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Abstract

In this paper, we consider a degree sum condition sufficient
to imply the existence of k vertex-disjoint chorded cycles in
a graph G. Let 04(G) be the minimum degree sum of four
independent vertices of G. We prove that if G is a graph of
order at least 11k + 7 and 04(G) > 12k — 3 with k > 1, then G
contains k vertex-disjoint chorded cycles. We also show that
the degree sum condition on o4(G) is sharp.
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1 Introduction

The study of cycles in graphs is a rich and an important area.
One question of particular interest is to find conditions that guar-
antee the existence of k vertex-disjoint cycles. Corradi and Hajnal
[4] first considered a minimum degree condition to imply a graph
must contain k vertex-disjoint cycles, proving that if |G| > 3k and
the minimum degree 6(G) > 2k, then G contains k vertex-disjoint
cycles. For an integer ¢t > 1 and an independent vertex set X with

| X | =t, let
0(@) = min{zdc<v> | }

veX

and 0¢(G) = oo when the independence number «(G) < t. Enomoto
[5] and Wang [13] independently extended the Corrddi and Hajnal
result, requiring a weaker condition on the minimum degree sum of
any two non-adjacent vertices. They proved that if |G| > 3k and
02(G) > 4k — 1, then G contains k vertex-disjoint cycles. In 2006,
Fujita et al. [7] proved that if |G| > 3k + 2 and o3(G) > 6k — 2,
then G contains k vertex-disjoint cycles, and in [10], this result was
extended to 04(G) > 8k — 3.

An extension of the study of vertex-disjoint cycles is that of
vertex-disjoint chorded cycles. A chord of a cycle is an edge between
two non-adjacent vertices of the cycle. We say a cycle is chorded if
it contains at least one chord. In 2008, Finkel proved the following
result on the existence of k vertex-disjoint chorded cycles.

Theorem 1. (Finkel [6]) Let k > 1 be an integer. If G is a graph of
order at least 4k and 6(G) > 3k, then G contains k vertex-disjoint
chorded cycles.

In 2010, Chiba et al. proved Theorem 2. Since o2(G) > 2§(G),
Theorem 2 is stronger than Theorem 1.

Theorem 2 (Chiba, Fujita, Gao, Li [1]). Let k > 1 be an integer. If
G is a graph of order at least 4k and oo(G) > 6k —1, then G contains
k vertex-disjoint chorded cycles.



Recently, Theorem 2 was extended as follows. Since o3(G) >
302(G)/2, when the order of G is sufficiently large, Theorem 3 is
stronger than Theorem 2.

Theorem 3 (Gould, Hirohata, Keller [11]). Let k > 1 be an integer.
If G is a graph of order at least 8k + 5 and o3(G) > 9k — 2, then G
contains k vertex-disjoint chorded cycles.

Remark 1. We note if kK = 1 in Theorem 3, then Theorem 3 holds
under the condition that |G| > 7.

In this paper, we consider a similar extension for chorded cycles,
as, in [10], the existence of k vertex-disjoint cycles was proved under
the condition o4(G). In particular, we first show the following.

Theorem 4. If G is a graph of order at least 15 and o4(G) > 9,
then G contains a chorded cycle.

Remark 2. We consider the following graph G of order 14. (See
Fig.1.) The white vertex (o) shows degree 2, and the black vertex (e)
shows degree 3. Then G satisfies the 04(G) condition in Theorem 4.
However, G does not contain a chorded cycle. Thus |G| > 15 is
necessary.

Fig. 1. The graph G of order 14.

Theorem 5. Let k > 1 be an integer. If G is a graph of order
n > 11k + 7 and 04(G) > 12k — 3, then G contains k vertex-disjoint
chorded cycles.

Remark 3. Theorem 5 is sharp with respect to the degree sum con-
dition. Consider the complete bipartite graph G = K3p_1 n—3k+1,



where large n = |G|. Then 04(G) = 4(3k—1) = 12k — 4. However, G
does not contain k vertex-disjoint chorded cycles, since any chorded
cycle must contain at least three vertices from each partite set, in
particular, from the 3k — 1 partite set. Thus o4(G) > 12k — 3 is
necessary.

For related results on vertex-disjoint chorded cycles in graphs and
bipartite graphs, we refer the reader to see [2, 3, 8, 12].

Let G be a graph, H a subgraph of G and X C V(G). For
u € V(G), the set of neighbors of u in G is denoted by Ng(u), and
we denote dg(u) = |Ng(u)|. For u € V(G), we denote Ny (u) =
Ng(u) N V(H) and dy(u) = |Ng(u)|. Also we denote dy(X) =
Youex da(u). If H = G, then dg(X) = dy(X). Furthermore,
Ng(X) = UuexNg(u) and Ng(X) = Ng(X)NV(H). Let A, B
be two vertex-disjoint subgraphs of G. Then Ng(A) = Ng(V(A))
and Np(A) = Ng(A)NV(B). The subgraph of G induced by X is de-
noted by (X). Let G-X = (V(G)—X) and G-H = (V(G)-V(H)).
If X = {x}, then we write G—x for G—X. If there is no fear of confu-
sion, then we use the same symbol for a graph and its vertex set. For
two disjoint graphs GG1 and Go, G1 UG5 denotes the union of G and
G3. Let @ be a path or a cycle with a given orientation and = € V(Q).
Then x* denotes the first successor of x on Q and =~ denotes the
first predecessor of z on Q. If z,y € V(Q), then Q[z,y] denotes
the path of @ from x to y (including = and y) in the given direction.
The reverse sequence of Q[z, y| is denoted by Q" [y, z]. We also write
Q($7y] = Q[II,‘+, y]v Q[m‘,y) = Q[x,y_} and Q(CC,y) = Q[:c+,y_]. IfQ
is a path (or a cycle), say Q = x1,x2,...,2(,21), then we assume
an orientation of ) is given from z; to z; (if @ is a cycle, then the
orientation is clockwise). If P is a path connecting = and y of V(G),
then we denote the path P as P[z,y]. If G is one vertex, that is,
V(G) = {z}, then we simply write x instead of G. For an integer
r > 1 and two vertex-disjoint subgraphs A, B of GG, we denote by
(di,da,...,d,) a degree sequence from A to B such that dg(v;) > d;
and v; € V(A) for each 1 < i < r. In this paper, since it is suffi-
cient to consider the case of equality in the above inequality, when
we write (dq,ds,...,d,), we assume dp(v;) = d; for each 1 < i < 7.
For two disjoint X,Y C V(G), E(X,Y) denotes the set of edges of G



connecting a vertex in X and a vertex in Y. For a graph G, comp(G)
is the number of components of G. A cycle of length ¢ is called a
¢-cycle. For terminology and notation not defined here, see [9].

2 Preliminaries

Definition 1. Suppose C1,...,C, are r vertex-disjoint chorded cy-
cles in a graph G. We say {C1,...,C;} is minimal if G does not
contain r vertex-disjoint chorded cycles C1, ..., C/ such that

Ui V(CD| < Ui V(G-

Definition 2. Let C' = vy, ..., v, v1 be a cycle with chord v;v;, 7 < j.
We say a chord vv’ # v;v; is parallel to viv; if either v,v" € Clu;, vj]
or v,v" € Clvj,v;]. Note if two distinct chords share an endpoint,
then they are parallel. We say two distinct chords are crossing if
they are not parallel.

Definition 3. Let w;v; and uyv,, be two distinct edges between two
vertex-disjoint paths P, = uy,...,us and P» = vy,...,v;. We say
u;v; and ugvy, are parallel if either ¢+ < ¢ and 7 < m, or £ < ¢
and m < j. Note if two distinct edges between P; and P, share an
endpoint, then they are parallel. We say two distinct edges between
two vertex-disjoint paths are crossing if they are not parallel.

Definition 4. Let v;v; and vyv,, be two distinct edges between ver-
tices of a path P = vy,..., v, with j > i+ 2 and m > £+ 2. We say
v;v; and vevy, are nested if either 1 </ <m <jorl <i<j<m.

Definition 5. Let P = vy,...,v; be a path. We say a vertex v; on
P has a left edge if there exists an edge v;v; for some j < ¢ — 1, that
is not an edge of the path. We also say v; has a right edge if there
exists an edge v;v; for some j > i+ 1, that is not an edge of the path.

3 Lemmas

The following lemmas will be needed.



Lemma 1 ([11]). Let r > 1 be an integer, and let € = {C1,...,C,}
be a minimal set of r wvertex-disjoint chorded cycles in a graph G.
If |Ci| > 7 for some 1 < i < r, then C; has at most two chords.
Furthermore, if the C; has two chords, then these chords must be
Crossing.

Lemma 2 ([11]). Let r > 1 be an integer, and let € = {C1,...,C,}
be a minimal set of r wvertex-disjoint chorded cycles in a graph G.
Then de,(x) < 4 for any 1 <i <r and any x € V(G) — U[_, V(C}).
Furthermore, for some C € € and some x € V(G) — Ul_,V(C;),

if do(x) =4, then |C| =4, and if do(z) = 3, then |C| < 6.

Lemma 3 ([11]). Suppose there exist at least three mutually par-
allel edges or at least three mutually crossing edges connecting two
verter-disjoint paths Py and Ps. Then there exists a chorded cycle in
<P1 U P2>.

Lemma 4 ([11]). Suppose there exist at least five edges connecting
two vertex-disjoint paths Py and P with |Py U Py| > 7. Then there
exists a chorded cycle in (P; U P3) not containing at least one vertex

Of (Pl U P2>

Lemma 5 ([11]). Let Pi, Py be two vertex-disjoint paths, and let
uy, uz (u1 # ugz) be in that order on Py. Suppose dp,(u;) > 2 for each
i € {1,2}. Then there exists a chorded cycle in (Pyi[uy,us] U P).

Lemma 6 ([11]). Let H be a graph containing a path P = vi,... v
(t > 3), and not containing a chorded cycle. If viv; € E(H) for
some i > 3, then dp(vj) < 3 for any j < i —1 and in particular,
dp(vi—1) = 2. And if vv; € E(H) for somei <t—2, thendp(v;) <3
for any 7 > i+ 1 and in particular, dp(vit1) = 2.

Lemma 7 ([11]). Let H be a graph containing a path P = vy,... v
(t > 6), and not containing a chorded cycle. If dp(v1) = 1, then
dp(vi) =2 for some 3 <1 <5, and if vivs € E(H), then dp(v;) = 2
for some 4 <i < 6.

Lemma 8 ([11]). Let H be a graph containing a path P = v1,...,v;
(t > 6), and not containing a chorded cycle. If dp(vy) = 1, then
dp(vi) = 2 for somet —4 < i <t—2, and if vyv_o € E(H), then
dp(vi) =2 for somet—5<i<t—3.



Lemma 9. Let H be a connected graph of order at least 6. Suppose
H contains meither a chorded cycle nor a Hamiltonian path. Let
H = (PLUP), where Pi = uy,...,us (s > 5) is a longest path
in H and Py = vy,...,vy (t > 1) is a longest path in H — P;. If
u; € V(Py) for some 2 < i < s—3 is adjacent to an endpoint v of P
and uj € V(P1) for somei+2 < j < s—1 is adjacent to an endpoint
v' of Py (possibly, v ="1"), then dg(ug) = 2 for some ¢ € {i+1,j—1}.

Proof. Let v,v" be as in the lemma, and we may assume v = vy
and v = v (possibly, v = ¢’). Suppose dg(ug) > 3 for each
¢e {i+1,7—1}. If uj4q has a left edge, say u;rijup with h < 4,
then Py [up, wi], v1, Po[vr, ve], uj, Py [uj, uig1], up is a cycle with chord
u;u;1, a contradiction. By symmetry, u;_1 does not have a right
edge. Since u;vy, ujv € E(H), Np,(us) = 0 for each £ € {i+1,j—1},
otherwise, since consecutive vertices on P; each have adjacencies
on P», there exists a longer path than P; in H, a contradiction.
Note that even if v = v/, Np,(ug) = () for each ¢ € {i + 1,5 — 1}.
Since dg(ug) > 3 for each ¢ € {i 4+ 1,j — 1}, u;41 has a right edge
and uj_1 has a left edge. No vertex in Pj[u;,u;] can have an edge
that does not lie on P; to some other vertex in P [u;, u;], otherwise,
this edge is a chord of the cycle Piu;, u;],ve, Py [vg,v1],u;. Thus
we have edges w;y1up with h > j, and wj_juy with A’ < i. Then
Prlup, wil, vi, Pelvr, v, g, Prlug, upl, wir, Pr{uicr, uj—1], up is a cy-
cle with chord w;u; 1 (and uj_luj), a contradiction. Thus the lemma
holds. O

Lemma 10 ([11)). Let H be a graph of order at least 13. Suppose
H does not contain a chorded cycle. If H contains a Hamiltonian

path, then there exists an independent set X of four vertices in H
such that dg(X) < 8.

Lemma 11 ([11]). Let H be a connected graph of order at least
4. Suppose H contains neither a chorded cycle nor a Hamiltonian
path. Let Py = uy,...,us (s > 3) be a longest path in H, and let
Py =v1,...,u (t > 1) be alongest path in H—Py. Then the following
statements hold.

(i) Ng—p,(u;) =0 for each i € {1, s}.



(ii) dp(u;) = dp, (u;) < 2 for each i € {1, s}.

(iil) Nu—(pupy)(vj) =0 for each j € {1,t}.

(iv) dPQ(UJ ) <2 for each j € {1,t}.

(v) dp,(2) <2 for each z € V(H) — V(F;) and each i € {1,2}.
(vi) dpl({’l)l,’l)t}) < 3 for each t > 2.

Proofs of (v) and (vi). Note parts (i) to (iv) are from [11], hence we
only prove parts (v) and (vi). Since H does not contain a chorded
cycle, (v) holds. Suppose dp, ({vi,v:}) > 4. By (v), dp,(vj) = 2
for each j € {1,t}. Then, by Lemma 5, H has a chorded cycle, a
contradiction. Thus (vi) holds. O

Lemma 12. Let H be a connected graph of order at least 15. Suppose
H contains neither a chorded cycle nor a Hamiltonian path. Let
Py =wuy,...,us (s > 3) be alongest path in H, and let Py = v1,...,v;
(t > 1) be a longest path in H — Py such that dp,(v1) < dp,(vy).
Then there exists an independent set X of four vertices in H such
that {u1,us,v1} € X and dg(X) < 8.

Remark 4. Let H be a graph of order 14 shown in Fig. 1 (Remark 2,
Theorem4), P, = uq,...,u11, and Py, = vy1,v9,v3. Then H satisfies
all the conditions except for the order in Lemma 12. However, the
conclusion does not hold. Thus |H| > 15 is necessary.

Proof. Suppose ujus € E(H). Since H is connected and V(H —
Py) # 0, there exists a longer path than P;, a contradiction. Thus
uus € E(H). Let R=H — (P, U Py). If t = 1, that is, v = vy,
then dp, (vi1) < 2 by Lemma 11 (v). If ¢ > 2, then dp, ({v1,v:}) < 3
by Lemma 11 (vi). Then dp,(v1) < 1 by the assumption (dp, (vi) <
dp, (vt)), and dp, (v¢) < 2 by Lemma 11 (v).

Claim 1. If |P;| <3, then H = (P, U P).

Proof. Suppose H # (P U P,). Now we prove the following two
subclaims.

Subclaim 1.1. For any v € V(P2), Ngr(v) = 0.

Proof. By Lemma 11 (iii), Nr(v;) = 0 for each j € {1,t}. If | P| < 2,
then the subclaim holds. Thus we may assume |Py| = 3. Suppose



Ngr(v') # 0 for some v' € V(P). Then v/ = vy. Let wy € Ng(vg).
If vivs € E(H), then the subclaim holds, otherwise, there exists
a longer path than P, in H — P;, a contradiction. Thus vivs &
E(H). Since dp,(v1) < 1 and dp,(v3) < 2, we have dg(v;) < 2
and dg(vs) < 3. Suppose a vertex on P, has a neighbor w; in R.
Then vow; € E(H). Recall ujus ¢ E(H), and note uv; ¢ E(H)
for any i € {1, s} and any j € {1,3} by Lemma 11 (i). We also note
dp(u;) < 2 for any i € {1,s} by Lemma 11 (ii). If dg({v1,v3}) < 4,
then X = {uq, us,v1,v3} is an independent set in H and dy(X) < 8,
and X is the desired set. Thus we may assume dg({vi,v3}) = 5, that
is, dg(v1) = 2 and dg(v3) = 3. Then dp,(v1) = 1 and dp, (v3) = 2.
Recall wy € Ng(vg). Clearly, Nr(wi) = 0, otherwise, there exists
a longer path than P, in H — Py, a contradiction. If dg(w;) < 2,
then X = {u1,us,v1, w1} is the desired set. Thus dg(wy) > 3, that
is, dp,(w1) > 2. Note w; and vz lie on a path P = wj, vy, v3, and
w1, v3 send at least two edges each to P;. By Lemma 5, there exists
a chorded cycle in (P U P), a contradiction. O

Subclaim 1.2. For any u € V(P1), Ng(u) = 0.

Proof. We first prove dg(vi) < 2. Suppose not, that is, dg(v1) > 3.
Recall dp, (v1) < 1. By Subclaim 1.1 and Lemma 11 (iv), dp, (v1) =1
and dp,(v1) = 2. Thus |Py| = 3 and vjv3 € E(H). Since dp, (v1) <
dp, (v3) by the assumption, dp, (v3) > 1. Then (P, U P») contains a
cycle with chord vyvs, a contradiction. Thus dg(v1) < 2. Suppose
there exists a vertex in P} with a neighbor wy in R. If dy(w;) < 2,
then X = {u1, us,v1, w1} is the desired set. Thus dg(w;) > 3.

First suppose dp, (w1) > 2. Then dp, (w;) = 2 by Lemma 11 (v),
and dr(w1) > 1 by Subclaim 1.1. Let wy € Nr(w1). If dg(ws) < 2,
then X = {ui,us,vi,wa} is the desired set. Thus dy(ws) > 3. If
dp, (w2) > 2, then we have two vertices on a path P = wy, ws, each
sending at least two edges to another path P;, and by Lemma 5, a
chorded cycle exists in (P; U P), a contradiction. Thus dp, (w2) < 1,
and by Subclaim 1.1, dg(wz) > 2. Let wg € NR_y, (w2). If di(ws) <
2, then X = {uj,us,v1,ws} is the desired set. Thus dy(ws) > 3.
Suppose dp, (w3) > 2. Then consider the path P = wi,wsy, ws. Since
wy and ws send at least two edges to another path P;, a chorded cycle
exists in (P; U P) by Lemma 5, a contradiction. Thus dp, (w3) < 1.



Also, Np_ {whm}(wg) = (), otherwise, there exists a longer path than
Py in H — Py, a contradiction. By Subclaim 1.1, Np,(w3) = (). Thus
dp, (ws) = 1 and wy,wy € Ng(ws). Then (P U P) contains a cycle
with chord wjws, a contradiction.

Next suppose dp, (w1) = 1. Then dr(w;) > 2 by Subclaim 1.1.
Let wy, w3 € Nr(wy). If dg(w;) < 2 for some i € {2,3}, then X =
{u1,us,v1,w;} is the desired set. Thus dg(w;) > 3 for each i € {2, 3}.
Suppose dr(w;) > 3 for some i € {2,3}. Without loss of generality,
we may assume ¢ = 2. Then wy has a neighbor wy in R distinct
from w; and ws, and hence ws, wy,ws, w4 is a longer path than P,
in H — Pi, a contradiction. Thus for each i € {2,3}, dr(w;) < 2,
and then dp, (w;) > 1 by Subclaim 1.1. Note w; for each i € {2,3}
does not have a neighbor in R distinct from w;, wq, ws, otherwise,
there exists a longer path than P, in H — P;, a contradiction. Now
suppose dr(w;) = 2 for some i € {2,3}. Then wows € E(H). Let
P = wy,wy,ws. Since dp, (w;) > 1 for each i € {2, 3}, there exists a
cycle with chord wows in (P} UP), a contradiction. Thus dr(w;) <1
for each ¢ € {2,3}, and then dp,(w;) > 2 by Subclaim 1.1. By
Lemma 5, a chorded cycle exists in (P; U P), a contradiction. O

Since H is connected, we get a contradiction by Subclaims 1.1
and 1.2. Thus Claim 1 holds. g

Claim 2. We have dp, (v:) > 1.

Proof. Suppose dp, (v:) = 0. By the assumption (dp, (v1) < dp, (vt)),
we have dp, (v1) = 0. Then we may assume |P| =t > 3, otherwise,
we get a contradiction by Claim 1 and the connectedness of H. Recall
uus ¢ E(H). By Lemmas 11 (iii) and (iv), dg(vj) < 2 for each
j € {1,t}. If vyvy & E(H), then X = {uy,us,v1,v} is the desired
set. Thus viv, € E(H).

First suppose |P;| =t = 3. By Claim 1, H = (P, U P;). Since
vivy € E(H), consider Py = v9,v1,v3. Then vy can be regarded as
an endpoint of Pj. Since dp,(v1) = 0, we may assume dp, (v2) = 0
by considering vy instead of v1. Since Np, (P2) = 0, this contradicts
the connectedness of H.



Next suppose |Py| = t > 4. Recall ujus ¢ E(H) and viv; €
E(H). Consider Py = P, [v4—1,v1],v¢. Then v can be regarded
as an endpoint of Pj. Thus Ngp(v;—1) = 0 by Lemma 11 (iii), and
dp,(vi—1) < 2 by Lemma 11 (iv). Since dp, (v1) = 0, we may assume
dp, (vi—1) = 0 by considering v;_; instead of v1. Thus dg(vi—1) = 2.
Hence X = {u1, us, v1,v4—1} is the desired set, and Claim 2 holds. [

Now we consider the following three cases based on |Ps|.
Case 1. Suppose |P| =t = 1.

Then P, = v;. By Claim 1, H = (P, U P,). Since |H| > 15,
|P1| > 14. Recall dp,(v1) < 2 when t = 1. By Claim 2, dp, (v1) €
{1,2}. Note dH<’U1) = dp1 (1)1).

First suppose dp, (v1) = 2. Let u;,u; € Np, (v1) with ¢ < j. Note
i>2and j <s—1by Lemma 11 (i). If j = ¢+ 1, then H contains
a Hamiltonian path, a contradiction. Thus j > ¢ + 2. By Lemma 9,
dp(ug) = 2 for some £ € {i + 1,5 — 1}. Note wpur,upus ¢ E(H).
Then X = {u,up, us,v1} is the desired set.

Next suppose dp, (v1) = 1. Note dp, (u1) < 2. Assume uju; €
E(H) forsome 4 < i < s—1. By Lemma 6, dp, (uj—1) = 2. If vju;—; €
E(H), then vy, uj—1, P| [ui—1,u1], u;, P1[u;, us] is a Hamiltonian path,
a contradiction. Thus viu;—1 ¢ E(H) and dg(u;—1) = 2. Then
X = {u1,ui—1,us,v1} is the desired set. Thus if dp, (u1) = 2, then
uius € E(H). Then dp,(u;) = 2 for some 3 < i < 6 by Lemma 7.
Similarly, either dp, (us) = 1 or usus—o € E(H) by symmetry. Then
dp,(u;) = 2 for some s —5 < j < s —2 by Lemma 8. Note |P| =
s > 14. Since dp, (v1) = 1 by our assumption, viuy ¢ E(H) for some
¢ e {i,j}, and dg(ug) = 2. Thus X = {uy,us, us,v1} is the desired
set.

Case 2. Suppose |Po| =t € {2,3}.

By Claim 1, H = <P1 U P2>. Recall dpl({vl,vt}) <3, dpl (Ul) <
1, and dp, (v¢) < 2. We also note dp, ({v1,v:}) > 1 by Claim 2. Since
|H| > 15, |Py| = s > 12.

First suppose |Np, ({vi,v¢})| € {2,3}. Let us, u; € Np, ({vi,v:})



with ¢ < j. Assume j =i+ 1. Then H contains a longer path than
Py, a contradiction. Thus 7 > ¢+ 2. Notei > 2 and j < s—1
by Lemma 11 (i). By Lemma 9, dg(us) = 2 for some ¢ € {i +
1,7 — 1}. Note wpuy ¢ E(H) and wpus ¢ E(H). If dg(vi) < 2,
then X = {u1,ug,us,v1} is the desired set. Thus we may assume
that dg(vi) > 3. Since dp,(v1) < 1 and dp,(v1) < 2, we have
dp,(v1) = 1 and dp,(v1) = 2. Then ¢t = 3 and viv3 € E(H). Since
dp, (v1) < dp,(v¢) = dp, (v3) by the assumption, we have dp, (v3) > 1.
Thus (P; U P;) contains a cycle with chord vjvs, a contradiction.

Next suppose |Np, ({v1,v+})] = 1. Assume wju; € E(H) for
some 4 < i < s —1. By Lemma 6, dp,(u;—1) = 2. Let P| =
Pl [wi—1,u1], ui, Pi[ui,ug]. Then |P{| = |Pi| and u;—1 can be re-
garded as an endpoint of P{. By Lemma 11 (i), dp,(u;—1) = 0. Then
dH(ui_l) = dpl (ui_l) =2. If dH<’l)1) S 2, then X = {ul,ui_l,us,vl}
is the desired set. Thus we may assume that dg(vi) > 3. Then
dp,(v1) =1, and dp,(v1) = 2, that is, t = 3 and viv3 € E(H). Also,
dp,(v3) > 1. Thus (P U P,) contains a cycle with chord vjvs, a
contradiction. Hence, either dp,(u1) = 1 or wjus € E(H). Then
dp,(u;) = 2 for some 3 < ¢ < 6 by Lemma 7. Similarly, either
dp,(us) = 1 or usus—o € E(H) by symmetry. Then dp, (uj) = 2
for some s —5 < j < s —2 by Lemma 8. Since |[Np, ({v1,v:})| =1
by our assumption, uy ¢ Np, ({v1,v:}) for some ¢ € {i,j}. Sup-
pose t = 2. Then dg(vi) < 2 and dy(u¢) = dp,(u¢) = 2. Thus
X = {u1,ug, us,v1} is the desired set. Hence ¢t = 3. If vjv3 & E(H),
then dg(v1) < 2 and dg(vs) < 2. Thus X = {uj,us,vi,v3} is
the desired set. Hence we may assume that vivs € F(H). Note
dp, (v1) < 1. Suppose dp, (v1) = 1. Since dp, (v3) > 1, (P; U P2) con-
tains a cycle with chord vjvs, a contradiction. Suppose dp, (v1) = 0.
Then dg(vi) = 2. If dg(ug) = 2, then X = {u1,up, us,v1} is the de-
sired set. Thus we may assume that dg(ug) > 3. Then uyvy € E(H).
Since dp,(v3) > 1, (Py U P,) contains a cycle with chord wvavs, a

contradiction.
Case 3. Suppose |P| =t > 4.

Recall dp, (v1) <1 and dp, (v¢) < 2. We consider two subcases as
follows.



Subcase 1. Suppose dp, (v1) = 1.

By Claim 2, dp, (v¢) > 1. Then dp,(v1) = dp,(v¢) = 1, otherwise,
there exists a cycle in (P} U P5) with chord adjacent to v; or v, a
contradiction. Thus dg(v1) = 2 by Lemma 11 (iii). If dp, (v;) = 1,
then dp(v¢) = 2 by Lemma 11 (iii). Then X = {uj,us,v1,v} is
the desired set. Thus dp, (v;) = 2. Let u;,u; € Np, (v) with i < j.
Consider the vertex v;_1. If dg(vi—1) = 2, then X = {u,us,v1,v-1}
is the desired set. Thus dg(vi—1) > 3. If dp,(vi—1) > 3, then there
exists a cycle in (P;UP,) with chord adjacent to v;_1, a contradiction.
Thus dp,(vi—1) = 2, and then Np, (v;—1) # 0 or Nr(vi—1) # 0.

First suppose Np (vi—1) # 0. If v; or v;—1 has a neighbor in
Pilur,u;] U Prluj, ug), then there exist three parallel edges between
Py and P», and by Lemma 3, a chorded cycle exists in (P, U P»), a
contradiction. Thus Np, (4, ;) (ve) # 0 for each £ € {1,¢ —1}. Then
we again have three parallel edges or three crossing edges, and by
Lemma 3, a chorded cycle exists in (P} U P), a contradiction.

Next suppose Np(vi—1) # 0. Let w € Nr(vi—1). If dy(w) < 2,
then X = {ui,us,v1,w} is the desired set. Thus dy(w) > 3. Then
dp, (w) < 1, otherwise, since dp, (v;) = 2, there exists a chorded cycle
in (P UP,) by Lemma 5, a contradiction. Since P, is a longest path
in H— P;, Ng(w) = (. Thus dp,(w) =1 and dp,(w) = 2. Let u, €
Np,(v1) and uq € Np, (w). Without loss of generality, we may assume
p < q. By Lemma 11 (iii), wv;,wv; ¢ E(H). Thus wv, € E(H) for
some 2 < ¢ <t —2. Then w,vi—1, Py [v¢—1, 1], up, P1up, ugl,w is a
cycle with chord wwvy, a contradiction.

Subcase 2. Suppose dp, (vi) = 0.

Suppose viv; € E(H). Then note di(v1) = 2. Now we consider
the path Pj = P, [v;—1,v1],v. Then v can be regarded as an
endpoint of Pj. Since dp, (v1) = 0 by the assumption, we may assume
dp, (vi—1) = 0 by considering v;_; instead of v1. Thus dg(vi—1) = 2.
Recall ujus ¢ E(H). Then X = {uj,us,v1,v4—1} is the desired set.
Thus vivy &€ E(H). If dg(vy) < 2, then X = {u1,us,v1,v:} is the
desired set. Thus dy(v¢) > 3. By Lemma 11 (iii), (iv), and (v), we
have dp(v;) < 4 and dp, (v) € {1,2}.



First suppose dp, (v¢) = 2. Let u;, uj € Np, (v) with ¢ < j. Note
i>2and j < s—1byLemma 11 (i), and |P1| > |P2| > 4. If j = i+1,
then there exists a longer path than P;, a contradiction. Thus j >
i+ 2. Therefore, |Pi| > 5. If dy(us) = 2 for some ¢ € {i+ 1,5 — 1},
then X = {uy,up, us,v1} is the desired set. Thus dg(ug) > 3 for each
¢e{i+1,7—1}. By Lemma 9, we may assume H # (P} U P»). Now
we claim Np(ug) # 0 for some ¢ € {i + 1,5 — 1}. Assume not. Note
Np,(ug) = 0 since P is a longest path in H. Since H does not contain
a chorded cycle, there exist edges u;+1up with A > j and u;_juy with
n < 4. Then P1 [uh/, ui],vt, Uyj, P1 [U,j, uh], Ui41, P1 [ui_H, Uj_l], Up! is a
cycle with chord wju;41 (and wu;_1u;), a contradiction. Thus the
claim holds. If j > i + 3, then we may assume ¢ = j — 1, that is,
Ng(uj—1) # 0, otherwise, consider P~ [us,u]. Let w1 € Ng(uj—1),
and let P3 = wi,...,w, (p > 1) be a longest path starting from wy in
R. If dg(wp) < 2, then X = {u1, us,vi,wp} is the desired set. Thus
di(wp) > 3. If Np,(w) # 0 for some w € V(Ps3), that is, vy € Np,(w)
for some 1 < ¢ <'t, then

Prluy, uj—1], wi, Ps[wy, w], vg, Po[ve, ve], uj, Py uj, us]

is a longer path than Pj, a contradiction. Thus Np,(w) = ( for
any w € V(P3). Since P3 is a longest path starting from w; in R,
Ngr_p,(wp) = 0. Suppose |P3| = p = 1. Since Np(wi) = 0 and
dp(wp) > 3, dp,(w1) > 3. This contradicts Lemma 11 (v). Suppose
|P3| = p=2. Then dy(wz) > 3, and by Lemma 11 (v), dp, (w2) = 2.
If up € Np, (w2) for some j < ¢ <s, then

Pilug, uj—1], wi, P3[wy, wal, ue, Py [ug, ujl, ve, u;

is a cycle with chord wj_juj, a contradiction. Thus ug, up € Np, (w2)
for some 1 </ < (' < j — 1. Then Pl[ue,Uj_l],wl,Pg[wl,wg],w is a
cycle with chord wyuy, a contradiction. Suppose |Ps| = p > 3. Then
dpy(wp) < 2. Assume dp,(wp) = 2. Since dp, (wp,) > 1, there exists a
cycle in (P, U P3) with chord adjacent to w,, a contradiction. Thus
dp,(wp) = 1, and dp,(wp) = 2. Then we have a chorded cycle in
(P1 U P3) as in the case where | P3| = 2 by considering w,, instead of
wo, a contradiction.

Next suppose dp, (v;) = 1. Let u; € Np, (v;) with 1 <7 < s. Note
i ¢ {1,s} by Lemma 11 (i). Since dg(v;) > 3, dp,(v;) = 2 by Lemmas



11 (iii) and (iv). Let vy € Np,(v¢) with £ < t—2. Now we consider the
path Pj = P[vi,ve), vg, Py [0, ve41]. Then vpy; can be regarded as
an endpoint of Pj. Since dp, (v;) = 1, we may assume dp, (ve41) = 1.
Let uj € Np, (ve41) with 1 < j <s. Note j € {1, s} by Lemma 11 (i).
Then we may assume j < i, otherwise, consider P~ [ug, u1]. Suppose
¢ =t — 2, that is, vyv,—2 € E(H). Then Piluj,w;), v, vi—2, 041,
is a cycle with chord v;_qv;, a contradiction. Thus ¢ < ¢t — 3. If
j =1 — 1, then there exists a longer path than P, a contradiction.

Suppose j =i. Recall vy € E(H) with £ <t —3. Ilf dg(v—1) =
2, then X = {uy,us,v1,v¢—1} is the desired set. Thus dg(ve—1) > 3.
Assume uj € Np, (v;—1) for some 1 < j < 's. We may assume j < i,
otherwise, consider P~ [ug,u1]. Then Pi[uj,w;], v, Palve, ve—1], uj is
a cycle with chord v;_1v;, a contradiction. Assume vy € Np,(vi—1)
for some ¢/ <t —3. Since vvp € E(H), we may assume ¢’ < £. Then
Pyvgr, vgl, v, wiy Palvgyr, vi—1], v is a cycle with chord vpvpy; (and
vi—1vt), a contradiction. Assume Np(vi—1) # 0. Let w € Ng(vi—1).
Now we consider the path Pj = Ps[v1,vi—1],w. Then w can be
regarded as an endpoint of Pj. Since dp, (v;) = 1, we may assume
dp,(w) = 1. Let u; € Np, (w) for some 1 < j < s. We may assume
Jj < i. Then Plvg,vi—1],w, Piuj, us), ve,ve is a cycle with chord
v;_10¢, a contradiction.

Suppose j < i — 2. If dy(up) = 2 for some h € {j + 1,i — 1},
then X = {u1,up, us,v1} is the desired set. Thus dg(up) > 3 for
each h € {j + 1,4 — 1}. Now we claim Ng(up) # 0 for some
h € {j+1,i—1}. Assume not. Note Np,(up) = 0, since P, is a
longest path in H. Since H does not contain a chorded cycle, there
exist edges uji1upy with m > 4 and w;_1u,, with m’ < j. Then
Pl [um/, uj], Vo41, P2 [Ug+1, Ut], (7 P1 [ui, um], Uj41, Pl [uj_H, ui_l], Um! is
a cycle with chord wjuj11 (and w;—qu;), a contradiction. Thus the
claim holds. We also note that if j < ¢ — 3, then we may assume
Npr(u;—1) # 0, otherwise, consider P~ [us,u1]. Let wy € Ng(u;—1),
and let P3 = wi,...,wy, (p > 1) be a longest path in R. Then, as in
the above case where dp, (v;) = 2, there exists a chorded cycle in H,
a contradiction. O

Lemma 13 ([11]). Let k > 2 be an integer, and let G be a graph.
Suppose G does not contain k vertex-disjoint chorded cycles. Let



¢ ={C1,...,Cx_1} be a minimal set of k—1 vertex-disjoint chorded
cycles in G, and let H = G — € and X C V(H) with |X| = 4.
Suppose H contains a Hamiltonian path. Then dc,(X) < 12 for
each 1 <i<k-—1.

4 Proof of Theorem 4

Suppose GG does not contain a chorded cycle.

Claim 1. G is connected.

Proof. Suppose not, then comp(G) > 2. Let G1,Ga, ..., Geomp(a) be
the components of G.

First suppose comp(G) > 4. By Theorem 1, there exists z; €
V(G;) for each 1 <14 <4 such that dg,(z;) < 2. Let
X ={z1,x9,23,24}. Then X is an independent set with dg(X) < 8.
This contradicts the o4(G) condition.

Next suppose comp(G) = 3. Let |G1| > |G2| > |G3]. Since |G| >
15 by the assumption, we have |G1| > 5. If G is complete, then G,
contains a chorded cycle. Thus we may assume (G is not complete.
By Theorem 2, there exist non-adjacent xo,z1 € V(G1) such that
de, ({zo,x1}) < 4. Also, by Theorem 1, there exists x; € V(G;) for
each i € {2,3} such that dg,(z;) < 2. Then X = {xg, 21, 22,23} is
an independent set with dg(X) < 8, a contradiction.

Finally, suppose comp(G) = 2. Let |G1| > |G2|. Since |G| > 15,
|G1]| > 8. By Theorem 3 (Remark 1), G contains an independent set
Xy of three vertices with dg, (Xo) < 6. Also, by Theorem 1, there
exists © € V(Gy) such that dg,(z) < 2. Then X = Xy U {z} is an
independent set with dg(X) < 8, a contradiction. O

Let P, = uy,...,us be a longest path in G. Note s > 3, since
|G| > 15 and G is connected by Claim 1.

Claim 2. G contains a Hamiltonian path.

Proof. Suppose not, then P; is not a Hamiltonian path in G, and
V(G- P) #0. Let P, = vy,...,v: (t > 1) be a longest path in



G — Py such that dp, (v1) < dp,(v;). By Lemma 12, there exists an
independent set X of four vertices in G such that dg(X) < 8. This
contradicts the 04(G) condition. O

Since |G| > 15, by Claim 2 and Lemma 10, there exists an inde-
pendent set X of four vertices in G such that dg(X) < 8, a contra-
diction. This completes the proof of Theorem 4. O

5 Proof of Theorem 5

By Theorem 4, we may assume k > 2. Suppose Theorem 5 does
not hold. Let G be an edge-maximal counter-example. If G is com-
plete, then G contains k vertex-disjoint chorded cycles. Thus we may
assume G is not complete. Let zy ¢ FE(G) for some z,y € V(G), and
define G’ = G+uxy, the graph obtained from G by adding the edge zy.
By the edge-maximality of G, G’ is not a counter-example. Thus G’
contains k vertex-disjoint chorded cycles C1, ..., Cy. Without loss of
generality, we may assume xy & Uf;llE (C;), that is, G contains k—1
vertex-disjoint chorded cycles. Over all sets of k — 1 vertex-disjoint
chorded cycles, choose C1,...,Cr_1 with € = Uf;llCl-, H=G-¢,
and with P; a longest path in H, such that:

(A1) |%] is as small as possible,
(A2) subject to (Al), comp(H) is as small as possible, and
(A3) subject to (A1) and (A2), |P1] is as large as possible.

We may also assume H does not contain a chorded cycle, other-
wise, G contains k vertex-disjoint chorded cycles, a contradiction.

Claim 1. H has an order at least 18.

Proof. Suppose to the contrary that |H| < 17. Next suppose |C;| <
11 for each 1 < ¢ < k — 1. Since |G| > 11k + 7 by assumption, it
follows that |[H| > (11k+7) —11(k — 1) = 18, a contradiction. Thus
|C;| > 12 for some 1 < i < k— 1. Without loss of generality, we may
assume (] is a longest cycle in . Then |C1| > 12. By Lemma 1, C}



contains at most two chords, and if Cq has two chords, then these
chords must be crossing. For integers t and r, let |C1| = 4t +r, where
t>3and 0 <r <3.

Subclaim 1.1. Let t > 3 be an integer. The cycle Cy contains t
vertex-disjoint sets X1, ..., X¢ of four independent vertices each in
G such that de, (UL_, X;) < 8t + 4.

Proof. For any 4t vertices of (', their degree sum in C is at most
4t x 2 4+ 4 = 8t + 4, since (7 has at most two chords. Thus it
only remains to show that C; contains ¢ vertex-disjoint sets of four
independent vertices each. Recall |C| = 4¢t+r > 4¢. Start anywhere
on (' and label the first 4t vertices of C'y with labels 1 through ¢ in
order, starting over again with 1 after using label ¢t. If r > 1, then
label the remaining r vertices of Cy with the labels ¢t +1,...,¢t 4+ r.
(See Fig.2.) The labeling above yields t vertex-disjoint sets of four
vertices each, where all the vertices labeled with 1 are one set, all
the vertices labeled with 2 are another set, and so on. Given this
labeling, since t > 3, any vertex in Cj has a different label than
the vertex that precedes it on C and the vertex that succeeds it on
C1. Let Cy be the cycle obtained from C; by removing all chords.
Then the vertices in each of the sets are independent in Cy. Thus
the only way vertices in the same set are not independent in ] is if
the endpoints of a chord of C'y were given the same label. Note any
vertex labeled ¢ is distance at least 3 in Cy from any other vertex
labeled 7. Thus even if we exchange the label of x in Cy for the one
of x= (or x1), the vertices in each of the resulting ¢ sets are still
independent in Cj.

Case 1. No chord of C has endpoints with the same label.

Then there exist ¢ vertex-disjoint sets of four independent vertices
each in Cf.

Case 2. Exactly one chord of (' has endpoints with the same label.

Recall C; contains at most two chords, and if C7 contains two
chords, then these chords must be crossing. Since |Ci| > 12, even
if C7 has two chords, each chord has an endpoint x such that there



Fig. 2. An example when t =3 and r = 2.

exists a vertex 2/ € {27, 2"} which is not an endpoint of the other
chord. Choose such an endpoint z of the chord whose endpoints were
assigned the same label, and exchange the label of z for the one of
2’. The vertices in each of the resulting ¢ sets are independent in C1,
and now no chord of C] has endpoints with the same label. Thus
there exist t vertex-disjoint sets of four independent vertices each in
Ch.

Case 3. Two chords of C each have endpoints with the same label.

Then the two chords are crossing. Since endpoints of a chord
have the same label in this case, recall these endpoints have distance
at least 3. First suppose there exists an endpoint x of one chord of
(7 which is adjacent to an endpoint y (= ™) of the other chord on
Cy. (See Fig.3(a).) Now we exchange the label of = for the one of
y. Then no chord of C7 has endpoints with the same label, and the
vertices in each of the resulting ¢ sets are independent in Cj. Thus
there exist t vertex-disjoint sets of four independent vertices each in

Ch.

Next suppose no endpoint of one chord of C] is adjacent to an
endpoint of the other chord on Cj. (See Fig.3(b).) Let z1z2, y1y2
be the two distinct chords of C';. Since the two chords are crossing,
without loss of generality, we may assume x1,y1,Z2,yo are in that
order on C7. Now we exchange the labels of x; and azf, and next the



ones of y and y, . Then no chord of C; has endpoints with the same
label, and the vertices in each of the resulting ¢ sets are independent
in C7. Thus there exist t vertex-disjoint sets of four independent

vertices each in C. l
203 2]
.
3

(a)

Fig. 3. Examples: (a) — the labels of z and y
are 2 and 3, (b) — the labels of 21 and y2 are 2
and 1. ([¢] means ¢ is a new label for a vertex
after the exchange.)

Since |C1| > 12, d¢y(v) < 2 for any v € V(H) by Lemma 2
and (Al). Thus since |H| < 17 by our assumption, it follows that
|E(H,C1)| < 34. Let 2 = U!_;X; be as in Subclaim 1.1. By the
04(G) condition, dg(Z") > t(12k — 3). Suppose k = 2. Then ¢ has
only one cycle C;. Since k =2 and t > 3, |E(Cy,H)| > dy(Z) >
t(12k — 3) — (8t +4) = 13t — 4 > 35, a contradiction. Thus k& > 3.
Then we have

|E(Z,¢ = C1)| =da(Z) —dey, (Z) —du(Z)
>t(12k—3) — (8t +4) — 34
= 12kt — 11t — 38,
and since t > 3,
12kt — 11t — 38 = 12t(k — 1)+t — 38 > 12t(k — 1) — 35

> 12t(k — 1) — 12t
= 12t(k — 2).



Thus |E(Z",C")| > 12t for some C’ in ¢ — C}, since € — C; contains
k — 2 vertex-disjoint chorded cycles. Let h = max{dc/(v)|lv € Z"}.
Let v* be a vertex of 2" such that de/(v*) = h. Since |E(2,C")| >
12t, if h < 3, then |E(27,C")| < 3 x 4t = 12t, a contradiction. Thus
we may assume h > 4. By the maximality of C1, |C'| < |C1] = 4t+7.
It follows that h = de/(v*) < |C'] < 4t + r. Recall t > 3 and
0 <r <3. Then

IB(2 — {v*},C")] > (12t + 1) — der(v*) > (12t + 1) — (48 + 1)
—8t—r+1>22 (1)

Since h = der(v*) > 4, let vy, v2,v3,v4 be neighbors of v* in that
order on C’. Note that vy, vs,v3,v4 partition C’ into four inter-
vals C'[vj,vi41) for each 1 < i < 4, where v5 = v1. By (1), there
exist at least 22 edges from C; — v* to C’. Thus some interval
C'[vi,viy1) contains at least six of these edges. Without loss of gen-
erality, we may assume this interval is C'[vg,v1). Then by Lemma 4,
((Ch —v*)UC’'[vg,v1)) contains a chorded cycle not containing at
least one vertex of

<(Cl — U*) U Cl[’l)4,v1)> .

Also, v*,C'[v1,v3],v* is a cycle with chord v*vy, and it uses no
vertices from C’[vg,v1). Thus we have two shorter vertex-disjoint
chorded cycles in (C; UC”), contradicting (Al). Hence Claim 1
holds. O

Claim 2. H is connected.

Proof. Suppose not, then comp(H) > 2. Let Hy, Ha, ..., Heomp(m)
be the components of H. First we prove the following subclaim.

Subclaim 2.1. Suppose X is an independent set of four vertices
in H such that dg(X) < 8. Then there exists some C in € such
that the degree sequences from four vertices of X to C' are (4,4,4,1),
(4,4,3,2) or (4,3,3,3). Furthermore, then |C| = 4.

Proof. By the 04(G) condition, d¢(X) > (12k—3) —8 =12k — 11 >
12(k — 1). Thus there exists some C in % such that do(X) > 13.



By Lemma 2, do(z) < 4 for any € X. Now we consider degree
sequences defined in Section 1 (Introduction) from four vertices of X
to C. Recall that when we write (d1,ds, ds, ds), we assume dg(z;) =
d; for each 1 < j < 4, since it is sufficient to consider the case of
equality. It follows that the degree sequences from four vertices of
X to C are (4,4,4,1), (4,4,3,2) or (4,3,3,3). Since each degree
sequence contains a vertex with degree 4 in C, we have |C| = 4 by
Lemma 2. Thus the subclaim holds. O

Now we consider the following three cases based on comp(H).
Case 1. Suppose comp(H) > 4.

By Theorem 1, there exists z; € V(H;) for each 1 < i < 4 such
that dp,(z;) < 2. Let X = {x1,22,23,24}. Then X is an indepen-
dent set and dy(X) < 8. By Subclaim 2.1, the degree sequences
from four vertices of X to some C' in ¢ are (4,4,4,1), (4,4,3,2) or
(4,3,3,3) and |C| = 4. Let C' = vy, v2,v3,v4,v;. Without loss of
generality, we may assume do(z1) > do(x2) > do(zs) > do(zg).
Then do(x1) = 4. Since |C| = 4, for each degree sequence, 2, 3, T4
must all have a common neighbor in C, say v;. Since d¢(z1) = 4,
C" = x1,v92,v3,v4, 71 is a 4-cycle with chord xzjv3. If 1 is not a
cut-vertex of Hy, then H; — z1 is connected. Replacing C in € by
C’, we consider the new H'. Then comp(H') < comp(H) — 2. This
contradicts (A2). Thus we may assume z is a cut-vertex of Hj.
Since dp, (x1) < 2, dg,(x1) = 2. Thus comp(H; — 1) = 2, and
comp(H') < comp(H) — 1 for the new H’'. This contradicts (A2).

Case 2. Suppose comp(H) = 3.

Without loss of generality, we may assume |H| > |Hs| > |Hs|.
Since |H| > 18 by Claim 1, we have |Hi| > 6. Let P = uq,...,us
be a longest path in H;. Note s > 3. By Theorem 1, there exists
x; € V(Hj) for each j € {2,3} such that dy,(z;) < 2.

First suppose ujus € E(G). Then Pjug, us],u; is a Hamiltonian
cycle in Hj, otherwise, since H; is connected, there exists a longer
path than P;, a contradiction. Since Hi does not contain a chorded
cycle, we have uyug ¢ E(Hy). Note dg, (u;) = 2 for each i € {1,3}.



Let X = {u1,us, 2, x3}. Then X is an independent set and dg (X) <
8. By Subclaim 2.1, the degree sequences from four vertices of X to
some C in € are (4,4,4,1), (4,4,3,2) or (4,3,3,3) and |C| = 4.
Let C' = vy, v9,v3,v4,v1. Without loss of generality, we may assume
do(u1) > do(usg). Then deo(ur) > 3 and Neo(uz)NNe(z2) NNe(x3) #
() by the degree sequences. Without loss of generality, we may assume
v1 € Ne(us) N Neo(x2) N Ne(zs). Suppose do(uy) = 4. Then C' =
u1, V2, v3,V4,u1 is a 4-cycle with chord ujvs. Since H; contains a
Hamiltonian cycle, uq is not a cut-vertex of Hy. Thus Hy — uj is
connected. Replacing C' in ¢ by C’, we consider the new H’. Then
comp(H') < comp(H) —2 =3 —2 = 1. This contradicts (A2). Thus
dco(u1) = 3 since do(up) > 3. Then the degree sequence is (4,4, 3,2)
or (4,3,3,3).

In either case, it suffices to consider do(u1) = 3, do(us) = 2
and dc(x2) = 3 and deo(x3) = 4. Without loss of generality, we may
assume vj € No(uyp) for each 1 < j < 3. If vy € Ne(z2) N Ne(z3)
then C’ = wy,vy,v9,v3,u1 is a 4-cycle with chord ujvs. Further,
replacing C' with C’ we again reduce the number of components
in H, a contradiction. Thus, we may asssume N¢(ui) = Ng(x2).
ALso, note that C has a chord. Suppose vivs € E(G). Then C' =
u1,v1,v4,v3,u;1 is a 4-cycle with chord vjvs. Since do(x3) = 4, v4 €
N¢(z3). Thus, we can again reduce the number of components in H,
a contradiction. A similar argument applies if vovy € E(G).

Next suppose ujus ¢ E(G). Let X = {uy,us,x2,23}. Since Hj
does not contain a chorded cycle, dg, (u;) < 2 for each i € {1,s}.
Then X is an independent set and dy(X) < 8. Replacing ug by us
in the above case where ujugs € E(G), we get a similar contradiction.

Case 3. Suppose comp(H) = 2.

Let |Hy| > |Ha|. Since |H| > 18 by Claim 1, |Hi| > 9. Let
Py =wuq,...,us be alongest path in H;. Note s > 3. By Theorem 1,
there exists zo € V(Hz) such that dp,(x2) < 2.

First suppose ujus € E(Hp). Note Py [uq, us), u1 is a Hamiltonian
cycle in Hy. Then Xy = {uj,us,us} is an independent set and
d, (Xo) = 6, and X = XoU{x2} is an independent set and dg(X) <
8. By Subclaim 2.1, the degree sequences from four vertices of X to



some C' in € are (4,4,4,1), (4,4,3,2) or (4,3,3,3), and |C| = 4. Let
C = vy, v9,v3,v4,v1. Since Xy is on the Hamiltonian cycle, we may
assume do(u1) = max{dc(u) |u € {u1,us,us}}. Then de(ui) > 3 by
the degree sequences. Suppose d¢(u1) = 4. Since N¢(ug)NNe(x2) #
() by the degree sequences, without loss of generality, we may assume
vy € Ne(uz) N Ne(ze). Since do(uy) = 4, v; € Neo(up) for each
1 <i<3. Then C' = uy,v1,v9,v3,u; is a 4-cycle with chord ujvs.
Since H; contains a Hamiltonian cycle, u; is not a cut-vertex of Hj.
Thus Hy — uq is connected. Replacing C' in € by C’, we consider
the new H’. Then comp(H') < comp(H) — 1 =2—1 =1 for the
new H'. This contradicts (A2). Now suppose dc(u1) = 3. Then by
the maximality of do(u1), we have only to consider the case where
do(u;) = 3 foreachi € {1,3,5}, and do(z2) = 4. Let v; € No(uq) for
each 1 < i < 3. Then we may assume N¢(u1) = Neo(us) = Ne(us),
otherwise, we get a contradiction by the same arguments as the case
where dco(u1) = 4. Note C has a chord. Suppose vivs € E(G). Then
C' = uy,v1,v4,v3,u; is a 4-cycle with chord vyvs. Since de(z2) = 4,
ve € Ne(u3) N No(x2). Then comp(H') < comp(H) —1=2—-1=
1 for the new H’, a contradiction. Suppose vavy € E(G). Then
C' = uy,v1,v4,v2,u1 is a 4-cycle with chord vve. Since de(z2) = 4,
v3 € No(us) N Ne(z2). Then comp(H') < comp(H) —1=2-1=1
for the new H’, a contradiction.

Next suppose ujus € E(Hy). Without loss of generality, we may
assume do(u1) > do(us). Assume P; is a Hamiltonian path in Hj.
Note s > 9 since |Hi| > 9. Since P; is a Hamiltonian path in Hj,
note dp, (u) = dg, (u) for any v € V(P;). We also note dp, (u;) < 2
for each ¢ € {1,s}. Suppose dp, (u1) = 1. By Lemma 7, dg, (u;) = 2
for some 3 < i < 5. Since s > 9, Xo = {u,u;, us} is an independent
set and dp, (Xp) < 6. Thus X = XoU{z2} is an independent set and
di(X) < 8. Then we get a contradiction by the same arguments as
the case where ujus € E(G). Next suppose dp, (u;) = 2. Now assume
ujuz € E(Hp). By Lemma 7, dg, (u;) = 2 for some 4 < i < 6. Since
s > 9, Xo = {u1,u;,us} is an independent set and dm, (Xp) < 6,
and we get a contradiction by considering X = Xy U {z2} similar to
the case where ujus € E(Hy). Thus ujug ¢ E(Hy), that is, uju; €
E(H;) for some 4 < i < s—1. By Lemma 6, dg, (uj—1) = 2. Since
s> 9, Xo = {u1,u;—1,us} is an independent set and dg, (Xo) < 6,



and we get a contradiction by considering X = Xy U {z2}.

Assume P; is not a Hamiltonian path in Hy. Then V(H; —
Py) # 0. Let P, = vy,...,v:(t > 1) be a longest path in H; — P;.
Without loss of generality, we may assume dp, (vi) < dg, (ve). If
uius € E(Hy), then since there exists a longer path than P;, we may
assume ujus ¢ F(Hp). Also we may assume dp, (v1) < 2, otherwise,
since dp, (v;) > 1 for each i € {1,¢} by Lemma 11 (iii) and (iv), there
exists a cycle in (P U Py) with chord adjacent to vy, a contradiction.
Thus Xo = {u1,us,v1} is an independent set and dg, (Xo) < 6.
Then X = Xy U {x2} is an independent set and dy(X) < 8. By
Subclaim 2.1, the degree sequences from four vertices of X to some
C in € are (4,4,4,1), (4,4,3,2) or (4,3,3,3), and |C| = 4. Let
C = wy,ws,ws, wy,w;. Since do(uy) > do(us) by our assumption,
dc(u1) > 3 by the degree sequences. First suppose do(u1) = 4.
Since N¢(v1) N N (z2) # 0 by the degree sequences, without loss of
generality, we may assume wy € N¢(v1) N Ng(x2). Since do(u1) = 4,
w; € Ng(uy) for each 1 < ¢ < 3. Then C' = g, wy, we, w3, uy is
a 4-cycle with chord wjws. Since u; is an endpoint of the longest
path P;, uy is not a cut-vertex of Hy. Thus H; — uy is connected.
Then comp(H') < comp(H) —1 =2—1 =1 for the new H'. This
contradicts (A2). Suppose do(u1) = 3. Then we may assume the
degree sequence is (4,4,3,2) or (4,3,3,3).

Then it suffices to assume that do(u1) = 3, do(us) = 2, and
{dc(v),dc(z2)} = {3,4}. Without loss of generality, we may as-
sume w; € Ne(up) for each 1 < ¢ < 3. Suppose do(vi) = 3 and
do(x2) = 4. Then we may assume Ng(ui;) = Ng(vp), otherwise,
we get a contradiction by the same arguments as the case where
dc(u1) = 4. Note that C has a chord. Suppose wiws € E(G). Then
C' = uy, w1, wy, w3, uy is a 4-cycle with chord wyws. Since de(x2) =
4, wy € Ne(v1)NNg(z2). Then comp(H') < comp(H)—1=2-1=1
for the new H’, a contradiction. Suppose wowy € E(G). Then C' =
up, Wy, wye, wa,up is a 4-cycle with chord wyws. Since do(x2) = 4,
w3 € No(v1) N Ne(z2). Then comp(H') < comp(H)—1=2-1=1
for the new H’, a contradiction. If do(vy) =4 and de(x2) = 3, then
we get a contradiction in a similar manner.

O



Claim 3. H contains a Hamiltonian path.

Proof. Suppose not, and let P, = wuy,...,us be a longest path in
H. Note s > 3 since |H| > 18 and H is connected by Claim 2.
Let P» = vy,...,v; (t > 1) be a longest path in G — P; such that
dp,(v1) < dp,(vt). By Lemma 12, there exists an independent set
X of four vertices in H such that {uj,us,v1} € X and dy(X) < 8.
Then the degree sequences from four vertices of X to some C in
¢ are (4,4,4,1), (4,4,3,2) or (4,3,3,3), and |C| = 4. Let C =
T1,T2,x3, T4, 1. We may assume ujus ¢ FE(H), otherwise, a path
longer than P; exists, a contradiction. Without loss of generality,
we may assume do(u1) > do(us). By the degree sequences, we have
dc(ul) > 3.

Suppose dco(u1) = 4. Since Ne(us) N Neo(v1) # 0 by the degree
sequences, without loss of generality, we may assume x4 € No(us) N
N¢(v1). Since do(u1) = 4, x; € Neo(uq) for each 1 < i < 3. Then
C" = uy,x1,29,23,u1 is a 4-cycle with chord ujzs. Since up is an
endpoint of the longest path P;, uy is not a cut-vertex of H. Thus
H — uy is connected. Replacing C' in ¢ by C’, we consider the new
H'. Then Py[ug, us|, x4, Po[v1,vs] is a longer path than Py in H'. This
contradicts (A3).

Suppose dc(u1) = 3. Then we may assume the degree sequence is
(4,4,3,2) or (4, 3,3,3). First assume the degree sequence is (4, 4, 3, 2).
Since dco(u1) > deo(us), we have do(u1) = 3, do(us) = 2 and
dco(v1) = 4. Without loss of generality, we may assume x; € N¢(u1)
for each 1 < ¢ < 3. Then C' = wuy,x1, 29, x3,u1 is a 4-cycle with
chord ujxs. Note up is not a cut-vertex of H. If x4 € Ne(us),
then since d¢(v1) = 4, there exists a longer path than P; in the new
H', a contradiction. Thus we may assume x4 € No(us). Note C
has a chord. Suppose z1z3 € E(G). Assume z3 € Nc(us). Then
C' =y, x3, 24,71, u1 is a 4-cycle with chord zj23. Since de(v1) = 4,
zo € N (us) N Neo(v1), and there exists a longer path than Pj in the
new H', a contradiction. Thus zo ¢ N¢(us). Since do(us) = 2,
x1,23 € Ng(us). Then C' = wug,x3,24,21,us is a 4-cycle with
chord zjz3. Note ug is not a cut-vertex of H. Since dg(vy) = 4,
x2 € Neo(u1) N Ne(vi). Then Py [us—1,u1], z2, Po[vr, v¢] is a longer
path than P; in the new H', a contradiction. Suppose zox4 € E(G).



Assume x3 € Ng(us). Then C' = uq,x1, 24, 2, u1 is a 4-cycle with
chord zjzy. Since dc(vi) = 4, z3 € No(us) N No(vi). Then there
exists a longer path than P; in the new H’, a contradiction. Thus
x3 & No(us). By symmetry, 21 € No(us). Thus deo(us) < 1. This
contradicts do(us) = 2.

Next assume the degree sequence is (4,3,3,3). In this case, we
have only to consider the degree sequence (3,3,3) for {uj,us,v;}..
Then dc(ui) = de(us) = do(vi) = 3. Thus |Neo(us) N Ne(v1)] > 2.
Let z; € Ngo(up) for each 1 < ¢ < 3. Suppose x123 € E(G). If
z; € No(us) N Neo(vy) for some ¢ € {2,4}, then there exists a longer
path than Pj, a contradiction. Thus z1,23 € Neg(us) N Neo(v).
Suppose x4 € No(us) and 9 € No(v1). Then C' = ug, x4, 21, 3, Us
is a 4-cycle with chord z3z4, and Py [us—1,u1], x2, P2[v1, v is a longer
path than P; in the new H’, a contradiction. Suppose zo € N (usg)
and x4 € Ng(vi). Let w € X — {uj,us,v1}. Then deo(w) = 4 by
our assumption of the degree sequence (3,3,3). Assume w € V(Py).
Then Pj[uy,us|, z2,u1 is a cycle with chord wze, and vy, 21, x4, 3, v1
is the other cycle with chord x;x3. Thus we have two distinct chorded
cycles in (H U C), and G contains k vertex-disjoint chorded cycles,
a contradiction. Assume w ¢ V(P;). Then C' = ug, x3, 14,21, us
is a 4-cycle with chord ziz3. Since do(w) = 4, w,x9, Pi{u1, us—1]
is a longer path than P; in the new H’, a contradiction. Suppose
zoxy € F(G). Note |No(us) N Ne(vy)| > 2. If z; € No(us) N Ne(v1)
for some i € {1,3,4}, then there exists a longer path than Pj, a
contradiction. Thus |N¢(us) N Neo(v1)| < 1, a contradiction. O

By Claims 1, 3 and Lemma 10, H contains an independent set X
of four vertices such that dg(X) < 8. By Claim 3 and Lemma 13,

dg(X) = d%ﬂ(X) —|—dH(X) < 12(]{2 — 1) + 8 =12k — 4.

This contradicts the o4(G) condition. This completes the proof of
Theorem 5. 0
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