Corollary 4.1.2. (Exponential and Mittag-Leffler L∞ moments)

(a) Suppose f0(v) ≤ Ce−α0〈v〉p for some α0 > 0 and p < 4
ν+2

. Suppose f

is a eα0〈v〉p-suitable solution to the Cauchy problem (2.16) with the cross

section (2.6) with 0 < γ ≤ 1, the angular kernel satisfying (4.3) with

ν ∈ (0, 1] and the initial data f0(v) which has finite mass, energy and

entropy. Then there exist a constant C1 > 0 and 0 < α < α0 so that

f(t, v) ≤ C1e
−α〈v〉p , for all t ≥ 0.

(b) Suppose f0(v) ≤ CE2/p(α
2/p
0 〈v〉2) for some α0 > 0 and p < 4

ν+2
. Suppose

f is a E2/p(α
2/p
0 〈v〉2)-suitable solution to the Cauchy problem (2.16) with

the cross section (2.6) with 0 < γ ≤ 1, and the angular kernel (4.3) with
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ν ∈ (0, 1] and the initial data f0(v) which has finite mass, energy and

entropy. Then there exist C1 > 0 and 0 < α < α0 so that

f(t, v) ≤ C1E2/p(α
2/p〈v〉2), for all t ≥ 0.

4.2 Relevant previous results and tools

Our proof relies on the propagation of the corresponding weighted L1

bounds. In this section we recall what is known about (weighted) L∞ bounds.

The transition from L1 to L∞ type results often employs a classical tool called

Carleman representation, which we recall now.

4.2.1 Towards L∞ bounds: Carleman representation

In previous works [13, 35, 52] on upper L∞ bounds of solutions to the

homogeneous Boltzmann equation, a specific change of variables was used,

which is often referred to as Carleman representation. This technique was

developed by Carleman [21]. See also [35, 40, 58]. The main idea behind the

Carleman representation is to replace variables (v, v∗, σ) by (v, v′, w). In this

process the integration over the (d − 1) dimensional sphere reduces to the

integration over a hyperplane that is orthogonal to v′ − v. In this thesis we

will use the version of Carleman representation given below.

Lemma 4.2.1 (Carleman representation, [21,35,40,52,59]). Let H : Rd×Rd →

R. Then∫
Rd

∫
Sd−1

H(v, v′) f(v′∗) B(r, θ) dσdv∗ =

∫
Rd
H(v, v′) Kf (v, v

′) dv′, (4.9)
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where the kernel Kf (v, v
′) is given by

Kf (v, v
′) =

2d−1

|v′ − v|

∫
{w:w·(v′−v)=0}

f(v + w) B(r, θ) r−d+2 dw. (4.10)

The new set of variables (v, v′, w) satisfies

r =
√
|v′ − v|2 + |w|2, cos

θ

2
=
|w|
r
,

v′∗ = v + w, v∗ = v′ + w.

4.2.2 Weighted L∞ bounds for the homogeneous Boltzmann equa-
tion with the angular cutoff

Once weighted L1 estimates are developed, the next important question

is understanding pointwise behavior of solutions. This has been achieved in

the cutoff case for the polynomial weights by Arkeryd [13] and for exponential

weights in the work of Gamba, Panferov and Villani [35]. We now provide the

statement from [35] on the propagation in time of exponentially weighted L∞

norms of solutions to the homogeneous Boltzmann equation in the cutoff case.

Theorem (Gamba-Panferov-Villani [35]). Consider the Cauchy problem (2.16),

(2.6), for the hard potentials 0 < γ ≤ 1 with the angular kernel satisfying

0 ≤ b(cos θ) ≤ c sin−α θ, with α < d− 1, which corresponds to a Grad’s cutoff.

Suppose f(t, v) is the unique solution to this Cauchy problem with initial data

satisfying

0 ≤ f0(v) ≤ e−a0|v|
2+c0 , for a.e. v ∈ Rd, for all t ≥ 0

that conserves the initial mass and energy. Then there exist constants a > 0
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and c ∈ R so that

f(t, v) ≤ e−a|v|
2+c, for a.e. v ∈ Rd, for all t ≥ 0.

The key tool for proving the pointwise estimate of [35] is the compar-

ison principle, which was also established in [35], thanks to a monotonicity

property of a linear Boltzmann semigroup. A crucial ingredient for a success-

ful application of the comparison principle is an exponentially weighted upper

bound of the linear “gain” operator, which was obtained in [35] using Carle-

man’s form of the “gain” term and careful estimates some of which use the

propagation of exponentially weighted L1 norms of the solution.

Although the comparison principle of [35] is stated in the case of a

cutoff, the proof implies that it should be expected in a non-cutoff case. How-

ever that is not sufficient to obtain the analogue of the point-wise propagation

estimate of [35] in a non-cutoff case, since in [35] the application of the com-

parison principle proceeds via separately estimating the gain and loss terms,

the procedure which cannot be carried out in a non-cutoff case. Despite not

using the comparison principle1, our proof of a propagation in time of expo-

nentially decaying point-wise estimates carries a similarity to the idea of [35],

in the sense that we too employ the estimates coming from the propagation

of exponentially weighted L1 norms of the solution to obtain weighted L∞

estimates.

1Instead, we modify the contradiction argument from the recent work of Silvestre [52].
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4.2.3 Recent L∞ bounds for the Boltzmann equation

Recently Silvestre [52] obtained certain regularity results for the Boltz-

mann equation in a non-cutoff case by introducing at the level of the Boltz-

mann equation techniques inspired by the theory of integro-differential equa-

tions. Along the way, Silvestre [52] proved the following pointwise bound for

a solution to the Boltzmann equation.

Theorem (Non-weighted pointise bounds, non-cutoff case, [52]). Suppose f(t, v)

is a classical solution to the Boltzmann equation (2.16) with finite mass, energy

and entropy. Then

‖f(t, v)‖L∞v ≤ a+ bt−d/ν ,

for some constants a, b depending only on the initial energy, mass and entropy.

In this thesis we generalize the above estimate, to obtain a propagation

in time of weighted L∞ norms of a solution. The proof builds on the known

weighted L1 bounds, and one of the key tools used in that direction is the Car-

leman representation (Lemma 4.9). The following lemma from [52] provides

an estimate that we use on the kernel Kf (see (4.10) for the definition of Kf ).

This lemma uses the specific structure of the angular kernel as given in (4.3).

Lemma 4.2.2 (Corollary 4.2, [52]). For the angular kernel that satisfies (4.3),

the weight function Kf in the Carleman representation (4.9) satisfies

Kf (t, v, v
′) ≈

(∫
{w:w·(v′−v)=0}

f(v + w) |w|1+γ+ν dw

)
|v′ − v|−N−ν (4.11)
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On the other hand, the following lemma from [52] provides a lower

bound on the kernel Kf in the Carleman representation on a distinguished set

of points that lie on a certain cone. Its proof uses the representation from the

above lemma.

Lemma 4.2.3 (Lemma 7.1, [52]). Suppose f is a non-negative function on Rd

that has finite and strictly positive mass, finite energy and finite entropy. Then,

for any v ∈ Rd, there exists a symmetric subset A(v) of the unit sphere, and

there are constants µ, λ, C (that depend on mass, energy and entropy bounds)

so that

(i) |A(v)| ≥ µ
〈v〉 , where |A(v)| denotes the (N − 1)-Hausdorff measure of

A(v);

(ii) For every v′ for which the normalized vector v′−v
|v′−v| belongs to the set A(v),

we have

Kf (v, v
′) ≥ λ 〈v〉1+γ+ν |v′ − v|−N−ν , (4.12)

(iii) for every σ ∈ A(v), |σ · v| ≤ C.

Remark 4.2.1. Given v and the corresponding subset A(v) of the unit sphere

determined by the above lemma, we denote by Σ(v) the corresponding cone

centered at v of all vectors v′ for which the normalization v′−v
|v′−v| belongs to the

set A(v) i.e.

Σ(v) :=

{
v′ ∈ Rd :

v′ − v
|v′ − v|

∈ A(v) ⊂ SN−1

}
.

It is for the points v′ ∈ Σ(v) that the lower bound in (ii) holds.
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The final lemma of this section provides a lower bound of an integral

over a cone Σ determined by a vector v and a subset A of the unit sphere. This

will be crucial in estimating the negative contribution of the collision operator.

Lemma 4.2.4 (Lemma 7.2, [52]). Assume that the maximum of a function

g(v) is achieved at v = ṽ and is equal to m̃. Assume A is a subset of the unit

sphere and that |A| ≥ µ > 0. Let Σ be the cone centered at v that consists of

all vectors v′ ∈ Rd for which the normalized vector v′−v
|v′−v| belongs to the set A,

i.e. Σ :=
{
v′ ∈ RN : v′−v

|v′−v| ∈ A
}

. Then∫
Σ

(m̃− g(v′)) |ṽ − v′|−N−ν dv′ ≥ c m̃1+ν/N µ1+ν/N(∫
Σ
|g(v′)|dv′

)ν/N . (4.13)

4.3 Proof of Theorem 4.1.1

To prove the propagation in time of weighted L∞v norm of solutions to

the Boltzmann equation, we modify the contradiction argument of Silvestre

used to prove Theorem 4.2.3. Since we too are in the case of a non-cutoff, we

cannot use the splitting of the collision operator into the “gain” and “loss”

terms. However the standard splitting (see (4.26)) that is often used in non-

cutoff cases, and which has been used by Silvestre [52] too, is not adequate for

us. We need to further refine the splitting (for details see (4.31)) to be able to

obtain weighted upper bounds. In particular, the appearance of the term Q1,2

in (4.31) is new. To control that term, we need to overcome the singularity

of a non-cutoff collision operator, which we do thanks to oscillations present

in the weight function. The other substantial difference with respect to [52]
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is that in our estimates we take the advantage of the known propagation of

w-moments, given via (4.7).

Setting up the contradiction argument

Let α0 > 0 and p ∈ (0, 2] be fixed, and suppose that initial data satisfies

‖f0(v) w(v;α0, p)‖L∞v ≤ C <∞. (4.14)

Then for α = α−0 we have thanks to (4.14)

‖f0(v) w(v;α, p)‖L1
v
≤ C

∫
w(v;α, p)

w(v;α0, p)
dv

≤ C

∫
1

〈v〉d+
dv (4.15)

<∞, (4.16)

where to obtain (4.15) we used the property (P3). Therefore, assumption (4.7)

implies that there exists α1 < α0 such that

‖f(t, v) w(v;α1, p)‖L1
v
<∞. (4.17)

It is convenient to introduce the following notation. For parameters

β, p and for any t ≥ 0, let mβ,p(t) denote the w(v; β, p)-weighted L∞ norm in

velocity, i.e.

mβ,p(t) := ‖f(t, v) w(v; β, p)‖L∞v . (4.18)

In order to prove the theorem, it suffices to find α2, a, b > 0 such that

mα2,p(t) < a+ b t−d/ν . (4.19)

88



First, we show that (4.19) is true at t = 0 for α2 < α0 and a, b > 0

that will be determined later in the proof. Namely, by the property (P1) that

expresses monotonicity of w(v; β, p) in β, we have

mα2,p(0) ≤ mα0,p(0) <∞, (4.20)

where the last inequality follows from (4.14). On the other hand, a + bt−N/ν

blows up around t = 0. Thus, the inequality (4.19) trivially holds for t = 0,

and by the continuity of mα2,p(t) it is satisfied on a time interval of positive

measure starting at t = 0.

Now, assume that there exists the first time t0 > 0 for which the in-

equality (4.19) fails. At this time then

mα2,p,q(t0) = a+ bt
−d/ν
0 . (4.21)

Since f is a w(v, α0, p)-suitable solution, it is also w(v, α2, p)-suitable

since α2 < α0. Therefore, for every time t the norm L∞w(v,α2,p)
of f(t, v), i.e.

mα2,p(t), is attained for some velocity v. Let v0 be such velocity corresponding

to time t0. In other words,

mα2,p(t0) = f(t, v0) w(v0, α2, p) = a+ bt
−d/ν
0 . (4.22)

Hence,

f(t, v0) w(v0, α2, p) < a+ bt−d/ν , ∀t < t0,

f(t0, v0) w(v0, α2, p) = a+ bt
−d/ν
0 . (4.23)
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Therefore,

∂t (f(t, v0) w(v0, α2, p))t=t0 ≥ ∂t
(
a+ bt−d/ν

)
t=t0

. (4.24)

Combining (4.22) and (4.24), we conclude the following lower bound at (t0, v0)

∂tf(t0, v0) ≥ −d
ν
b−ν/d

1

w(v0, α2, p)
(mα2,p(t0)− a)1+N

ν . (4.25)

In the rest of the proof we look for an upper bound on ∂tf(t0, v0)

using the Boltzmann equation (2.16). In particular, we estimate the collision

operator Q(f, f)(t0, v0). The upper bound that we will obtain will contradict

(4.25) and will thus conclude our proof.

In the rest of the proof, if parameters of the weight function w are not

specified, they are assumed to be α2 and p.

Splitting of the collision operator

When the Grad’s cutoff is not assumed, it is often convenient to split

the collision integral into the following two terms, both of which are finite

(see [1, 2, 5, 27,52,56,57])

Q(f, f) = Q1(f, f) +Q2(f, f), (4.26)

Q1(f, f) =

∫
Rd

∫
Sd−1

(f ′ − f)f ′∗B dσdv∗

=

∫
Rd

(f ′ − f)Kf (v, v
′) dv′, (4.27)

Q2(f, f) = f(v)

∫
Rd

∫
Sd−1

(f ′∗ − f∗)B dσdv∗. (4.28)
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Since we study weighted norms, we introduce new splitting of Q tailored

for the building blocks of our calculations, which are functions of the type fw.

More precisely, we further split Q1 into Q1,1 and Q1,2 according to

Q1 = Q1,2 +Q1,2,

where

Q1,1(f, f) =
1

w(v)

∫
Rd

(f ′ w′ − f w) Kf (v, v
′) dv′, (4.29)

Q1,2(f, f) =

∫
Rd
f ′ w′

(
1

w′
− 1

w

)
Kf (v, v

′) dv′. (4.30)

Hence our overall decomposition of the collision operator is

Q(f, f) = Q1,1(f, f) + Q1,2(f, f) + Q2(f, f). (4.31)

This splitting helps us to identify the negative contribution within Q1

at (t0, v0), which is coming from Q1,1(f, f)(t0, v0). More precisely, recalling

that at time t = t0 the L∞ norm defining mα2,p(t0) is attained at v0, i.e.

mα2,p(t0) = ‖f(t0, v) w(v)‖L∞v = f(t0, v0)w(v0). Therefore,

Q1,1(f, f)(t0, v0) = − 1

w(v0)

∫
Rd

(mα2,p(t0)− f(t0, v
′) w(v′)) Kf (v0, v

′) dv′.

(4.32)

Since the integrand is a positive function, Q1,1(f, f)(t0, v0) is negative. How-

ever this information is not sufficient, and we proceed to obtain a precise upper

bound on Q1,1(f, f)(t0, v0), as well as on the other two terms. This is what we

do below.

91



Estimating Q1,1

As noted above, Q1,1(f, f) is negative at (t0, v0). To estimate how

negative it is, we reduce the domain of integration to the cone Σ(v0) on which

the lower bound (4.12) on Kf is known to hold. This cone was introduced in

Lemma 4.2.3 and Remark 4.2.1. This yields

Q1,1(t0, v0) ≤ −C 〈v0〉1+γ+ν

w(v0)

∫
Σ(v0)

(mα2,p(t0)− f(t0, v
′) w(v′)) |v′ − v0|−d−ν dv′.

(4.33)

The above integral, over the cone Σ(v0), is then estimated using Lemma 4.2.4

with g = fw and its maximum value m̃ = mα2,p(t0). This implies

Q1,1(f, f)(t0, v0) ≤ −C 〈v0〉1+γ+ν

w(v0)
(mα2,p(t0))1+ν/d

(
1
〈v0〉

)1+ν/d

(∫
Σ(v0)

f ′ w′dv′
)ν/d .

(4.34)

We proceed the estimate by considering the above integral in two cases, when

|v0| ≤ R and when |v0| > R, where the number R is determined in the following

way. Recall the statement in Lemma 4.2.3 (iii) according to which for every σ ∈

A(v0), where A(v0) is the symmetric subset of the unit sphere that determines

the cone Σ(v0), we have |σ · v0| ≤ C. This means that set A(v0) lies in a

band of the unit sphere of width at most C/|v0| “around the largest circle on

the sphere belonging to the hyperplane that is perpendicular to” v0. Hence,

the larger |v0| is, the thinner the band is. Therefore, there exists a number R

(depending on C), as is noted in [52], such that

|v′| > |v0|
2
, whenever v′ ∈ Σ(v0) and |v0| > R. (4.35)
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Case 1: |v0| ≤ R. It immediately follows that

1

〈v0〉
≥ 1

〈R〉
, (4.36)

and consequently

1

w(v0)
≥ 1

w(R)
, (4.37)

due to the property (P1) according to which the weight w is strictly positive

and radially increasing in v. In addition, by the assumption (4.7) on propaga-

tion of weighted L1 bounds, we have∫
Σ(v0)

f ′ w′dv′ ≤
∫
Rd
f ′ w′dv′ ≤ C, (4.38)

where C now also depends on R. Applying estimates (4.36)-(4.38) to (4.34)

yields the following estimate on Q1,1 whenever |v0| ≤ R

Q1,1(f, f)(t0, v0) ≤ −C 〈v0〉1+γ+ν (mα2,p(t0))1+ν/d. (4.39)

Case 2: |v0| > R. Now we need a more refined bound on
∫

Σ(v0)
f ′ w′dv′

than the one given by (4.38). To find such a bound, recall from (4.35) that for

|v0| > R and for any v′ ∈ Σ

|v0| < 2|v′|. (4.40)
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For w(v0;α3, p), where α3 will be chosen below, we have∫
Σ

f ′w(v′;α2, p) dv
′ =

∫
Σ

f ′ w(v′;α2, p)
w(v0;α3, p)

w(v0;α3, p)
dv′

≤ 1

w(v0;α3, p)

∫
Σ

f ′ w(v′;α2, p) w(2v′;α3, p) dv
′ (4.41)

=
1

w(v0;α3, p)

∫
Σ

f ′ w(v′;α2 + c2α3, p) dv
′ (4.42)

≤ C
1

w(v0;α3, p)
, (4.43)

where to obtain (4.41) we used monotonicity of w with respect to v

w(v0;α3, p) ≤ w(2v′;α3, p), (4.44)

which holds thanks to the property (P1). To obtain (4.42) we used the property

(P2). The inequality (4.43) follows from the use of the assumption on the

propagation of L1 weighted bounds (4.17), which can be applied if α3 > 0

satisfies

α2 + c2α3 < α1. (4.45)

Now we estimate (4.34) using (4.43)

Q1,1(f, f)(t0, v0) ≤ −C 〈v0〉1+γ+ν

w(v0;α2, p)
(mα2,p(t0))1+ν/d

(
1
〈v0〉

)1+ ν
d(

1
w(v0;α3,p)

)ν/d
= −C 〈v0〉1+γ+ν (mα2,p(t0))1+ ν

d 〈v0〉−1− ν
d

(w(v0;α3, p))
ν/d

w(v0;α2, p)

≤ −C 〈v0〉1+γ+ν (mα2,p(t0))1+ ν
d 〈v0〉−1− ν

d 〈v0〉2 (4.46)

≤ −C 〈v0〉1+γ+ν (mα2,p(t0))1+ ν
d , (4.47)
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where to obtain (4.46) we use the property (P3) according to which

w(v0;α3, p)
ν/d

w(v0;α2, p)
≥ C〈v〉2,

provided that

α3 ν

d
> α2. (4.48)

Now we pause for a moment to choose α3 to satisfy (4.45) and (4.48). In

particular, we choose α3 such that

α3 ν

d
= 2α2,

which automatically satisfies (4.48). Then (4.45) implies the condition on α2

α2 <
α1

1 + 2 c2 d
ν

. (4.49)

For such α2, the estimates (4.39) and (4.47) imply

Q1,1(f, f)(t0, v0) ≤ −C 〈v0〉1+γ+ν (mα2,p(t0))1+ ν
d . (4.50)

Estimating Q1,2

Recall the definition of Q1,2 from (4.29)

Q1,2(f, f) =

∫
Rd
f ′ w′ (

1

w′
− 1

w
) Kf (v, v

′) dv′.

We start by a simple observation. Since mα2,p(t) is defined as a supremum

of f(t, v) w(v) over velocities v, we have f ′w′ ≤ mα2,p for every v′ ∈ Rd.
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Therefore,

Q1,2(f, f)(t, v)

≤ mα2,p(t)

∫
Rd

(
1

w′
− 1

w
) Kf (v, v

′) dv′

= mα2,p(t)

∫
Rd

(
1

w(v + z)
− 1

w(v)

)
Kf (v, v + z) dz. (4.51)

Since the kernel Kf (v, v+z) has a singularity at z = 0, we estimate the

above integral inside the unit ball and outside the unit ball separately, using

different bounds on 1
w(v+z)

− 1
w(v)

in those regions.

Outside the unit ball. Since the singularity of Kf (v, v + z) is at

z = 0, which is outside the considered region, a coarse bound∣∣∣∣ 1

w(v + z)
− 1

w(v)

∣∣∣∣ ≤ C,

which follows from the property (P1). Applying Lemma 4.2.2, followed by a

spherical change of coordinates, yields∫
|z|>1

∣∣∣∣ 1

w(v + z)
− 1

w(v)

∣∣∣∣ Kf (v, v
′) dv′

≤ C

∫
|z|>1

(∫
{w:w·z=0}

f(v + w)|w|1+γ+ν dw

)
|z|−d−ν dz

= C

∫ ∞
1

∫
Sd−1

(∫
{w:w·z=0}

f(v + w)|w|1+γ+ν dw

)
ρ−d−ν ρd−1 dS(z) dρ

= C
(
−ρ−ν

)∞
1

∫
Sd−1

(∫
{w:w·z=0}

f(v + w)|w|1+γ+ν dw

)
dS(z)

= C

∫
Rd
f(v + y) |y|γ+ν dy (4.52)

≤ C〈v〉γ+ν , (4.53)
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where to obtain (4.52) we used the fact that

ν > 0. (4.54)

and we applied a classical change of variables as stated in Lemma 4.3.1 below.

Lemma 4.3.1. Suppose g is any non-negative function. Then∫
Sd−1

∫
{ω:ω·σ=0}

g(ω) dω dS(σ) = cd

∫
Rd
g(y)

dy

|y|
. (4.55)

The inequality (4.53) follows from the change of variables combined

with the generation of polynomial moments and conservation of mass.

Inside the unit ball |z| < 1. Here we need a better bound on∣∣∣ 1
w(v+z)

− 1
w(v)

∣∣∣ to compensate for the singularity of Kf (v, v + z) at z = 0.

By the mean-value theorem, we have for some t ∈ [0, 1]∣∣∣∣ 1

w(v + z)
− 1

w(v)

∣∣∣∣ =

∣∣∣∣∇( 1

w

)
(tv + (1− t)(v + z)) · (v + z − v)

∣∣∣∣
≤ C (t〈v〉+ (1− t)〈v + z〉) |z| (4.56)

≤ (〈v〉+ |z|) |z| (4.57)

≤ 2〈v〉 |z|,

where (4.56) follows from the property (P4), while the inequality (4.57) follows

from an elementary inequality 〈v + z〉 ≤ 〈v〉 + |z|. Therefore, applying again
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Lemma 4.2.2 and spherical change of coordinates yields∫
B1

∣∣∣∣ 1

w(v + z)
− 1

w(v)

∣∣∣∣ Kf (v, v
′) dv′

≤ C 〈v〉
∫
B1

(∫
{w:w·z=0}

f(v + w)|w|1+γ+ν dw

)
|z|−d−ν+1 dz

= C 〈v〉
∫ 1

0

∫
Sd−1

(∫
{w:w·z=0}

f(v + w)|w|1+γ+ν dw

)
ρ−d−ν+1 ρd−1 dS(z) dρ

= C 〈v〉
(
ρ1−ν)1

0

∫
Sd−1

(∫
{w:w·z=0}

f(v + w)|w|1+γ+ν dw

)
dS(z)

= C 〈v〉
∫
Rd
f(v + y) |y|γ+ν dy

≤ C 〈v〉
(
C + C〈v〉γ+ν

)
≤ C 〈v〉1+γ+ν .

Note that for this calculation to work we need that

ν ≤ 1. (4.58)

In conclusion, combining the bounds obtained for the inside and outside

the ball regions, we get

Q1,2(f, f)(t, v) ≤ C m(t) 〈v〉1+γ+ν . (4.59)

Estimating Q2

Recall that Q2 is defined as

Q2(f, f) = f(v)

∫
Rd

∫
SN−1

(f ′∗ − f∗)B dσdv∗.

It is well-known, from the pioneering work on cancelation properties, by Alexan-

dre, Desvillettes, Villani and Wennberg [2], that the above double integral can
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be represented as a convolution operator. Thus, Q2 takes the following sim-

plified form

Q2(f, f)(t, v) = (B̃ ∗ f)(v) f(v) (4.60)

where

B̃(v) = C|v|γ, (4.61)

where γ is the potential rate from the collision kernel, and C is a dimen-

sional constant depending on the angular kernel. Because of this simplified

representation, one then has the following estimate on Q2

Q2(f, f)(t, v) = (B̃ ∗ f)(v) f(v) ≤

{
C mα2,p(t) 〈v〉γ, if γ ≥ 0

C (mα2,p(t))
1− γ

N , if γ < 0.
(4.62)

Conclusion

In summary, the following are the estimates (4.50), (4.59), (4.62) of all

three parts (4.29) of the collision operator

Q1,1(f, f)(t0, v0) ≤ −C (mα2,p(t0))1+ ν
d 〈v0〉1+γ+ν ,

Q1.2(f, f)(t0, v0) ≤ C mα2,p(t0)〈v0〉1+γ+ν ,

Q2(f, f)(t0, v0) ≤ C mα2,p(t0) 〈v0〉γ.
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Combining the three estimates yields

Q(f, f)(t0, v0) ≤ −c (mα2,p(t0))1+ ν
d 〈v0〉1+γ+ν + C mα2,p(t0) 〈v0〉1+γ+ν

=
(
−c (mα2,p(t0))1+ ν

d + C mα2,p(t0)
)
〈v0〉1+γ+ν

≤ − c
2

(mα2,p(t0))1+ ν
d 〈v0〉1+γ+ν (4.63)

≤ − c
2

(mα2,p(t0))1+ ν
d , (4.64)

where the inequality (4.63) holds provided that(
2C

c

)d/ν
≤ mα2,p(t0) = a+ bt

−d/ν
0 . (4.65)

So, we choose a to be

a :=

(
2C

c

)d/ν
. (4.66)

Now, let us recall (4.25)

Q(f, f)(t0, v0) = ∂tf(t0, v0) ≥ −d
ν
b−ν/d (mα2,p(t0)− a)1+ ν

d . (4.67)

Hence, if we choose b so that

c

2
=
d

ν
b−ν/d, (4.68)

we get the contradiction with the upper bound (4.64). This completes the

proof of the theorem.

4.4 Examples of weight functions and the proof of Corol-
lary 4.1.2

We now provide two examples of functions that satisfy properties (P1)-

(P4) and to which Theorem 4.1.1 can be applied, as will be proven bellow.
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Example 1.

w1(v;α, p) = eα〈v〉
p

.

Now we proceed to check that w1 indeed satisfies (P1)-(P4). It is easy to

see that w1(v;α, p) is strictly positive, radially increasing in v, and increasing

in α. Therefore it satisfies property (P1).

Next, note that for any α1, α2, p > 0 we have

w1(v;α1, p) w(2v;α2, p) = eα1〈v〉p eα2〈2v〉p

≤ e(α1+2pα2)〈v〉p

= w1(v; α1 + 2pα2, p),

thus w1 satisfies condition (P2) as well.

To check that condition (P3) holds, let δ ∈ [0, 1], and let α1, α2, p > 0

and k ≥ 0. If δα1 < α2, then

w1(v;α1, p)
δ

w1(v;α2, p)
=
eδα1〈v〉p

eα2〈v〉p

= e(δα1−α2)〈v〉p

≤ CD 〈v〉k,

where C is a constant that depends on parameters k, δ, α1, α2, p. The last

inequality holds because δα1 − α2 < 0, so the exponential e(δα1−α2)〈v〉p decays

faster than any polynomial.
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Similarly, if δα1 > α2, then

w1(v;α1, p)
δ

w1(v;α2, p)
= e(δα1−α2)〈v〉p

≥ D 〈v〉k,

where D is a constant that depends on parameters k, δ, α1, α2, p. The last

inequality holds because δα1 − α2 > 0, so the exponential e(δα1−α2)〈v〉p grows

faster than any polynomial. In conclusion, w1 satisfies condition (P3).

Finally, it is easy to check that for any α, p > 0 we have∣∣∣∣∇v

(
1

w1(v;α, p)

)∣∣∣∣ =
∣∣∇v

(
e−α〈v〉

p)∣∣
≤ |v|

(
αp 〈v〉p−2 e−α〈v〉

p)
≤ 〈v〉

(
q + αp 〈v〉p−2 1

α〈v〉p

)
≤ (q + p)〈v〉.

Therefore w1 satisfies property (P4).

Example 2. Second example are Mittag-Leffler functions

w2(v;α, p) = E2/p(α
2/p〈v〉2).

For simplicity we now verify that w2(v;α, p), i.e. a Mittag-Leffler function,

satisfies (P1)-(P4), because those functions are used in Corollary 4.1.2.

Recall (3.4) that

ceα〈v〉
p ≤ E2/p(α

2/p〈v〉2) ≤ Ceα〈v〉
p

.
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Using this equivalence relation and properties of classical exponential func-

tions proved in Example 1, it is easy to check that a Mittag-Leffler function

w2(v;α, p) satisfies first three properties (P1)-(P3). It remains to show that it

satisfies condition (P4) as well.

∣∣∣∣∇v

(
1

E2/p(α2/p〈v〉2)

)∣∣∣∣ =

∣∣∣∣∣∣∇v

(
∞∑
k=0

α2k/p 〈v〉2k

Γ(2k
p

+ 1)

)−1
∣∣∣∣∣∣

≤

(
∞∑
k=1

2kα2k/p 〈v〉2k−1

Γ(2k
p

+ 1)

) (
∞∑
k=0

α2k/p 〈v〉2k

Γ(2k
p

+ 1)

)−2

≤ p

(
∞∑
k=1

α2k/p 〈v〉2k−1

Γ(2k−2
p

+ 1)

)(
∞∑
k=0

α2k/p 〈v〉2k

Γ(2k
p

+ 1)

)−2

,

where in the last inequality we used

2k

Γ(2k
p

+ 1)
=

p

Γ(2k
p

)
≤ p

Γ(2k−2
p

+ 1)
.

Therefore, by simple algebraic manipulations, we get∣∣∣∣∇v

(
1

E2/p(α2/p〈v〉2)

)∣∣∣∣ ≤ p α2/p 〈v〉

(
∞∑
k=1

α(2k−2)/p 〈v〉2k−2

Γ(2k−2
p

+ 1)

)(
∞∑
k=0

α2k/p 〈v〉2k

Γ(2k
p

+ 1)

)−2

= p α2/p 〈v〉

(
∞∑
k=0

α2k/p 〈v〉2k

Γ(2k
p

+ 1)

)(
∞∑
k=0

α2k/p 〈v〉2k

Γ(2k
p

+ 1)

)−2

= p α2/p 〈v〉

(
∞∑
k=0

α2k/p 〈v〉2k

Γ(2k
p

+ 1)

)−1

≤ p α2/p 〈v〉;

hence the property (P4) holds for the Mittag-Leffler function w2(v, α, p).

We are now in a position to prove Corollary 4.1.2.
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Proof of Corollary 4.1.2. We provide details of the proof of (a). Part (b) can

be proved in an analogous way. First we observe that

Ceα〈v〉
p

= Cw1(v;α, p),

where w1 is the function introduced in Example 1. Therefore we know that

Ceα〈v〉
p

satisfies (P1)-(P4). On the other hand, by Theorem 3.1.1, the prop-

agation condition (4.8) of Theorem 4.1.1 is satisfied. The claim follows from

an application of Theorem 4.1.1.
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gaz. Publ. Sci. Inst. Mittag-Leffler. 2. Almqvist & Wiksells Boktryckeri

Ab, Uppsala, 1957.

[22] E. A. Carlen, M. C. Carvalho, and X. Lu. On strong convergence to

equilibrium for the Boltzmann equation with soft potentials. J. Stat.

Phys., 135(4):681–736, 2009.

[23] C. Cercignani. The Boltzmann equation and its applications, volume 67

of Applied Mathematical Sciences. Springer-Verlag, New York, 1988.

[24] C. Cercignani, R. Illner, and M. Pulvirenti. The mathematical theory

of dilute gases, volume 106 of Applied Mathematical Sciences. Springer-

Verlag, New York, 1994.

[25] L. Desvillettes. Some applications of the method of moments for the ho-

mogeneous Boltzmann and Kac equations. Arch. Rational Mech. Anal.,

123(4):387–404, 1993.

[26] L. Desvillettes. About the regularizing properties of the non-cut-off Kac

equation. Comm. Math. Phys., 168(2):417–440, 1995.

[27] L. Desvillettes. Regularization properties of the 2-dimensional non-

radially symmetric non-cutoff spatially homogeneous Boltzmann equation

for Maxwellian molecules. Transport Theory Statist. Phys., 26(3):341–

357, 1997.

108



[28] L. Desvillettes and F. Golse. On a model Boltzmann equation without

angular cutoff. Differential Integral Equations, 13(4-6):567–594, 2000.

[29] L. Desvillettes and B. Wennberg. Smoothness of the solution of the spa-

tially homogeneous Boltzmann equation without cutoff. Comm. Partial

Differential Equations, 29(1-2):133–155, 2004.

[30] G. Di Blasio. Differentiability of spatially homogeneous solutions of the

Boltzmann equation in the non Maxwellian case. Comm. Math. Phys.,

38:331–340, 1974.

[31] R. J. DiPerna and P.-L. Lions. On the Cauchy problem for Boltzmann

equations: global existence and weak stability. Ann. of Math. (2),

130(2):321–366, 1989.

[32] T. Elmroth. Global boundedness of moments of solutions of the Boltz-

mann equation for forces of infinite range. Arch. Rational Mech. Anal.,

82(1):1–12, 1983.
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