CHAPTER 5

Recurrence Relations

5.1. Recurrence Relations

Here we look at recursive definitions under a different point of view.
Rather than definitions they will be considered as equations that we
must solve. The point is that a recursive definition is actually a def-
inition when there is one and only one object satisfying it, i.e., when
the equations involved in that definition have a unique solution. Also,
the solution to those equations may provide a closed-form (explicit)
formula for the object defined.

The recursive step in a recursive definition is also called a recurrence
relation. We will focus on kth-order linear recurrence relations, which
are of the form

Cﬂxn "1‘01(13'71,_1 "I‘CZmn—Z + .- +Ckxn—k = bnu

where Cy # 0. If b, = 0 the recurrence relation is called homogeneous.
Otherwise it is called non-homogeneous.

The basis of the recursive definition is also called initial conditions
of the recurrence. So, for instance, in the recursive definition of the
Fibonacci sequence, the recurrence is '

F, =Fn—1+Fn—-2
or
Fo—-Fpy—F,2=0,
and the initial conditions are

F0=0, F]_:l

One way to solve some recurrence relations is by iteration, i.e., by
using the recurrence repeatedly until obtaining a explicit close-form
formula. For instance consider the following recurrence relation:

Tn=TZp1 (n>0); zg=A.
76
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By using the recurrence repeatedly we get:
Ty =T&n 1 =T"Tp g =10y 3= =r"gg=Ar",
hence the solution is z, = Ar™.

In the following we assume that the coefficients Cy, Ci,. .., Cy are
constant.

5.1.1. First Order Recurrence Relations. The homogeneous
case can be written in the following way:

Tp=T%p1 (n>0); To=A.
Its general solution is
Ty =Ar",
which is a geometric sequence with ratio r.
The non-homogeneous case can be written in the following way:
Tp=T%p1+¢, (n>0); 9= A.

Using the summation notation, its solution can be expressed like this:

n
Tp=Ar" + E cr™ k.
k=1

We examine two particular cases. The first one is
Tp=72p1+c (n>0); o= A.
where c is a constant. The solution is
r*—1

n
xn:Ar”—l—chn_k:Ar"—{-cr_

k=1

ifr#£1,

and

T, =A+cn ifr=1.

Erample: Assume that a country with currently 100 million people
has a population growth rate (birth rate minus death rate) of 1% per
year, and it also receives 100 thousand immigrants per year (which
are quickly assimilated and reproduce at the same rate as the native
population). Find its population in 10 years from now. (Assume that
all the immigrants arrive in a single batch at the end of the year.)
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Answer: If we call z,, = population in year n from now, we have:
zn, = 1.012,_; + 100,000 (n > 0); xo = 100, 000, 000 .

This is the equation above with » = 1.01, ¢ = 100,000 and A
100, 000, 00, hence:

i, 1.01" — 1
2z = 100, 000, 000 - 101" + 100, 000 =-——

=100, 000,000 - 1.01™ 4+ 1000 (1.01™ - 1).

So:
210 = 110,462, 317 .

The second particular case is for r = 1 and ¢, = ¢+ dn, where ¢
and d are constant (so ¢, is an arithmetic sequence):
Tpn=2p_1+c+dn (n>0); zo=A.
The solution is now

dn(n+1)

Tn=A+) (c+dk)=A+cn+ :

k=1

5.1.2. Second Order Recurrence Relations. Now we look at
the recurrence relation

Coxn+Crzpn1+Coxp_g=0.

First we will look for solutions of the form z, = ¢r™ By plugging in
the equation we get:

Cocr™+ Crer™ 4+ Coer™? =0,

hence r must be a solution of the following equation, called the char-
acteristic equation of the recurrence:

Cor2—|—01r+02=0.

Let 71, 7y be the two (in general complex) roots of the above equation.
They are called characteristic roots. We distinguish three cases:

1. Distinct Real Roots. In this case the general solution of the
recurrence relation is

Tn=cC177 +CaTy,

where c;, ¢y are arbitrary constants.
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2. Double Real Root. If r; = ry = r, the general solution of the
recurrence relation is
Tn=cC17"+canr",
where c;, ¢y are arbitrary constants.
3. Complex Roots. In this case the solution could be expressed
in the same way as in the case of distinct real roots, but in

order to avoid the use of complex numbers we write r; = r e,
ro=re"* ki =c1 + ¢y, ko = (¢; — c3) 7, which yields:!

T = k17" cosna + kyr" sinnao.
Ezample: Find a closed-form formula for the Fibonacci sequence
defined by:
Fpu=F+F_ (n>0); Fpb=0 F=1.
Answer: The recurrence relation can be written
F—F,1—F, 3=0.
The characteristic equation is
r—r—-1=0.

Its roots are:?

1++5 1—
2 2

They are distinct real roots, so the general solution for the recurrence
is:

5

; rg=—¢ =

r=¢=

Fo=cd¢"+e(-¢H)".
Using the initial conditions we get the value of the constants:
{(n:O) c1+c = 0 ____>{Cl = 1//5
(n=1) ad+ec(—9¢71) =1 e = —1/\/5
Hence:

1 n —n

IReminder: e = cosa +isina.

2¢ = 112@ is the Golden Ratio.



Soving Recurrence Relations

Part 1. Homogeneous linear 2nd degree relations with constant coefficients.
Consider the recurrence relation
(*) T(n)+aT(n—1)+bT(n—2)=0
This is called a homogeneous linear 2nd degree recurrence relation with constant coefficients:
e 2nd degree because it gives T'(n) in terms of T'(n — 1) and T'(n — 2),
e linear and constant coefficients because of the form of the left side, and
e homogeneous because of the zero on the right hand side.

The idea for solving this relation is to “guess” a solution of the form T(n) = z™ for some
number z, and then to simply substitute this expression into the equation to determine the
value(s) of 2 that work. Since T'(n — 1) = z"! and T(n — 2) = ™2 we get the equation

"+ az"t + "2 =0
Since z is clearly not zero, we can divide by z"% to get
2+ azx+b=0
which is called the characteristic equation for the recurrence relation (x).

Case 1: If this equation factors as (z—ry)(z—r2) = 0 with r; # ry (so that the characteristic
equation has two distinct roots), then the general solution to (x) is

T(n) = c1(r)™ + co(r2)

where ¢, and ¢, are constants. This is called a general solution because every function T'(n)
that is a solution to the relation () has this form. If we also have initial conditions T'(0) = t,
and T'(1) = t; then we can determine the values of ¢; and ¢, and thus get the exact formula
for T'(n). We'll illustrate the process with a typical example.

Example 1. Solve the recurrence relation
T(n)-4T(n—1)+3T(n—-2)=0, T0)=0, T(1)=2
Note: This could also be written as

0 n=0
T(n)=4( 2 n=1
4T'(n—-1)-3T(n—2) n>1

Solution: The characteristic equation is 2> — 4z +3 = 0, or (z — 3)(z — 1) = 0, so the
general] solution is T'(n) = ¢13"™ + ;1™ = ¢;3" 4+ ¢,. To find ¢; and ¢y we plug in the initial
conditions to get two equations in those two variables:

0 = T(O) =0130+02 =C +C

2 = T =cad'+c=3c+c



It’s easy to solve these equations for the solution ¢; = 1, ¢; = ~1, so the final answer is

|T(n)=3"—1

Check: We can check our answer quickly and easily. The recurrence formula gives us
T(2) = 4T(1)-3T(0)=4(2)—-0=38
T(3) = 4T(2) —3T(1) =4(8) — 3(2) = 26
T(4) = 4T(3) —3T(2) = 4(26) — 3(8) = 80
It appears that the sequence is indeed giving us numbers that are one less than the powers

of 3 (1, 3,9, 27, 81, ...), so the formula T'(n) = 3™ — 1 seems to be correct.

Case 2: If the characteristic equation factors as (z — 7)? = 0 (with a single root), then we
use as our general solution the formula

T(n) = cr™ + conr™

As before, initial conditions can be used to solve for ¢; and ¢,. Here is a typical example.

Example 2. Solve the recurrence relation

3 n=>0
10T'(n—1)—25T'(n—2) n>1

Solution: The characteristic equation is % — 10z + 25 = 0, or (z — 5)2 = 0, so the general
solution is T'(n) = ¢15™ 4 conb™. As before, we find ¢; and ¢, by plugging in the initial
conditions:
3 = T0)=c5+c0)=¢
17 = T(1) = 15" + cp(1)5* = 5ey + 5y

The solution here is ¢; = 3 and ¢, = 2/5, so the exact solution is

|T(n) = (3)5" + (2/5)n5™ = (15 4 2n)5™* ’

Check: The recurrence formula gives us values

T(2) = 10T(1) —25T(0) = 10(17) — 25(3) = 95
T(3) = 10T(2) — 25T(1) = 525

These are indeed the values given by our formula as well: T(2) = (15 + 4)5! = 95, and
T(3) = (15 + 6)5? = 525.

Case 3: It can happen in general recurrence relations that the characteristic equation z? +
az 4 b = 0 has no real roots, but instead has two complex number roots. There is a method
of solution for such recurrences, but we will not concern ourselves with this case since it does
not typically arise in recurrences that come from studying recursive algorithms.



Part 2. Non-homogeneous linear 2nd degree relations with constant coefficients.

Now consider what happens when the right side of equation () (from page 1) is not zero.
We get an equation of the form

(#x) T(n)+aT(n—1)+bT(n—2) = f(n)

We’ll learn how to solve (x*) in the special case that f(n) =(polynomial in n)r"™.

Actually, this requires only a slight modification of the method for the homogeneous
case. We simply multiply the characteristic equation by (z — r)*+! where k is the degree
of the polynomial part of f(n). The solution method then proceeds as before. This is best
illustrated by examples.

Example 3. Solve the recurrence relation

1 n=>_0
T(”)={ 3T(n—1)+2" n>0

Note: This is actually a 1st degree relation (since T'(n — 2) does not appear), but the same
method applies.

Solution: If the nonhomogeneous term 2™ were not present, the characteristic equation
would be simply z — 3 = 0. In the presence of the nonhomogeneous term, however, we must
multiply this by (z — 2)°*! (In this case f(n) = 2" is a O-degree polynomial [the constant
1] times a 2" term.) So, the characteristic equation is actually (z — 3)(z — 2) = 0, so the
general solution is T'(n) = ¢;3" + ¢,2". Note that since the relation is only 1st degree, we
only have one initial condition. Yet we’ll need two equations to find the constants ¢; and
ca. We can get a second value to use by simply applying the recurrence formula for n = 1:
T(1) = 37T(0) + 2* = 3(1) + 2 = 5. We now proceed as usual:

= T0)=c13"+ 2" = ¢; + ¢y
= T(].) = 0131 + 0221 = 3C1 -+ 2C2

These equations have solution ¢; = 3 and ¢; = —2, so the exact solution is

[T(n) = (3)3" — (2)2" = 37+l —gnl

Check: The recurrence formula gives us values
T(2) = 3T(1)+22=3(5)+4=19
T(3) = 37T(2)+2%=3(19)+8 =65

These are bourne out by our solution: T'(2) =33 - 28 =27—-8 =19, and T(3) =3¢ — 24 =
81 — 16 = 65.



Example 4. Solve the recurrence relation

T(n) = n+1 n=01
S 5T (n—1)—6T(n—2)+3-2" n>1

Solution: Here again, the nonhomogeneous term involves a zero-degree polynomial, so the
modified characteristic equation will be (22 — 5z + 6)(z — 2)**! = 0, or (z — 3)(z — 2)2 = 0.
The general solution must now involve three terms: a 3" term, a 2" term, and (because the
(z — 2) factor appears twice in the characteristic equation) an n2" term. Thus: T(n) =
613"' -+ 622n + Cg’l’LQn.

We'll need three equations to solve for the three constants, yet we have only the two initial
conditions 7'(0) = 1 and T'(1) = 2 to use. As in the last example, we can generate one more
value by using the recurrence formula: T'(2) = 5T'(1) — 67(0) +3-22 = 5(2) — 6(1) +12 = 16.
This gives us the three equations

= T(O) = 0130 + 6220 + CS(O) =1+ Cy
2 = T(1) = 13" + 22" + ¢3(1)2' = 3¢y + 2¢5 + 2c5
16 = T(2) = 13 + 222 4 ¢3(2)2% = 9¢1 + 4cy + 8¢

A little effort gives the solution ¢; = 12, ¢y = —11, and ¢3 = —6. The exact solution is then

[T(n)=12-3"—11-2" —6n2" |

Note that we could have safely concluded that T'(n) is in ©(3") simply from its general
solution (without even solving for ¢;, ca, and c3).

Check: In addition to T'(2) = 16, the recurrence formula gives us
T(3) = 5T(2) — 6T(1) +3-2° = 5(16) — 6(2) + 24 = 92

Checking these against our solution, we find T'(2) = 12-32~11.22—6(2)2% = 108—44—48 = 16
and T(3) =12-3%—11-23 — 6(3)23 = 324 — 88 — 144 = 92.

Example 5. Predict the big-Theta behavior of a function T'(n) satisfying the recurrence
relation T'(n) = 7T(n — 1) — 10T'(n — 2) + (2n + 5)3™.

Solution: The modified characteristic equation is (22 — 7z + 10)(z — 3)**! = 0, or factoring,
(z —2)(z — 5)(z — 3)* = 0. The general solution is thus T'(n) = c12" + ¢5™ + c33™ + ¢4n3".
This will clearly be in ©(57).

Part 3. Change of variable technique for decrease-by-constant-factor recurrence
relations.

Many recursive algorithms (such as “binary search” or “merge sort”) work by dividing
the input in half and calling itself on the now-half-sized input. Analyzing the efficiency of
such algorithms leads to recurrence relations that give 7'(n) in terms of 7'(|2]) instead of
in terms of T'(n — 1). These “decrease by a constant-factor” recurrence relations can be
converted into standard linear recurrence relations by applying a simple change of variable.

Let’s say we have a recurrence relation of the form

T(n) = aT([%J) + f(n)



where b is some positive integer (usually b = 2). We will define a new function S(k) by the
rule S(k) = T(b*). Our recurrence relation then gives

Sk =T = aT(|5 )+ £(59)
= aT(t) + f(b)
aS(k — 1)+ f(o")

which is a first-order linear recurrence relation for .S. This can then be solved by the methods
we’ve already covered.

Example 6. Solve the recurrence relation

2 n=1
T(n) = { 3T([’2—‘J) +nlogy(n) n>1

Solution: Using the substitution S(k) = T'(2*) this recurrence formula becomes
Sk)=T(@) = 3T(| %))+ (2)log(2")

= ST + @)k
35(k — 1) + k2F
The characteristic equation of this relation is (z — 3)(z — 2)**! = 0, so its general solution
is S(k) = C]_3]c + Cz2k + C3k2k.

What about initial conditions for S?7 We can use the recurrence formula for T to get
T(1)=2,T(2)=3T(1)+2 =38, and T(4) = 3T(2) + 8 = 32. S0, S(0) =T(2%) = T(1) = 2,
S(1) =T(2") =T(2) = 8, and S(2) = T(2?) = T(4) = 32. We can now use these values to
get equations for ¢;, ¢y, and cs:

2 = S(O) = 0130 + 6220 +0
8 = S(1) =c13" + o2 + ¢3(1)2 = 3¢y + 2¢5 + 2c3
32 = S(2) =13 + 2% + ¢3(2)2% = 9¢; + 4c; + 8cs
Solving this three-by-three system of equations (by whatever method you prefer) leads to

the solution ¢; = 8, ¢; = —6, and ¢3 = —2. This gives the solution to the recurrence relation
for S as

S(k)=8-3"—6-2% — 2k2F

But we want a formula for 7', not S. Remembering that S(k) = T'(2*) and assuming n is a
power of 2, we can say :

T(n) = S(logyn) = 8-398" — 6. 26" _ 9(log,n)2 8"
8 - 38" _ 6n — 2nlogyn

valid for all values of n that are powers of 2. Here we have used the familiar logarithm law
that says 2'°¢%2™ is equal to n. What can we do to simplify the term 3'°62"? This just requires
a bit of logarithmic trickery:

310g2n — (210g23)log2n — (2log2n)log23 — nlog23

So, we can rewrite our answer as



‘T(n) = 8nl°€2% — 6n — 2nlogyn for n = 1,2,4,8, ...

Two notes about this solution are in order:

o First, since log,3 is clearly between 1 and 2 (since 3 is between 2! and 22) we can say
that our solution is in O(n?) (at least for the values n = 1,2,4,8,...).

e Second, we know that our formula for T'(n) is valid for powers of 2 — that is, it correctly
computes T'(1), T'(2), T'(4), T'(8), and so on. What about the other values of n? Thanks
to something called the Smoothness Rule we can at least say that our formula for T'(n)
has the correct big-Theta behavior. See your text for the exact statement, but the
basic idea is this:

Smoothness Rule: Suppose T'(n) is in O(f(n)) for values of n that are powers of a constant
b > 2. Then if f(n) is a “nice” function (here “nice” includes the polynomials n, n2, n3, etc.
but not exponential or factorial functions) we can say that T'(n) really is in O(f(n)).

Homework Problems

Solve each of the following recurrence relations.

1 n=0
(A) T(n)=< 4 n=1
8'(n—-1)—15T(n—2) n>1

n=>0
n=1
Tn—1)—9T(n—-2) n>1

1 n=20
(©) T(n) = 2T(n—1)+3" n>0
1 n=0
(D) T(n)=< 2 n=1
4'n—1)—-3T(n—-2)+1 n>1

Hint: The nonhomogeneous term is 1™.

2 n =
5



