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Abstract

A 2-factor of a graph G consists of a spanning collection of vertex disjoint
cycles. In particular, a hamiltonian cycle is an example of a 2-factor
consisting of precisely one cycle. Harary and Nash-Williams described
graphs with hamiltonian line graphs. Gould and Hynds generalized this
result, describing those graphs whose line graphs contain a 2-factor with
exactly k (k ≥ 1) cycles. With this tool, we show that certain properties
of a graph G, that were formerly shown to imply the hamiltonicity of
the line graph, L(G), are actually strong enough to imply that L(G) has
a 2-factor with k cycles for 1 ≤ k ≤ f(n), where n is the order of the
graph G.

1 Introduction

We present an extension and then a broader generalization of the following result
of Catlin [3], which gives specific conditions on a graph G that imply that the line
graph L(G) is hamiltonian.

Theorem 1.1 [3] If G is a 2-edge-connected simple graph of order n such that
δ(G) ≥ n/5, then L(G) is hamiltonian.

The subgraph H of G is said to be a 2-factor of G if for every v ∈ V (G),
degH v = 2. A trivial consequence of the definition is that every 2-factor of a
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graph G consists of a spanning collection of vertex disjoint cycles. In particular, a
hamiltonian cycle is an example of a 2-factor consisting of precisely one cycle.

We begin by proving the following extension of Theorem 1.1.

Theorem 1.2 If G is a 2-edge-connected simple graph of order n such that δ(G) ≥
n/5, then L(G) has a 2-factor with k cycles for each k ∈ {1, 2, . . . , bn/10c}.

The remainder of the paper is dedicated to proving the following broader gener-
alization for graphs with large independence number.

Theorem 1.3 If G is a 2-edge-connected simple graph of order n > 65 with δ(G) ≥
n/5 and α(G) = cn, for some c, 1/4 ≤ c < 1, then L(G) contains a 2-factor with k
cycles, for each k = 1, 2, . . . , cnb δ

3
c − [(1− c)n− δ].

All graphs considered in this paper are simple graphs. For terms or notation not
defined here, see [4]. For a graph G, let N(v) denote the neighborhood of vertex
v. A set S ⊆ V (G) is said to be independent if for all u, v ∈ S, uv 6∈ E(G). The
independence number of a graph G, denoted α(G), is the size of a largest independent
set of vertices of G. For a set S ⊆ V (G) we use 〈S〉 to denote the subgraph induced
by S.

A circuit of G is an alternating sequence C : v1, e1, v2, e2, . . . , vm, em, v1 of vertices
and edges of G, such that ei = vivi+1, i = 1, 2, . . . ,m− 1, em = vmv1, and ei 6= ej if
i 6= j. A circuit whose m vertices vi are distinct is called a cycle.

We define a dominating circuit of a graph G to be a circuit of G with the property
that every edge of G either belongs to the circuit or is adjacent to an edge of the
circuit.

A star is a complete bipartite graph, K1,n. The vertex of degree n is termed the
center of the star and the vertices of degree 1 are the leaves. If a star has center w
we often denote it as Sw. Further, if we wish to specify a star centered at w with
some specific leaves, say a, b, c, we will denote it by Sw(a, b, c). Note that there may
be other leaves in Sw not specified.

Early studies of 2-factors centered on the question of existence, often of simply a
hamiltonian cycle. More recently, the focus in the area of 2-factors has shifted from
the problem of showing the existence of a 2-factor to that of showing the existence
of 2-factors with specific structural features. In 1978, Sauer and Spencer made the
following conjecture along those lines.

Conjecture 1.1 [8] Let H be any graph on n vertices with maximum degree ∆ ≤ 2.
If G is a graph on n vertices with minimum degree δ(G) > 2n/3 then G contains an
isomorphic copy of H.

In 1993, Aigner and Brandt settled Conjecture 1.1 with a slight improvement.

Theorem 1.4 [1] Let G be a graph of order n with δ(G) ≥ (2n − 1)/3. Then G
contains any graph H of order at most n with ∆(H) ≤ 2.
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In the above result, the minimum degree must be very high to guarantee that a
graph contains all possible 2-factors or 2-factors with a particular structure. Thus,
a more relaxed question would be: is there a lesser degree condition that will imply
the existence of 2-factors with k cycles for a range of k? The following was shown.

Theorem 1.5 [2] Let k be a positive integer and let G be a graph of order n. If
deg(x) + deg(y) ≥ n for all x, y ∈ V (G) such that xy 6∈ E(G), then G contains a
2-factor with k cycles for all k, 1 ≤ k ≤ bn/4c.

Note that Theorem 1.5 is a generalization of the classic hamiltonian result of Ore
[7] for the case when n ≥ 4k. The complete bipartite graph Kn/2,n/2 shows that this
result is best possible.

This type of result naturally leads to the question of whether or not other hamil-
tonian results can be extended in a similar manner.

The following is the well-known result of Harary and Nash-Williams [6] describing
graphs with hamiltonian line graphs.

Theorem 1.6 [6] Let G be a graph without isolated vertices. Then L(G) is hamilto-
nian if, and only if, G ' K1,n, for some n ≥ 3, or G contains a dominating circuit.

Given a graph G, we say that G contains a dominating k-system if G contains
a collection of k edge disjoint circuits and stars (K1,ni

, ni ≥ 3) such that each edge
of G is either contained in one of the circuits or stars, or is adjacent to one of the
circuits.

We will use a generalization of Theorem 1.6 that allows us to describe those
graphs whose line graphs contain a 2-factor with exactly k (k ≥ 1) cycles.

Theorem 1.7 [5] Let G be a graph with no isolated vertices. The graph L(G) con-
tains a 2-factor with k (k ≥ 1) cycles if, and only if, G contains a dominating
k-system.

Recall that Catlin’s result, stated in Theorem 1.1, gives specific conditions on a
graph G that imply that the line graph L(G) is hamiltonian. We will now show that
these same conditions actually imply much more, by proving the extension stated in
Theorem 1.2.

2 Extension: Proof of Theorem 1.2

Recall that the hypothesis of Theorem 1.2 gives us a 2-edge-connected simple graph of
order n such that δ(G) ≥ n/5. From Theorem 1.1, we know that L(G) is hamiltonian.
Now since δ(G) ≥ n/5, we know that |E(G)| ≥ n2/10. Therefore, by proving the
following theorem, we achieve the desired result.

Theorem 2.1 Let G be a graph of order n and k be an integer 1 ≤ k ≤ bcnc, for
some constant c > 0. If |E(G)| ≥ cn2 and L(G) is hamiltonian, then L(G) contains
a 2-factor with k cycles.
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Proof: Let G be a graph as in the theorem. We know by assumption that L(G)
is hamiltonian and so we will proceed by induction on the number of cycles in a
2-factor. Suppose that L(G) has a 2-factor with k − 1 cycles for k ≤ cn, but L(G)
does not have a 2-factor with k cycles. By Theorem 1.7 we know that the graph G
does have a dominating (k− 1)-system and G does not have a dominating k-system.

Consider a dominating (k − 1)-system in G. Every edge of G is either in a star
in this system, a circuit in this system, or is dominated by a circuit in the system
(called a dominated edge). We will let i be the number of stars in the system and
thus k − 1 − i is the number of circuits. If there is a star in the system with six
or more edges, we can separate the star into two smaller stars with at least 3 edges
each. This gives us a dominating k-system in G, which means that all stars in the
system have at most 5 edges. If there is a circuit in the system that is not a cycle,
then we can separate the circuit into 2 edge disjoint circuits. This again gives us a
dominating k-system which means all of the circuits in this system must be cycles.
Finally, there can be at most n − 1 dominated edges. Consider the subgraph of G
induced by these dominated edges. No vertex in this subgraph can have degree 3 or
higher. Such a vertex would allow us to form another star and thus a dominating
k-system. Consequently this subgraph has maximum degree 2. Now suppose all of
the vertices in the subgraph have degree 2. Then we can find a cycle in the subgraph
which, when added to the (k − 1)-system, gives us a dominating k -system in G.
Hence, we have a subgraph which must be a collection of disjoint paths, and thus
can contribute at most n− 1 edges to our graph G

Combining these three results, we see that |E(G)| ≤ 5i+ n(k − 1− i) + (n− 1).
For n > 5 this is maximized at i = 0. So, |E(G)| ≤ 5i + n(k − 1 − i) + (n − 1) ≤
nk − 1 (n > 5). By our original assumption, |E(G)| ≥ cn2 which implies that
cn2 ≤ nk − 1. On the other hand, we know that k ≤ cn. But, k ≤ cn implies that
k < cn+ 1

n
which in turn implies that cn2 > nk − 1, a contradiction. Thus, it must

be the case that L(G) has a 2-factor with k cycles. �

In an effort to improve the result of Theorem 1.2, we continued our study of
line graphs obtained from graphs G of order n with δ(G) ≥ n/5. We concentrated
on such graphs with large independence number. This is where we moved from an
extension to a generalization. The proof of this generalization, stated in Theorem
1.3, will be the focus of the remainder of the paper.

3 Generalization: Proof of Theorem 1.3

The proof of Theorem 1.3 will follow from Theorem 1.2 and the two theorems we
will prove in this section. Before proving these two theorems, we state two technical
lemmas that will be useful. The proofs of the lemmas are not included as they are
lengthy and the techniques are very similar to those found in the included proofs.
However, proofs are available upon request.

In Lemma 1 we will consider four types of dominating (k − 2)-systems. For
example, a type 1 dominating (k − 2)-system is one that can be formed from a
dominating k-system that contains three stars which can be combined to form a
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cycle as pictured in Figure 1. Similarly, dominating (k − 2)-systems of types 2, 3,
and 4 are those that can be formed from dominating k-systems by combining three
particular elements as pictured in Figures 2, 3, and 4. In types 1, 2, and 3, the star
with center u must have exactly three or four leaves, hence the dotted line for uv.
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Figure 1: Lemma 1 — Type 1

Lemma 1 Let G be a graph of order n > 65, such that δ(G) ≥ n/5. If G contains
a dominating k-system and a dominating (k − 2)-system of type 1, 2, 3 or 4, then G
contains a dominating (k − 1)-system.

Lemma 2 Let G be a graph of order n > 65 with δ(G) ≥ n/5. If G contains at least
one dominating k-system, but does not contain a dominating k-system consisting
entirely of circuits, and G does not contain a dominating (k − 1)-system, then any
two degree one vertices x and y in the same star in a dominating k-system of G
cannot have a common neighbor in G other than the center of the star.

Recall that given a graph G, we say that G contains a dominating k-system if
G contains a collection of k edge disjoint circuits and stars (K1,ni

, ni ≥ 3) such that
each edge of G is either contained in one of the circuits or stars, or is adjacent to
one of the circuits. An edge that is simply adjacent to one of the circuits is called a
dominated edge.

The term dominating system will denote a collection of edge disjoint circuits
and stars with possible dominated edges, but unknown size. The term k − system
will denote a collection of k edge disjoint circuits and stars with possible dominated
edges, but that doesn’t necessarily dominate. The term system will denote a collec-
tion of edge disjoint circuits and stars with possible dominated edges, that doesn’t
necessarily dominate and whose size is unknown.
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Figure 2: Lemma 1 — Type 2
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Figure 3: Lemma 1 — Type 3

Theorem 3.1 Let G be a 2-edge-connected simple graph of order n > 65 such that
δ(G) ≥ n/5 and α(G) = cn for some c, 1/4 ≤ c < 1. Then L(G) has a 2-factor with
at least k = cnb δ

3
c − [(1− c)n− δ] cycles.

Proof: Since G has an independent set of vertices, say I, of size cn (c ≥ 1/4), let

R = V (G) \ I and x ∈ I. As deg(x) ≥ δ(G), we can form at least b δ(G)
3
c stars
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Figure 4: Lemma 1 — Type 4

centered at the vertex x, each with at least 3 leaves. Doing this for each vertex in
I, we build a collection of at least cnb δ

3
c stars that collectively use all edges between

the sets R and I. Place these stars in S, which represents a system that we will make
into a dominating system. Let |S| represent the number of stars and circuits in S. If
there are any stars or circuits contained in 〈R〉G, then we add them at random to S.

At this point, we will say an edge is part of a system if it is in a star or circuit in
the system or is a dominated edge. Removing from G the edges that are already part
of the system, S, we are left with at most some disjoint paths in 〈R〉G, P1, P2, . . . , Ps.
We want to add all of the edges of these paths to S so that S dominates. This will
be done through a finite number of steps, using an iterative process, during which we
modify S in such a way that it remains a system but ultimately dominates. During
the process we might reduce the size of S, but by at most one in each step.

Suppose that in the original graph, one of the paths Pi in 〈R〉G contains two or
more vertices that share a common neighbor z in I. Choose two such vertices xi 6= yi,
such that any other neighbors of z on Pi lie between xi and yi on Pi. Form the cycle
C : xi, z, yi, . . . , xi where yi, . . . , xi denotes the portion of the path Pi between yi and
xi. The edges xiz and yiz are the only edges of C that were already in S. Because of
the way we are building S, xiz and yiz must either be dominated edges or edges of
stars with center z in S. If there exists any star with center z in S then modify S, if
necessary, to form the star Sz(xi, yi) without decreasing |S|. In S, replace Sz(xi, yi)
with C which dominates the remaining edges of Sz(xi, yi). If there is no star with
center z in S, then xiz and yiz are both dominated and z must be on a circuit C∗

in S. We can then attach C to C∗ making a larger circuit. In either case, we have
added edges from 〈R〉G without decreasing |S|. Repeat this process until all that
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remains in 〈R〉G are disjoint paths which contain no two vertices that have a common
neighbor in I.

Now, we must incorporate the remaining edges into S without affecting |S| too
much. We will begin by showing that any time we incorporate a new edge, |S|
decreases by at most one. By way of contradiction, assume that if we can add one of
the remaining edges in 〈R〉G to S, we must lose at least 2 from |S|. Choose an edge
pq in 〈R〉G such that pq is not part of the system yet and it is the only edge adjacent
to p unused in our system. Consequently, neither p nor q can be the center of any
star in S and neither can be found on any circuit, for otherwise we could easily add
pq to S leaving |S| unchanged.

As I is an independent set of maximum size, there exists an x0 ∈ I such that
px0 ∈ E(G) and a y0 ∈ I such that qy0 ∈ E(G). We know x0 6= y0 as none of
the remaining paths have 2 vertices with a common neighbor in I. Let N(p) =
{q, x0, x1, . . . , xr} and N(q) = {p, y0, y1, . . . , ys} where r, s ≥ n/5− 2.

Note that we can assume that S is made up of stars and cycles since any circuit
can be divided into edge disjoint cycles, which only increases |S|.

Claim 3.1.1 The set N(p) ∩N(q) = ∅.

Suppose there exists a z ∈ N(p) ∩N(q). As p and q have no common neighbors
in I, z ∈ R. We know that pz is already in our system, which means, because
of the properties of p discussed earlier, z is the center of a star or is on a circuit.
Consequently, the edge qz must be in our system as well. Remember that the edges
pz and qz can only be in a star with center z or dominated by a cycle containing
z. If either is in a star with center z then we can clearly rearrange our system,
leaving the size the same, to form Sz(p, q). We can then add the edge pq to Sz(p, q)
which forms a cycle p, z, q, p that dominates the other edges of Sz(p, q) leaving the
system size unchanged, a contradiction. So it must be the case that pz and qz are
both dominated by circuits. However, then we can form the cycle p, z, q, p, adding the
edge pq to S and increasing |S| by 1, another contradiction. Hence, N(p)∩N(q) = ∅.

Claim 3.1.2 The sets N(p) and N(q) are independent.

Recall that N(p) = {q, x0, x1, . . . , xr} and that pq is the edge we are trying to add
to our system. We know from Claim 3.1.1 that qxi 6∈ E(G) for all i ∈ {0, 1, . . . , r}.
Suppose, by way of contradiction, that xixj ∈ E(G) for some i 6= j. As in the proof
of Claim 3.1.1, pxi (pxj) must appear in the system as an edge of a star with center
xi (or xj) or as an edge dominated by a cycle containing xi (or xj). There are four
possible cases for where the edge xixj could be located in relation to our system, S.
It could be an edge in a star or cycle in S, a dominated edge in S, or not in S at all.
In each case, similar arguments can be used to show that the edge pq can be added
with a loss of at most one from |S|, contradicting our original assumption. Here is
an example of one such argument.

Suppose that xixj is an edge in a star in S. Without loss of generality let Sxi(xj)
be this star. Now the cycle xi, xj, p, xi dominates the remaining edges of Sxi(xj). If
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the edges pxi and pxj are both either from stars of size 4 or larger or are dominated
edges, then we can add that cycle to our system without losing any edges or changing
the size of the system. Then we can add the edge pq as a dominated edge without
decreasing the system size, a contradiction. Thus, at least one of pxi or pxj is from
a star of size 3. If only one of them is in a star of size 3, then we replace that star
with our cycle, which dominates the remaining edges of that star, which decreases
the system size by one without losing any edges. But, we can still add the edge
pq to our system as an edge dominated by the cycle containing p, which is again a
contradiction. Therefore the edges pxi and pxj must both be found in stars of size 3.
If xixj is in a star of size 4 or larger then we only lose two stars when forming our
new cycle. So again, we are able to add the edge pq while only reducing the system
size by 1. Consequently, the edge xixj must also be in a star of size 3. If the edge
xip is not in Sxi(xj) then interchange edges to form Sxi(xj, p) without decreasing the
size of the system S. Again we lose at most two elements of S when forming the
new cycle containing p, which means |S| has decreased by at most one. However,
since p is now on a cycle in S, we can again add the edge pq to S giving us another
contradiction

As mentioned before, a similar argument shows that if the edge xixj is in a cycle
of S, is a dominated edge of S, or is not yet in S, the edge pq can be added to S,
without losing any edges from S and losing at most one from |S|, a contradiction.
Therefore, the edge xixj cannot be in E(G). The independence of N(q) can be shown
similarly.

Claim 3.1.3 The set N(a) ∩ N(q) \ {p} is empty for all a ∈ N(p) ∩ I and the set
N(b) ∩N(p) \ {q} is empty for all b ∈ N(q) ∩ I.

Suppose there exists z ∈ N(a) ∩N(q) \ {p}. Consider the edges pa, qz, and az,
which may already be part of S. Note that |S| can only decrease if we take an edge
from a dominating circuit or star in S and what remains is no longer a circuit or
star.

If we can use pa, az, and zq without affecting the system size, as described
above, then we form the cycle p, a, z, q, p and add it to the system, a contradiction.
Therefore, at least one of these three edges was a vital part of a circuit or star in S,
and thus the removal of at least one of these three edges must decrease |S|. First
consider the case when each of the three edges has the property that its removal
decreases |S|. Note, similar arguments can be used to reach a contradiction no
matter which subset of these three edges affects the system when removed.

As before, it must be the case that Sa(p) and Sz(q) are K1,3’s in S. The edge
az must either be an edge of a K1,3 or a cycle edge. Suppose, without loss of
generality, that Sa(z) is a K1,3 in S. We can then assume that Sa(p, z) ∈ S. Form
the cycle p, a, z, q, p which dominates the edges from Sa(p, z) and Sz(q). Thus we
have incorporated pq into S decreasing |S| at most 1. Consequently, the edge az must
be an edge of a cycle in S. From this cycle we form the new cycle C : a, p, q, z, . . . , a
where z, . . . , a represents the vertex sequence of the old cycle. Let C dominate
the edges from Sz(q) and use the edge az to complete the star from which ap was
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removed. Again we have incorporated pq decreasing |S| at most 1, a contradiction.
The arguement that N(b) ∩N(p) \ {q} is empty for all b ∈ N(q) ∩ I is similar.

Claim 3.1.4 The set N(a)∩N(b) is empty for all {a, b} such that a ∈ N(p)∩ I and
b ∈ N(q) ∩ I.

Suppose there does exist z ∈ N(a) ∩ N(b). We know that p and q do not share
any neighbors in I so it follows that z 6= p and z 6= q. Consider the edges ap, az, bz,
and bq. We know all of these edges are in S. Now Sa(p) and Sb(q) are K1,3’s in S.
The edges az and bz are either in a K1,3 with center other than z or are a cycle edge
in S.

Suppose both az and bz are in a K1,3 in S. Then, based on the way we formed
S thus far, the centers must be a and b respectively. We can easily trade edges
between stars, if necessary, so that Sa(p, z) and Sb(q, z) are in S. Now form the
cycle a, z, b, q, p, a. This cycle dominates the edges of Sa(p, z) and Sb(q, z). So we
have formed a new cycle that contains the edge pq while only decreasing |S| by 1, a
contradiction.

Now suppose that only az is in a K1,3 and that bz is a cycle edge in our system.
Again it must be the case that Sa(z) ∈ S so we can swap edges, if necessary, to
ensure that Sa(z, p) ∈ S. Remove bz from the cycle that contains it and add it
to Sb(q). Now add to the cycle the path b, q, p, a, z to replace the edge bz, thus
forming a larger cycle. We can use the edge bq since we added the edge bz to the
star which originally contained it. The edges pa and az are from Sa and the new
cycle dominates the remaining edge of that star. So we have again decreased |S| by
only 1, a contradiction. The case that bz is in a K1,3 and az is a cycle edge in S is
handled similarly.

Thus, az and bz must both be cycle edges in S. Begin by moving az to Sa(p)
and bz to Sb(q). Now use the edges ap and bq knowing that what remains after their
removal is still a star. If az and bz were on the same cycle in S we replace the path
b, z, a with the path b, q, p, a, which gives a new cycle containing the edge pq. We
have left |S| unchanged. So az and bz must have been on different cycles in S. Both
of these cycles contain z so we take what is left of them after the removal of az and
bz and join them at the point z. We will then add the path b, q, p, a, giving us a new
cycle containing the edge pq. In this case we decreased |S| by 1, a contradiction.

Thus, in all possible cases we reach a contradiction, proving the claim.

Claim 3.1.5 If there exists w ∈ N(p)\{x0} such that w ∈ I, then N(x0)∩N(w) = p.

Suppose there exists w ∈ N(p) \ {x0} such that w ∈ I. Also suppose there exists
z 6= p such that z ∈ N(x0)∩N(w). We consider the edges x0p, x0z, wp, and wz. We
know Sx0(p), Sw(p) ∈ S and the edges x0z and wz are either in a star with center
other than z or are a cycle edge in S.

Suppose both x0z and wz are in stars. Then by the way we formed S, the
centers must be x0 and w respectively. We can easily trade edges between stars, if
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necessary, to form Sx0(p, z) and Sw(p, z). Now form the cycle x0, z, w, p, x0. This
cycle dominates the remaining edges of the stars with centers x0 and w which we
used to form the cycle. So we have formed a new cycle that contains the vertex p
while decreasing |S| by 1, a contradiction.

Now suppose that only x0z is in a star and wz is a cycle edge in our system.
Again it must be the case that x0 is the center of the star containing x0z so we
can swap edges, if necessary, to form Sx0(z, p). Remove the edge wz from the cycle
that contains it and add it to Sw(p). Add to the cycle the path w, p, x0, z to replace
the edge wz, thus forming a larger cycle. We can use the edge wp since we added
the edge wz to the star in which it originally occured. The new cycle dominates
the remaining edge of Sx0(p, z). Thus, we have decreased |S| by 1, a contradiction.
Similarly, we arrive at a contradiction if we assume instead that only wz is in a star
and x0z is a cycle edge in S.

Thus, we have that x0z and wz are both cycle edges in S. Begin by moving x0z
to Sx0(p) and wz to Sw(p). We now use the edges x0p and wp, since what remains
after their removal is still a star. If x0z and wz were on the same cycle in our system
we replace the path w, z, x0 that we removed with the path w, p, x0 which gives a new
cycle containing the vertex p. Thus, we can incorporate pq and leave |S| unchanged.
Thus, x0z and wz must have been on different cycles in S. Both of these cycles
contain z so take what is left of them after the removal of x0z and wz and join them
at the point z. We then add the path w, p, x0, giving a new cycle containing the
vertex p. In this case we decreased |S| by 1, a contradiction.

Hence, in all of the possible cases we reach a contradiction, thus proving the
claim. The next claim is proved in the same manner.

Claim 3.1.6 If there exists u ∈ N(q)\{y0} such that u ∈ I, then N(y0)∩N(u) = q.

We now examine the four cases that arise when we consider whether or not the
hypotheses of Claims 3.1.5 and 3.1.6 hold.

Case 1 Suppose the hypotheses of both Claim 3.1.5 and Claim 3.1.6 hold.

Then R contains N(x0), N(w), N(y0), and N(u). By Claim 1 we know that u 6=
w. Claim 7 implies that N(x0)∩N(w) = p. Claim 6 implies that N(x0)∩N(y0) = ∅,
N(x0) ∩ N(u) = ∅, N(w) ∩ N(u) = ∅, and N(w) ∩ N(y0) = ∅. Finally, Claim 8
implies that N(y0) ∩N(u) = q. From these it follows that

|R| ≥ |N(x0) ∪N(w) ∪N(y0) ∪N(u)| ≥ 4n

5
− 2

which implies that |I| ≤ n/5 + 2. However, we originally assumed that |I| ≥ n/4
which means that n ≤ 40, a contradiction.

Case 2 Suppose the hypothesis of Claim 3.1.5 holds but the hypothesis of Claim 3.1.6
does not.
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Then R contains N(x0), N(w), N(y0), and N(q) \ {y0}. Claim 7 implies that
N(x0)∩N(w) = p. Claim 6 implies that N(x0)∩N(y0) = ∅, and N(w)∩N(y0) = ∅.
Claim 4 implies that N(x0)∩N(q) \ {y0} = p, and N(w)∩N(q) \ {y0} = p. Finally,
Claim 3 implies that N(y0) ∩N(q) \ {y0} = ∅. From these it follows that

|R| ≥ |N(x0) ∪N(w) ∪N(y0) ∪N(q) \ {y0}| ≥
4n

5
− 3

which implies that |I| ≤ n/5 + 3. However, we originally assumed that |I| ≥ n/4
which means that n ≤ 60, a contradiction.

Case 3 Suppose the hypothesis of Claim 3.1.6 holds but the hypothesis of Claim 3.1.5
does not.

Then R contains N(x0), N(p) \ {x0}, N(y0), and N(u). Claim 8 implies that
N(y0)∩N(u) = q. Claim 6 implies that N(x0)∩N(y0) = ∅, and N(x0)∩N(u) = ∅.
Claim 5 implies that N(y0)∩N(p) \ {x0} = p, and N(u)∩N(p) \ {x0} = q. Finally,
Claim 2 implies that N(x0) ∩N(p) \ {x0} = ∅. From these it follows that

|R| ≥ |N(x0) ∪N(p) \ {x0} ∪N(y0) ∪N(u)| ≥ 4n

5
− 3

which implies that |I| ≤ n/5 + 3. However, we originally assumed that |I| ≥ n/4
which means that n ≤ 60, a contradiction.

Case 4 Suppose neither the hypothesis of Claim 3.1.5 nor the hypothesis of Claim
3.1.6 holds.

Then R contains N(x0), N(p) \ {x0}, N(y0), and N(q) \ {y0}. Claim 6 implies
that N(x0)∩N(p) \ {x0} = ∅. Claim 5 implies that N(y0)∩N(p) \ {x0} = q. Claim
4 implies that N(x0)∩N(q) \ {y0} = p. Claim 3 implies that N(y0)∩N(q) \ {y0} =
∅. Claim 2 implies that N(x0) ∩ N(p) \ {x0} = ∅. Finally Claim 1 implies that
N(p) \ {x0} ∩N(q) \ {y0} = ∅. From these it follows that

|R| ≥ |N(x0) ∪N(p) \ {x0} ∪N(y0) ∪N(q) \ {y0}| ≥
4n

5
− 2

which implies that |I| ≤ n/5 + 2. However, we originally assumed that |I| ≥ n/4
which means that n ≤ 40, a contradiction.

In all cases we get a contradiction which means that if we can add one of the
remaining edges to S then we can add it losing at most one from the size of our
system. Of course it is important to us that we have a dominating system. In other
words, we want to ensure that we can incorporate all remaining edges into our system,
S, creating a dominating system. Suppose, again by way of contradiction, that there
is an edge pq that we cannot add to the system. Then each of the above claims would
hold leading us to the same contradictions, showing that it is impossible to have an
edge we cannot incorporate. So we know we can add each of the remaining edges to
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S, decreasing |S| by at most 1 each time. We now know that we have a dominating
system in G, but it still remains to show that is the size we claimed it would be.

Recall that we started our process with at least cnb δ
3
c stars. It follows then that

the size of the system is at least cnb δ
3
c −M where M is the maximum number of

edges that could have been remaining in R.
Choose x ∈ I and let d = deg(x) ≥ δ ≥ n/5. Let t be the number of vertices

in N(x) that are not on one of the remaining paths. The (d − t) vertices that are
on paths must be on different paths because no two vertices on our remaining paths
have a common neighbor in I. Consider an edge from each of these different paths.
Then we have at least 2(d−t) vertices and d−t edges so far. We have now accounted
for t+ 2(d− t) = 2d− t vertices of R. Because |R| ≤ (1− c)n we know that there are
at most (1− c)n− (2d− t) vertices left which can each contribute at most 1 of the
remaining edges. When we combine this with the d− t edges from before we see that
we have at most [(1 − c)n − (2d − t)] + [d − t] edges comprising the disjoint paths.
This gives us that the number of edges remaining in R is at most (1− c)n− δ. So we
have a dominating system of size at least cnb δ

3
c − [(1 − c)n − δ] in G which means

we have a 2-factor of size at least cnb δ
3
c − [(1− c)n− δ] in L(G), as claimed. �

Theorem 3.2 Let G be a 2-edge-connected simple graph of order n > 65 such that
δ(G) ≥ n/5 and α(G) = cn for some c, 1/4 ≤ c < 1. Then for any k ≥ bn/10c+ 2,
if L(G) has a 2-factor with k cycles then L(G) has a 2-factor with k − 1 cycles.

Proof: Suppose by way of contradiction that, for some k ≥ bn/10c+ 2, L(G) has a
2-factor with k cycles but does not have a 2-factor with k− 1 cycles. Then we know
our graph G has a dominating k-system but no dominating (k − 1)-system.

The following observations are easily seen:

• No vertex can appear on more than one circuit of the dominating k-system or
we could connect the two circuits to form a dominating (k − 1)-system.

• No vertex can be the center of more than one star of the dominating k-system.

• No vertex can be the center of a star and on a circuit of the dominating k-
system.

• If there is an edge e between two leaves of a star then it must be a dominated
edge in our system.

• No two stars in our system can share a pair of leaves.

• Every star must contain at least one leaf that is not the center of any star and
is not on any circuit. Otherwise we could distribute all edges of the star to
other elements in the system and form a dominating (k − 1)-system.

We now consider cases based on the structure of the dominating k-system.

Case 1 The graph G contains a dominating k-system that consists entirely of cir-
cuits.
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Among all such k-systems in G, choose one, say Sk, that has the maximum
number of distinct vertices on circuits. In Sk there must be a circuit with 9 or fewer

distinct vertices. Otherwise, we see that 10k ≤ n or k ≤ n

10
, a contradiction.

Consider a circuit C in Sk with the fewest number of distinct vertices. Now
choose a pair of adjacent vertices x and y on C. Recall that neither x nor y can
appear on another circuit and note that they can each have at most 8 neighbors in

C. Thus x and y each dominate at least
n

5
− 8 vertices off C in Sk.

Let Nx = N(x) \ C and Ny = N(y) \ C. Then |Nx| ≥
n

5
− 8 and |Ny| ≥

n

5
− 8.

Claim 3.2.1 The set Nx ∩Ny is empty.

Suppose there exist z ∈ Nx ∩Ny. Replace the edge xy of C with the path x, z, y
to form a new circuit C ′ that now dominates the edge xy. If z appears on another
circuit then we attach this circuit to C ′ and form a dominating (k − 1)-system, a
contradiction. If z is not on a circuit then we contradict the way we chose the original
system.

Claim 3.2.2 The sets Nx and Ny are independent.

Suppose this is not the case for Nx. Let u, v ∈ Nx, u 6= v, such that uv ∈ E(G).
The edge uv must appear somewhere in Sk. Note that xu and xv must be dominated
edges.

(i) Suppose the edge uv is dominated. Without loss of generality assume v is
on a circuit. Then form the cycle u, x, v, u and use it to connect the circuit
containing x and the circuit containing v. This produces a dominating (k−1)-
system, a contradiction.

(ii) Suppose uv is in a circuit. Then replace the edge uv with the path u, x, v to
form a new circuit that dominates uv. We now have 2 circuits containing x,
which means we can again form a dominating (k − 1)-system, a contradiction.

The independence of Ny is proved similarly.

Claim 3.2.3 The set Nx ∪Ny is independent.

Because Nx and Ny are independent, we need only to show that there is not an
edge from Nx to Ny. Again, by way of contradiction, suppose there exists u ∈ Nx

and v ∈ Ny such that uv ∈ E(G). The edge uv must appear somewhere in our
system.

(i) If the edge uv is dominated, without loss of generality assume that the vertex
v is on a circuit. Then in C replace xy with the path x, u, v, y to form a new
circuit that now dominates xy. Now 2 circuits contain the vertex v which
allows us to form a dominating (k − 1)-system, a contradiction.
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(ii) If uv is on a circuit, then we will use xu and yv to connect the circuits containing
uv and xy to form one circuit that now dominates xy and uv, giving us a
dominating (k − 1)-system, a contradiction.

From our claims we see that we have an independent set I = Nx ∪Ny such that
|I| ≥ 2n/5 − 16. Let a, b ∈ Nx, (a 6= b). Now suppose that there exists a vertex
w ∈ N(a) ∩N(b)(w 6= x).

Subcase 1 The vertex w is on the circuit C containing x.

Because a and b are not on C and because w is not on any other circuit except
C, it must be the case that the edges aw and bw are dominated edges in our system.
We use the edges aw, bw, xa, and xb to form the cycle x, a, w, b, x, which we attach
to C. If either a or b are on another circuit in our system then we have 2 circuits
that share a vertex, hence we can form a dominating (k − 1)-system. Thus, neither
a nor b was on any circuit in our original system which means by adding them to C
we contradict our original choice of system. Consequently, the vertex w cannot be
on the circuit that contains x.

Subcase 2 The vertex w is not on the circuit containing x.

(i) If both of the edges aw and bw are dominated edges in our system, then again
we form the cycle x, a, w, b, x which we attach to the circuit containing x. All
of the vertices a, b, w must be on some circuit in our system, or by adding them
to the circuit containing x, we contradict our original choice of system. But
then we have two circuits with a common vertex which allows us to form a
dominating (k − 1)-system, also a contradiction.

(ii) If exactly one of aw and bw is a circuit edge in our system, then assume without
loss of generality that aw is dominated and that bw is in a circuit of our system.
Now we replace bw with the path b, x, a, w to form a new circuit that dominates
bw. Now two different circuits contain the vertex x which allows us to form a
dominating (k − 1)-system, a contradiction.

(iii) If both of aw and bw are circuit edges in our system, then they must be on
the same circuit, as w cannot appear on two different circuits. If the circuit
containing aw and bw can be divided in such a way that aw and bw are on
different cycles, then we can remove aw and bw from the circuit and attach the
path a, x, b to form a new circuit that now dominates aw and bw and contains
the vertex x. We now have 2 different circuits that contain the vertex x which
allows us to form a dominating (k − 1)-system, a contradiction.

The only remaining possibility for aw and bw is that they are both edges of the
same circuit in our system and that this circuit cannot be divided as above.
This is the situation we get if any 2 elements of Nx have a common neighbor
other than x.
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Similar arguments show that if any two elements of Ny, say a and b, have a
common neighbor other than y, say w, then aw and bw are both edges of the same
circuit in our system, which is not the circuit containing y, and this circuit cannot be
divided in such a way that the edges aw and bw are on different cycles of the circuit.

Now suppose that there exists a ∈ Nx and b ∈ Ny such that there exists a vertex
w ∈ N(a) ∩N(b) where w 6= x, y. Then, similar arguments show that the edges aw
and bw are both edges of the same circuit in our system, which is not the circuit
containing x and y, and this circuit cannot be divided in such a way that the edges aw
and bw are on different cycles of the circuit. The only difference in the arguments
in this case is that where we were attaching a new circuit either to x or y in the
previous cases, we are now combining the circuit containing aw and bw with the
circuit containing xy to form one large circuit that in addition to dominating aw
and bw as before, now dominates xy as well. As before we always get a dominating
(k − 1)-system unless we have the situation described above in (iii).

Our conclusion is that if any two vertices of the set I have a common neighbor
other than x or y we get the situation described above in (iii).

Now suppose that three vertices a, b, c of I have a common neighbor w such that
w 6= x, y. By our previous arguments, aw and bw are both edges of the same circuit
in our system, which is not the circuit containing x and y, and that this circuit
cannot be factored in such a way that the edges aw and bw are on different cycles
of the circuit. But cw must also be on the same cycle of the circuit as aw and bw,
which is impossible. So no three vertices of I have a common neighbor other than x
or y.

Recall that our set I = Nx ∪ Ny is such that |I| ≥ 2n/5 − 16. Let R be the
remaining vertices of V (G) that are not in the set I. Consider the set R\{x, y} that
has size at most 3n/5 − 14. By our previous arguments no three vertices of I can
have a common neighbor in R \ {x, y}. Let e be the number of edges between the
sets I and R\{x, y} . Since I is independent and each vertex of I is adjacent to only
one of x and y, each vertex of I sends at least n/5 − 1 edges to the set R \ {x, y}.
Thus, there are at least (n/5− 1)(2n/5− 16) edges from I to R \ {x, y}, that is,

e ≥ 2n2

25
− 18n

5
+ 16.

Now there are at most 3n/5 + 14 vertices in R \ {x, y} that must receive these
edges but each vertex in R \ {x, y} receives at most two edges from I. Hence, there
are at most 2(3n

5
+ 14) edges from R \ {x, y} to I. In other words, e ≤ 6n

5
+ 28.

It follows that
2n2

25
− 18n

5
+ 16 ≤ 6n

5
+ 28,

hence, n2 − 60n− 150 ≤ 0, which implies n < 63, a contradiction.

Case 2 Every dominating k-system of G contains at least one star.

Choose a dominating k-system of G, say Sk, in such a way that the system
contains a maximum number of circuits. By our assumption, Sk must contain at
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least one star. Suppose, for a contradiction, there exists a star Sz(x1, x2, x3, x4, x5)
with at least five leaves. Note that for all i 6= j, the edge xixj cannot be in our graph.
If so, it would be a dominated edge and we could use it to form a k-system with
one more circuit, which contradicts the way we chose our original system. Lemma 2
implies that for every i 6= j, N(xi) ∩N(xj) = z. This implies that

n ≥ |{x1, x2, x3, x4, x5, z}|+ |N(x1)|+ |N(x2)|+ |N(x3)|+ |N(x4)|+ |N(x5)|

and thus n ≥ n + 1, a contradiction. So it must be the case that each star in our
system has 3 or 4 edges. We will show a contradiction is reached in either case.
While the setup for these cases is the same, the arguments are different so we will
handle them separatetly.

Suppose we do have a star in our system with four edges, say Sz(x1, x2, x3, x4).
Let N = {N(x1)∪N(x2)∪N(x3)∪N(x4)}\{z}. By Lemma 2 we know that for every
i 6= j, N(xi)∩N(xj) = z which means that |N | ≥ 4n/5−4. Let X = {x1, x2, x3, x4}.
We know that z 6∈ X and z 6∈ N . Again, by the same argument as above, xixj 6∈ E(G)
which means N ∩X = ∅. This implies that we have accounted for a total of 4n/5+1
vertices in G.

Now z must have at least n/5− 4 neighbors in G−X. None of the other edges
adjacent to z can be dominated edges in our system or we could add them to Sz
giving us a star with 5 edges or more, which we cannot have. The other edges also
cannot be in a circuit because as a center of a star, z cannot appear on a circuit.
There is not another star with center z, so the remaining edges adjacent to z must
be in stars with center other than z. Let C = {c1, c2, . . . , cl} be the neighbors of z
not in the set X. Note that l ≥ n/5 − 4. We know that each of the vertices in C
is the center of a star with leaf z. Also we know that X ∩ C = ∅ or we would have
two stars in our system that share a pair of vertices. We will now argue that the set
N ∩ C is empty.

Suppose, by way of contradiction, that cixj ∈ E(G), for some i ∈ {1, 2, . . . , l}
and j ∈ {1, 2, 3, 4}. This edge cannot appear in the star with center ci or we have
two stars that share xj and z. It cannot be in a circuit or dominated by a circuit
containing ci as ci cannot be on a circuit. If it is dominated by a circuit containing
xj then we can use the edge cixj to combine the stars containing zxj and ciz into a
cycle that dominates any edges in the stars not a part of the new cycle, thus forming
a dominating (k − 1)-system. So it must be the case that the edge cixj is found in
a star with center xj. Because we know the star containing zxj has 4 edges we can
use the edge zxj to combine the stars containing the edges cixj and ciz into a cycle
that dominates the edges of the stars and thus forms a dominating (k − 1)-system,
again a contradiction. It follows that cixj /∈ E(G), thus N ∩ C is empty.

What we have shown is that none of the vertices in the set C were included in
the 4n/5 + 1 vertices that we had accounted for before. So now, with the sets X, N ,
C, and the vertex z we have accounted for n− 3 different vertices.

Consider one last set of vertices. Recall that for all i ∈ {1, 2, . . . , l}, ci is the
center of a star with z as a leaf. As z is the center of a star, in each of these stars
there is a leaf other than z that is not the center of a star and is not on a circuit.
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For each i ∈ {1, 2, . . . , l} let yi be the leaf in the star with center ci that meets these
qualifications and let Y = {y1, y2, . . . , yl}, l ≥ n/5 − 4. Hence, |Y | ≥ n/5 − 4. By
our choice of each yi we know that z 6∈ Y . Then Y ∩ C is empty or we would have
two different stars that contain the pair ci and z. Also, Y ∩X is empty or we would
have two different stars that contain the pair xi and z. Now we will show that the
set N ∩ Y is also empty.

Suppose, by way of contradiction, yixj ∈ E(G), for some i ∈ {1, 2, . . . , l} and
j ∈ {1, 2, 3, 4}. This edge cannot appear in a star with center yi, in a circuit, or
as an edge dominated by a circuit containing yi by the way we chose yi. If yixj
is an edge dominated by a circuit containing xj then we can use it to combine the
stars containing ciz and zxj into a cycle that dominates the edges of the stars and
thus gives us a dominating (k − 1)-system. It remains then that the edge yixj must
be found in a star with center xj. Because we know the star containing zxj has 4
edges we can use the edge zxj to combine the stars containing the edges yixj and
ciz into a cycle that dominates the edges of the stars and thus forms a dominating
(k− 1)-system, again a contradiction. Thus, yixj /∈ E(G) and thus N ∩Y is empty.

So, none of the vertices in the set Y were included in the n− 3 vertices that we
had previously accounted for in the sets X,N,C, and the vertex z. We now have at
least (n− 3) + (n/5− 4) different vertices that we have accounted for which implies
that n ≥ 6n/5 − 7 or n ≤ 35 which is a contradiction. Hence, it follows that we
cannot have any stars in our system that contain edges edges; thus, every star in our
system contains exactly three edges.

We are now in the situation that we know our system must have at least one star
and that every star must have exactly three edges. Choose any star Sz(x1, x2, x3)
in S. The set-up is similar to the case when we assumed our system contained a
star with four edges. Let N = {N(x1) ∪ N(x2) ∪ N(x3)} \ {z}. By Lemma 2 we
know that for every i 6= j, N(xi) ∩ N(xj) = z which means that |N | ≥ 3n/5 − 3.
Let X = {x1, x2, x3}. We know that z 6∈ X and z 6∈ N . As in the previous case,
N ∩X = ∅. This implies that we already have accounted for a total of 3n/5 + 1 of
the vertices in our graph G.

Now the vertex z must have at least n/5− 3 other neighbors in G besides those
in the set X. None of the edges adjacent to z can be dominated edges in our system
or we could add them to the star centered at z giving us a star with 4 edges or more
which we cannot have. The edges also cannot be in a circuit because as a center of
a star the vertex z cannot appear on a circuit. There is not another star with center
z so the remaining edges that are adjacent to z must be found in stars with center
other than z. Let C = {c1, c2, . . . , cl} be the neighbors of z not in the set X. Note
that l ≥ n/5− 3. We know that each of the vertices in C is the center of a star with
leaf z. Clearly the vertex z is not an element of C. Also we know that X ∩C = ∅ or
we would have two stars in our system that shared a pair of vertices. As before, we
will show that the set N ∩ C is empty.

Suppose, by way of contradiction, that cixj ∈ E(G), for some i ∈ {1, 2, . . . , l}
and j ∈ {1, 2, 3}. This edge cannot appear in the star with center ci or we have
two stars that share xj and z. It cannot be in a circuit or dominated by a circuit
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containing ci as ci cannot be on a circuit. If it is dominated by a circuit containing
xj then we can add the edge cixj to Sci to form a star with four edges which we have
shown we cannot have. So it must be the case that the edge cixj is found in a star
with center xj. We can now use the three stars which contain the edges xjci, ciz,
and zxj to form a type 4 dominating (k−2)-system, which by Lemma 1 implies that
G contains a dominating (k − 1)-system. It follows that the edge cixj cannot be in
our graph G and thus the set N ∩ C is empty.

What we have shown is that none of the vertices in the set C were included in
the 3n/5 + 1 vertices that we had accounted for before. So now, with the sets X, N ,
C, and the vertex z we have accounted for 4n/5− 3 different vertices.

We will now consider two more sets of vertices. Recall that for all i ∈ {1, 2, . . . , l},
the vertex ci is the center of a star with vertex z as a leaf. We know that each star in
our system has 3 degree one vertices which means that each of these stars centered
at ci contains 2 other vertices besides ci and z. So for each i ∈ {1, 2, . . . , l} let vi
and yi be the degree one vertices in the star centered at ci other than z. And let
V = {v1, v2, . . . , vl} and Y = {y1, y2, . . . , yl}. Recall that l ≥ n/5 − 3 which means
that |V | ≥ n/5− 3 and |Y | ≥ n/5− 3. By our choice of each vi and yi we know that
z 6∈ V and z 6∈ Y . It must be the case that V ∩ X is empty and Y ∩ X is empty
or we would have two different stars in our system that contain the pair of vertices
xi and z. It also must be the case that V ∩ C is empty and Y ∩ C is empty or we
would have two different stars in our system that contain the pair of vertices ci and
z. What remains for us to show is that the sets N ∩Y , N ∩V , and V ∩Y are empty.

Starting with N ∩ Y , suppose, by way of contradiction, that there does exist a
vertex yi ∈ N(xj) for some i ∈ {1, 2, . . . , l} and j ∈ {1, 2, 3}. In other words, yixj
is an edge of our graph G. This edge must appear somewhere in our system and we
will consider each possibility. In each case we will use the stars Sz(xj) and Sci(z, yi).

If the edge yixj is dominated in our system then we will use it to combine Sz and
Sci to form the cycle z, ci, yi, xj, z which dominates the edges of the stars giving us a
dominating (k − 1)-system, a contradiction. If the edge yixj is in a star centered at
xj then we can combine this star with Sz and Sci to form a type 2 (k − 2)-system,
which by Lemma 1 means G contains a dominating (k−1)-system. If the edge yixj is
in a star centered at yi then we can combine this star with Sz and Sci to form a type
1 (k−2)-system, which by Lemma 1 means G contains a dominating (k−1)-system.
If the edge yixj is in a circuit then we can combine this circuit with Sz and Sci to
form a type 3 (k − 2)-system, which by Lemma 1 means G contains a dominating
(k− 1)-system. In each case we get a contradiction, which means that the set N ∩Y
must be empty. By the same argument we also get that the set N ∩ V is empty.
If the set V ∩ Y is not empty that means that yi = vj for some i 6= j. But that
means that the vertices z and vj appear together in two different stars which cannot
happen, so the set V ∩ Y must also be empty.

Let us review what we have shown. We have defined five sets, X,N,C, Y and V ,
and we have shown that the intersection of any two of them is empty. We have also
shown that the vertex z is not an element of any of the five sets. The result is that
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n ≥ 1 + |X|+ |N |+ |C|+ |Y |+ |V | or that

n ≥ 1 + 3 +
3n

5
− 3 +

n

5
− 3 +

n

5
− 3 +

n

5
− 3 =

6n

5
− 8.

But this implies that n ≤ 40 which is a contradiction that arises from our original
assumption that each star in our system has exactly three edges. This leads us to
the conclusion that G cannot contain a dominating k-system that contains any stars.

We began by supposing that for some k ≥ bn/10c + 2, that L(G) has a 2-
factor with k cycles but does not have a 2-factor with k − 1 cycles. That led us
immediately to the assumption that our graph G has a dominating k-system but
no dominating (k − 1)-system. Based on this assumption we then showed that G
could not contain a dominating k-system that consists entirely of circuits and that it
also could not contain a dominating k-system that contains any stars. The resulting
conclusion then is that G cannot contain a dominating k-system. This is obviously
false which implies that our supposition that G contains a dominating k-system but
no dominating (k − 1)-system cannot hold. So for every k ≥ bn/10c+ 2 if L(G) has
a 2-factor with k cycles then L(G) has a 2-factor with k− 1 cycles, thus proving the
theorem. �

4 Conclusion

Our main goal was to prove a generalization of Catlin’s orginal theorem which gives
conditions on a graph G that imply its line graph is Hamiltonian.

We began with a small extension.

Theorem 1.2 If G is a 2-edge-connected simple graph of order n such that δ(G) ≥
n/5 then L(G) has a 2-factor with k cycles for k = 1, . . . , bn/10c.

We then set out to prove the larger generalization.

Theorem 1.3 If G is a 2-edge-connected simple graph of order n > 65 with δ(G) ≥
n/5 and α(G) = cn, for some c, 1/4 ≤ c < 1, then L(G) contains a 2-factor with k
cycles, for each k = 1, 2, . . . , cnb δ

3
c − [(1− c)n− δ].

We finish with a graph that shows our bound in Theorem 1.3 is the best possible.
Consider the complete bipartite graph G = Kn/2,n/2. We know that α(G) = n/2 and
δ(G) = n/2. From Theorem 1.3 we see that L(G) has a 2-factor with k cycles for
each k = 1, 2, . . . , n2/12. Note that this is best possible since |E(G)| = n2/4 which
implies that |V (L(G))| = n2/4 and so it would be impossible to have any more than
n2/12 disjoint cycles in L(G).
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