
On Vertex-Disjoint Chorded Cycles

and Degree Sum Conditions

Ronald J. Gould
Dept. of Mathematics

Emory University

Atlanta, GA 30322

rg@emory.edu

Kazuhide Hirohata

Dept. of Industrial Engineering, Computer Science

National Institute of Technology

Ibaraki College

Hitachinaka, 312-8508 Japan

hirohata@ece.ibaraki-ct.ac.jp

Ariel Keller

Dept. of Electrical Engineering and Computer Science

University of Tennessee

Knoxville, TN 37996

ariel.keller@gmail.com

Abstract

In this paper, we consider a degree sum condition sufficient
to imply the existence of k vertex-disjoint chorded cycles in
a graph G. Let σ4(G) be the minimum degree sum of four
independent vertices of G. We prove that if G is a graph of
order at least 11k+7 and σ4(G) ≥ 12k− 3 with k ≥ 1, then G
contains k vertex-disjoint chorded cycles. We also show that
the degree sum condition on σ4(G) is sharp.
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1 Introduction

The study of cycles in graphs is a rich and an important area.
One question of particular interest is to find conditions that guar-
antee the existence of k vertex-disjoint cycles. Corrádi and Hajnal
[4] first considered a minimum degree condition to imply a graph
must contain k vertex-disjoint cycles, proving that if |G| ≥ 3k and
the minimum degree δ(G) ≥ 2k, then G contains k vertex-disjoint
cycles. For an integer t ≥ 1 and an independent vertex set X with
|X| = t, let

σt(G) = min

{

∑

v∈X

dG(v) |

}

,

and σt(G) = ∞ when the independence number α(G) < t. Enomoto
[5] and Wang [13] independently extended the Corrádi and Hajnal
result, requiring a weaker condition on the minimum degree sum of
any two non-adjacent vertices. They proved that if |G| ≥ 3k and
σ2(G) ≥ 4k − 1, then G contains k vertex-disjoint cycles. In 2006,
Fujita et al. [7] proved that if |G| ≥ 3k + 2 and σ3(G) ≥ 6k − 2,
then G contains k vertex-disjoint cycles, and in [10], this result was
extended to σ4(G) ≥ 8k − 3.

An extension of the study of vertex-disjoint cycles is that of
vertex-disjoint chorded cycles. A chord of a cycle is an edge between
two non-adjacent vertices of the cycle. We say a cycle is chorded if
it contains at least one chord. In 2008, Finkel proved the following
result on the existence of k vertex-disjoint chorded cycles.

Theorem 1. (Finkel [6]) Let k ≥ 1 be an integer. If G is a graph of

order at least 4k and δ(G) ≥ 3k, then G contains k vertex-disjoint

chorded cycles.

In 2010, Chiba et al. proved Theorem 2. Since σ2(G) ≥ 2δ(G),
Theorem 2 is stronger than Theorem 1.

Theorem 2 (Chiba, Fujita, Gao, Li [1]). Let k ≥ 1 be an integer. If

G is a graph of order at least 4k and σ2(G) ≥ 6k−1, then G contains

k vertex-disjoint chorded cycles.



Recently, Theorem 2 was extended as follows. Since σ3(G) ≥
3σ2(G)/2, when the order of G is sufficiently large, Theorem 3 is
stronger than Theorem 2.

Theorem 3 (Gould, Hirohata, Keller [11]). Let k ≥ 1 be an integer.

If G is a graph of order at least 8k + 5 and σ3(G) ≥ 9k − 2, then G
contains k vertex-disjoint chorded cycles.

Remark 1. We note if k = 1 in Theorem 3, then Theorem 3 holds
under the condition that |G| ≥ 7.

In this paper, we consider a similar extension for chorded cycles,
as, in [10], the existence of k vertex-disjoint cycles was proved under
the condition σ4(G). In particular, we first show the following.

Theorem 4. If G is a graph of order at least 15 and σ4(G) ≥ 9,
then G contains a chorded cycle.

Remark 2. We consider the following graph G of order 14. (See
Fig. 1.) The white vertex (◦) shows degree 2, and the black vertex (•)
shows degree 3. Then G satisfies the σ4(G) condition in Theorem 4.
However, G does not contain a chorded cycle. Thus |G| ≥ 15 is
necessary.
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Fig. 1. The graph G of order 14.

Theorem 5. Let k ≥ 1 be an integer. If G is a graph of order

n ≥ 11k + 7 and σ4(G) ≥ 12k − 3, then G contains k vertex-disjoint

chorded cycles.

Remark 3. Theorem 5 is sharp with respect to the degree sum con-
dition. Consider the complete bipartite graph G = K3k−1,n−3k+1,



where large n = |G|. Then σ4(G) = 4(3k−1) = 12k−4. However, G
does not contain k vertex-disjoint chorded cycles, since any chorded
cycle must contain at least three vertices from each partite set, in
particular, from the 3k − 1 partite set. Thus σ4(G) ≥ 12k − 3 is
necessary.

For related results on vertex-disjoint chorded cycles in graphs and
bipartite graphs, we refer the reader to see [2, 3, 8, 12].

Let G be a graph, H a subgraph of G and X ⊆ V (G). For
u ∈ V (G), the set of neighbors of u in G is denoted by NG(u), and
we denote dG(u) = |NG(u)|. For u ∈ V (G), we denote NH(u) =
NG(u) ∩ V (H) and dH(u) = |NH(u)|. Also we denote dH(X) =
∑

u∈X dH(u). If H = G, then dG(X) = dH(X). Furthermore,
NG(X) = ∪u∈XNG(u) and NH(X) = NG(X) ∩ V (H). Let A,B
be two vertex-disjoint subgraphs of G. Then NG(A) = NG(V (A))
and NB(A) = NG(A)∩V (B). The subgraph of G induced by X is de-
noted by 〈X〉. Let G−X = 〈V (G)−X〉 and G−H = 〈V (G)−V (H)〉.
IfX = {x}, then we write G−x for G−X. If there is no fear of confu-
sion, then we use the same symbol for a graph and its vertex set. For
two disjoint graphs G1 and G2, G1∪G2 denotes the union of G1 and
G2. LetQ be a path or a cycle with a given orientation and x ∈ V (Q).
Then x+ denotes the first successor of x on Q and x− denotes the
first predecessor of x on Q. If x, y ∈ V (Q), then Q[x, y] denotes
the path of Q from x to y (including x and y) in the given direction.
The reverse sequence of Q[x, y] is denoted by Q−[y, x]. We also write
Q(x, y] = Q[x+, y], Q[x, y) = Q[x, y−] and Q(x, y) = Q[x+, y−]. If Q
is a path (or a cycle), say Q = x1, x2, . . . , xt(, x1), then we assume
an orientation of Q is given from x1 to xt (if Q is a cycle, then the
orientation is clockwise). If P is a path connecting x and y of V (G),
then we denote the path P as P [x, y]. If G is one vertex, that is,
V (G) = {x}, then we simply write x instead of G. For an integer
r ≥ 1 and two vertex-disjoint subgraphs A,B of G, we denote by
(d1, d2, . . . , dr) a degree sequence from A to B such that dB(vi) ≥ di
and vi ∈ V (A) for each 1 ≤ i ≤ r. In this paper, since it is suffi-
cient to consider the case of equality in the above inequality, when
we write (d1, d2, . . . , dr), we assume dB(vi) = di for each 1 ≤ i ≤ r.
For two disjoint X,Y ⊆ V (G), E(X,Y ) denotes the set of edges of G



connecting a vertex in X and a vertex in Y . For a graph G, comp(G)
is the number of components of G. A cycle of length ℓ is called a
ℓ-cycle. For terminology and notation not defined here, see [9].

2 Preliminaries

Definition 1. Suppose C1, . . . , Cr are r vertex-disjoint chorded cy-
cles in a graph G. We say {C1, . . . , Cr} is minimal if G does not
contain r vertex-disjoint chorded cycles C ′

1, . . . , C
′
r such that

∣

∣∪r
i=1V (C ′

i)
∣

∣ < |∪r
i=1V (Ci)| .

Definition 2. Let C = v1, . . . , vt, v1 be a cycle with chord vivj , i < j.
We say a chord vv′ 6= vivj is parallel to vivj if either v, v′ ∈ C[vi, vj ]
or v, v′ ∈ C[vj , vi]. Note if two distinct chords share an endpoint,
then they are parallel. We say two distinct chords are crossing if
they are not parallel.

Definition 3. Let uivj and uℓvm be two distinct edges between two
vertex-disjoint paths P1 = u1, . . . , us and P2 = v1, . . . , vt. We say
uivj and uℓvm are parallel if either i ≤ ℓ and j ≤ m, or ℓ ≤ i
and m ≤ j. Note if two distinct edges between P1 and P2 share an
endpoint, then they are parallel. We say two distinct edges between
two vertex-disjoint paths are crossing if they are not parallel.

Definition 4. Let vivj and vℓvm be two distinct edges between ver-
tices of a path P = v1, . . . , vt, with j ≥ i+ 2 and m ≥ ℓ+ 2. We say
vivj and vℓvm are nested if either i ≤ ℓ < m ≤ j or ℓ ≤ i < j ≤ m.

Definition 5. Let P = v1, . . . , vt be a path. We say a vertex vi on
P has a left edge if there exists an edge vivj for some j < i− 1, that
is not an edge of the path. We also say vi has a right edge if there
exists an edge vivj for some j > i+1, that is not an edge of the path.

3 Lemmas

The following lemmas will be needed.



Lemma 1 ([11]). Let r ≥ 1 be an integer, and let C = {C1, . . . , Cr}
be a minimal set of r vertex-disjoint chorded cycles in a graph G.

If |Ci| ≥ 7 for some 1 ≤ i ≤ r, then Ci has at most two chords.

Furthermore, if the Ci has two chords, then these chords must be

crossing.

Lemma 2 ([11]). Let r ≥ 1 be an integer, and let C = {C1, . . . , Cr}
be a minimal set of r vertex-disjoint chorded cycles in a graph G.

Then dCi
(x) ≤ 4 for any 1 ≤ i ≤ r and any x ∈ V (G)− ∪r

i=1V (Ci).
Furthermore, for some C ∈ C and some x ∈ V (G)− ∪r

i=1V (Ci),
if dC(x) = 4, then |C| = 4, and if dC(x) = 3, then |C| ≤ 6.

Lemma 3 ([11]). Suppose there exist at least three mutually par-

allel edges or at least three mutually crossing edges connecting two

vertex-disjoint paths P1 and P2. Then there exists a chorded cycle in

〈P1 ∪ P2〉.

Lemma 4 ([11]). Suppose there exist at least five edges connecting

two vertex-disjoint paths P1 and P2 with |P1 ∪ P2| ≥ 7. Then there

exists a chorded cycle in 〈P1 ∪ P2〉 not containing at least one vertex

of 〈P1 ∪ P2〉.

Lemma 5 ([11]). Let P1, P2 be two vertex-disjoint paths, and let

u1, u2 (u1 6= u2) be in that order on P1. Suppose dP2
(ui) ≥ 2 for each

i ∈ {1, 2}. Then there exists a chorded cycle in 〈P1[u1, u2] ∪ P2〉.

Lemma 6 ([11]). Let H be a graph containing a path P = v1, . . . , vt
(t ≥ 3), and not containing a chorded cycle. If v1vi ∈ E(H) for

some i ≥ 3, then dP (vj) ≤ 3 for any j ≤ i − 1 and in particular,

dP (vi−1) = 2. And if vtvi ∈ E(H) for some i ≤ t−2, then dP (vj) ≤ 3
for any j ≥ i+ 1 and in particular, dP (vi+1) = 2.

Lemma 7 ([11]). Let H be a graph containing a path P = v1, . . . , vt
(t ≥ 6), and not containing a chorded cycle. If dP (v1) = 1, then

dP (vi) = 2 for some 3 ≤ i ≤ 5, and if v1v3 ∈ E(H), then dP (vi) = 2
for some 4 ≤ i ≤ 6.

Lemma 8 ([11]). Let H be a graph containing a path P = v1, . . . , vt
(t ≥ 6), and not containing a chorded cycle. If dP (vt) = 1, then

dP (vi) = 2 for some t − 4 ≤ i ≤ t − 2, and if vtvt−2 ∈ E(H), then
dP (vi) = 2 for some t− 5 ≤ i ≤ t− 3.



Lemma 9. Let H be a connected graph of order at least 6. Suppose

H contains neither a chorded cycle nor a Hamiltonian path. Let

H = 〈P1 ∪ P2〉, where P1 = u1, . . . , us (s ≥ 5) is a longest path

in H and P2 = v1, . . . , vt (t ≥ 1) is a longest path in H − P1. If

ui ∈ V (P1) for some 2 ≤ i ≤ s− 3 is adjacent to an endpoint v of P2

and uj ∈ V (P1) for some i+2 ≤ j ≤ s−1 is adjacent to an endpoint

v′ of P2 (possibly, v = v′), then dH(uℓ) = 2 for some ℓ ∈ {i+1, j−1}.

Proof. Let v, v′ be as in the lemma, and we may assume v = v1
and v′ = vt (possibly, v = v′). Suppose dH(uℓ) ≥ 3 for each
ℓ ∈ {i + 1, j − 1}. If ui+1 has a left edge, say ui+1uh with h < i,
then P1[uh, ui], v1, P2[v1, vt], uj , P

−
1 [uj , ui+1], uh is a cycle with chord

uiui+1, a contradiction. By symmetry, uj−1 does not have a right
edge. Since uiv1, ujvt ∈ E(H), NP2

(uℓ) = ∅ for each ℓ ∈ {i+1, j−1},
otherwise, since consecutive vertices on P1 each have adjacencies
on P2, there exists a longer path than P1 in H, a contradiction.
Note that even if v = v′, NP2

(uℓ) = ∅ for each ℓ ∈ {i + 1, j − 1}.
Since dH(uℓ) ≥ 3 for each ℓ ∈ {i + 1, j − 1}, ui+1 has a right edge
and uj−1 has a left edge. No vertex in P1[ui, uj ] can have an edge
that does not lie on P1 to some other vertex in P1[ui, uj ], otherwise,
this edge is a chord of the cycle P1[ui, uj ], vt, P

−
2 [vt, v1], ui. Thus

we have edges ui+1uh with h > j, and uj−1uh′ with h′ < i. Then
P1[uh′ , ui], v1, P2[v1, vt], uj , P1[uj , uh], ui+1, P1[ui+1, uj−1], uh′ is a cy-
cle with chord uiui+1 (and uj−1uj), a contradiction. Thus the lemma
holds.

Lemma 10 ([11]). Let H be a graph of order at least 13. Suppose

H does not contain a chorded cycle. If H contains a Hamiltonian

path, then there exists an independent set X of four vertices in H
such that dH(X) ≤ 8.

Lemma 11 ([11]). Let H be a connected graph of order at least

4. Suppose H contains neither a chorded cycle nor a Hamiltonian

path. Let P1 = u1, . . . , us (s ≥ 3) be a longest path in H, and let

P2 = v1, . . . , vt (t ≥ 1) be a longest path in H−P1. Then the following

statements hold.

(i) NH−P1
(ui) = ∅ for each i ∈ {1, s}.



(ii) dH(ui) = dP1
(ui) ≤ 2 for each i ∈ {1, s}.

(iii) NH−(P1∪P2)(vj) = ∅ for each j ∈ {1, t}.
(iv) dP2

(vj) ≤ 2 for each j ∈ {1, t}.
(v) dPi

(z) ≤ 2 for each z ∈ V (H)− V (Pi) and each i ∈ {1, 2}.
(vi) dP1

({v1, vt}) ≤ 3 for each t ≥ 2.

Proofs of (v) and (vi). Note parts (i) to (iv) are from [11], hence we
only prove parts (v) and (vi). Since H does not contain a chorded
cycle, (v) holds. Suppose dP1

({v1, vt}) ≥ 4. By (v), dP1
(vj) = 2

for each j ∈ {1, t}. Then, by Lemma 5, H has a chorded cycle, a
contradiction. Thus (vi) holds.

Lemma 12. Let H be a connected graph of order at least 15. Suppose
H contains neither a chorded cycle nor a Hamiltonian path. Let

P1 = u1, . . . , us (s ≥ 3) be a longest path in H, and let P2 = v1, . . . , vt
(t ≥ 1) be a longest path in H − P1 such that dP1

(v1) ≤ dP1
(vt).

Then there exists an independent set X of four vertices in H such

that {u1, us, v1} ⊆ X and dH(X) ≤ 8.

Remark 4. Let H be a graph of order 14 shown in Fig. 1 (Remark 2,
Theorem4), P1 = u1, . . . , u11, and P2 = v1, v2, v3. Then H satisfies
all the conditions except for the order in Lemma 12. However, the
conclusion does not hold. Thus |H| ≥ 15 is necessary.

Proof. Suppose u1us ∈ E(H). Since H is connected and V (H −
P1) 6= ∅, there exists a longer path than P1, a contradiction. Thus
u1us 6∈ E(H). Let R = H − (P1 ∪ P2). If t = 1, that is, v1 = vt,
then dP1

(v1) ≤ 2 by Lemma 11 (v). If t ≥ 2, then dP1
({v1, vt}) ≤ 3

by Lemma 11 (vi). Then dP1
(v1) ≤ 1 by the assumption (dP1

(v1) ≤
dP1

(vt)), and dP1
(vt) ≤ 2 by Lemma 11 (v).

Claim 1. If |P2| ≤ 3, then H = 〈P1 ∪ P2〉.

Proof. Suppose H 6= 〈P1 ∪ P2〉. Now we prove the following two
subclaims.

Subclaim 1.1. For any v ∈ V (P2), NR(v) = ∅.

Proof. By Lemma 11 (iii), NR(vj) = ∅ for each j ∈ {1, t}. If |P2| ≤ 2,
then the subclaim holds. Thus we may assume |P2| = 3. Suppose



NR(v
′) 6= ∅ for some v′ ∈ V (P2). Then v′ = v2. Let w1 ∈ NR(v2).

If v1v3 ∈ E(H), then the subclaim holds, otherwise, there exists
a longer path than P2 in H − P1, a contradiction. Thus v1v3 6∈
E(H). Since dP1

(v1) ≤ 1 and dP1
(v3) ≤ 2, we have dH(v1) ≤ 2

and dH(v3) ≤ 3. Suppose a vertex on P2 has a neighbor w1 in R.
Then v2w1 ∈ E(H). Recall u1us 6∈ E(H), and note uivj 6∈ E(H)
for any i ∈ {1, s} and any j ∈ {1, 3} by Lemma 11 (i). We also note
dH(ui) ≤ 2 for any i ∈ {1, s} by Lemma 11 (ii). If dH({v1, v3}) ≤ 4,
then X = {u1, us, v1, v3} is an independent set in H and dH(X) ≤ 8,
and X is the desired set. Thus we may assume dH({v1, v3}) = 5, that
is, dH(v1) = 2 and dH(v3) = 3. Then dP1

(v1) = 1 and dP1
(v3) = 2.

Recall w1 ∈ NR(v2). Clearly, NR(w1) = ∅, otherwise, there exists
a longer path than P2 in H − P1, a contradiction. If dH(w1) ≤ 2,
then X = {u1, us, v1, w1} is the desired set. Thus dH(w1) ≥ 3, that
is, dP1

(w1) ≥ 2. Note w1 and v3 lie on a path P = w1, v2, v3, and
w1, v3 send at least two edges each to P1. By Lemma 5, there exists
a chorded cycle in 〈P1 ∪ P 〉, a contradiction.

Subclaim 1.2. For any u ∈ V (P1), NR(u) = ∅.

Proof. We first prove dH(v1) ≤ 2. Suppose not, that is, dH(v1) ≥ 3.
Recall dP1

(v1) ≤ 1. By Subclaim 1.1 and Lemma 11 (iv), dP1
(v1) = 1

and dP2
(v1) = 2. Thus |P2| = 3 and v1v3 ∈ E(H). Since dP1

(v1) ≤
dP1

(v3) by the assumption, dP1
(v3) ≥ 1. Then 〈P1 ∪ P2〉 contains a

cycle with chord v1v3, a contradiction. Thus dH(v1) ≤ 2. Suppose
there exists a vertex in P1 with a neighbor w1 in R. If dH(w1) ≤ 2,
then X = {u1, us, v1, w1} is the desired set. Thus dH(w1) ≥ 3.

First suppose dP1
(w1) ≥ 2. Then dP1

(w1) = 2 by Lemma 11 (v),
and dR(w1) ≥ 1 by Subclaim 1.1. Let w2 ∈ NR(w1). If dH(w2) ≤ 2,
then X = {u1, us, v1, w2} is the desired set. Thus dH(w2) ≥ 3. If
dP1

(w2) ≥ 2, then we have two vertices on a path P = w1, w2, each
sending at least two edges to another path P1, and by Lemma 5, a
chorded cycle exists in 〈P1 ∪ P 〉, a contradiction. Thus dP1

(w2) ≤ 1,
and by Subclaim 1.1, dR(w2) ≥ 2. Let w3 ∈ NR−w1

(w2). If dH(w3) ≤
2, then X = {u1, us, v1, w3} is the desired set. Thus dH(w3) ≥ 3.
Suppose dP1

(w3) ≥ 2. Then consider the path P = w1, w2, w3. Since
w1 and w3 send at least two edges to another path P1, a chorded cycle
exists in 〈P1 ∪ P 〉 by Lemma 5, a contradiction. Thus dP1

(w3) ≤ 1.



Also, NR−{w1,w2}(w3) = ∅, otherwise, there exists a longer path than
P2 in H −P1, a contradiction. By Subclaim 1.1, NP2

(w3) = ∅. Thus
dP1

(w3) = 1 and w1, w2 ∈ NH(w3). Then 〈P1 ∪ P 〉 contains a cycle
with chord w1w3, a contradiction.

Next suppose dP1
(w1) = 1. Then dR(w1) ≥ 2 by Subclaim 1.1.

Let w2, w3 ∈ NR(w1). If dH(wi) ≤ 2 for some i ∈ {2, 3}, then X =
{u1, us, v1, wi} is the desired set. Thus dH(wi) ≥ 3 for each i ∈ {2, 3}.
Suppose dR(wi) ≥ 3 for some i ∈ {2, 3}. Without loss of generality,
we may assume i = 2. Then w2 has a neighbor w4 in R distinct
from w1 and w3, and hence w3, w1, w2, w4 is a longer path than P2

in H − P1, a contradiction. Thus for each i ∈ {2, 3}, dR(wi) ≤ 2,
and then dP1

(wi) ≥ 1 by Subclaim 1.1. Note wi for each i ∈ {2, 3}
does not have a neighbor in R distinct from w1, w2, w3, otherwise,
there exists a longer path than P2 in H − P1, a contradiction. Now
suppose dR(wi) = 2 for some i ∈ {2, 3}. Then w2w3 ∈ E(H). Let
P = w2, w1, w3. Since dP1

(wi) ≥ 1 for each i ∈ {2, 3}, there exists a
cycle with chord w2w3 in 〈P1∪P 〉, a contradiction. Thus dR(wi) ≤ 1
for each i ∈ {2, 3}, and then dP1

(wi) ≥ 2 by Subclaim 1.1. By
Lemma 5, a chorded cycle exists in 〈P1 ∪ P 〉, a contradiction.

Since H is connected, we get a contradiction by Subclaims 1.1
and 1.2. Thus Claim 1 holds.

Claim 2. We have dP1
(vt) ≥ 1.

Proof. Suppose dP1
(vt) = 0. By the assumption (dP1

(v1) ≤ dP1
(vt)),

we have dP1
(v1) = 0. Then we may assume |P2| = t ≥ 3, otherwise,

we get a contradiction by Claim 1 and the connectedness ofH. Recall
u1us 6∈ E(H). By Lemmas 11 (iii) and (iv), dH(vj) ≤ 2 for each
j ∈ {1, t}. If v1vt 6∈ E(H), then X = {u1, us, v1, vt} is the desired
set. Thus v1vt ∈ E(H).

First suppose |P2| = t = 3. By Claim 1, H = 〈P1 ∪ P2〉. Since
v1v3 ∈ E(H), consider P ′

2 = v2, v1, v3. Then v2 can be regarded as
an endpoint of P ′

2. Since dP1
(v1) = 0, we may assume dP1

(v2) = 0
by considering v2 instead of v1. Since NP1

(P2) = ∅, this contradicts
the connectedness of H.



Next suppose |P2| = t ≥ 4. Recall u1us 6∈ E(H) and v1vt ∈
E(H). Consider P ′

2 = P−
2 [vt−1, v1], vt. Then vt−1 can be regarded

as an endpoint of P ′
2. Thus NR(vt−1) = ∅ by Lemma 11 (iii), and

dP2
(vt−1) ≤ 2 by Lemma 11 (iv). Since dP1

(v1) = 0, we may assume
dP1

(vt−1) = 0 by considering vt−1 instead of v1. Thus dH(vt−1) = 2.
HenceX = {u1, us, v1, vt−1} is the desired set, and Claim 2 holds.

Now we consider the following three cases based on |P2|.

Case 1. Suppose |P2| = t = 1.

Then P2 = v1. By Claim 1, H = 〈P1 ∪ P2〉. Since |H| ≥ 15,
|P1| ≥ 14. Recall dP1

(v1) ≤ 2 when t = 1. By Claim 2, dP1
(v1) ∈

{1, 2}. Note dH(v1) = dP1
(v1).

First suppose dP1
(v1) = 2. Let ui, uj ∈ NP1

(v1) with i < j. Note
i ≥ 2 and j ≤ s − 1 by Lemma 11 (i). If j = i + 1, then H contains
a Hamiltonian path, a contradiction. Thus j ≥ i+ 2. By Lemma 9,
dH(uℓ) = 2 for some ℓ ∈ {i + 1, j − 1}. Note uℓu1, uℓus 6∈ E(H).
Then X = {u1, uℓ, us, v1} is the desired set.

Next suppose dP1
(v1) = 1. Note dP1

(u1) ≤ 2. Assume u1ui ∈
E(H) for some 4 ≤ i ≤ s−1. By Lemma 6, dP1

(ui−1) = 2. If v1ui−1 ∈
E(H), then v1, ui−1, P

−
1 [ui−1, u1], ui, P1[ui, us] is a Hamiltonian path,

a contradiction. Thus v1ui−1 6∈ E(H) and dH(ui−1) = 2. Then
X = {u1, ui−1, us, v1} is the desired set. Thus if dP1

(u1) = 2, then
u1u3 ∈ E(H). Then dP1

(ui) = 2 for some 3 ≤ i ≤ 6 by Lemma 7.
Similarly, either dP1

(us) = 1 or usus−2 ∈ E(H) by symmetry. Then
dP1

(uj) = 2 for some s − 5 ≤ j ≤ s − 2 by Lemma 8. Note |P1| =
s ≥ 14. Since dP1

(v1) = 1 by our assumption, v1uℓ 6∈ E(H) for some
ℓ ∈ {i, j}, and dH(uℓ) = 2. Thus X = {u1, uℓ, us, v1} is the desired
set.

Case 2. Suppose |P2| = t ∈ {2, 3}.

By Claim 1, H = 〈P1 ∪ P2〉. Recall dP1
({v1, vt}) ≤ 3, dP1

(v1) ≤
1, and dP1

(vt) ≤ 2. We also note dP1
({v1, vt}) ≥ 1 by Claim 2. Since

|H| ≥ 15, |P1| = s ≥ 12.

First suppose |NP1
({v1, vt})| ∈ {2, 3}. Let ui, uj ∈ NP1

({v1, vt})



with i < j. Assume j = i+ 1. Then H contains a longer path than
P1, a contradiction. Thus j ≥ i + 2. Note i ≥ 2 and j ≤ s − 1
by Lemma 11 (i). By Lemma 9, dH(uℓ) = 2 for some ℓ ∈ {i +
1, j − 1}. Note uℓu1 6∈ E(H) and uℓus 6∈ E(H). If dH(v1) ≤ 2,
then X = {u1, uℓ, us, v1} is the desired set. Thus we may assume
that dH(v1) ≥ 3. Since dP1

(v1) ≤ 1 and dP2
(v1) ≤ 2, we have

dP1
(v1) = 1 and dP2

(v1) = 2. Then t = 3 and v1v3 ∈ E(H). Since
dP1

(v1) ≤ dP1
(vt) = dP1

(v3) by the assumption, we have dP1
(v3) ≥ 1.

Thus 〈P1 ∪ P2〉 contains a cycle with chord v1v3, a contradiction.

Next suppose |NP1
({v1, vt})| = 1. Assume u1ui ∈ E(H) for

some 4 ≤ i ≤ s − 1. By Lemma 6, dP1
(ui−1) = 2. Let P ′

1 =
P−
1 [ui−1, u1], ui, P1[ui, us]. Then |P ′

1| = |P1| and ui−1 can be re-
garded as an endpoint of P ′

1. By Lemma 11 (i), dP2
(ui−1) = 0. Then

dH(ui−1) = dP1
(ui−1) = 2. If dH(v1) ≤ 2, then X = {u1, ui−1, us, v1}

is the desired set. Thus we may assume that dH(v1) ≥ 3. Then
dP1

(v1) = 1, and dP2
(v1) = 2, that is, t = 3 and v1v3 ∈ E(H). Also,

dP1
(v3) ≥ 1. Thus 〈P1 ∪ P2〉 contains a cycle with chord v1v3, a

contradiction. Hence, either dP1
(u1) = 1 or u1u3 ∈ E(H). Then

dP1
(ui) = 2 for some 3 ≤ i ≤ 6 by Lemma 7. Similarly, either

dP1
(us) = 1 or usus−2 ∈ E(H) by symmetry. Then dP1

(uj) = 2
for some s − 5 ≤ j ≤ s − 2 by Lemma 8. Since |NP1

({v1, vt})| = 1
by our assumption, uℓ 6∈ NP1

({v1, vt}) for some ℓ ∈ {i, j}. Sup-
pose t = 2. Then dH(v1) ≤ 2 and dH(uℓ) = dP1

(uℓ) = 2. Thus
X = {u1, uℓ, us, v1} is the desired set. Hence t = 3. If v1v3 6∈ E(H),
then dH(v1) ≤ 2 and dH(v3) ≤ 2. Thus X = {u1, us, v1, v3} is
the desired set. Hence we may assume that v1v3 ∈ E(H). Note
dP1

(v1) ≤ 1. Suppose dP1
(v1) = 1. Since dP1

(v3) ≥ 1, 〈P1 ∪ P2〉 con-
tains a cycle with chord v1v3, a contradiction. Suppose dP1

(v1) = 0.
Then dH(v1) = 2. If dH(uℓ) = 2, then X = {u1, uℓ, us, v1} is the de-
sired set. Thus we may assume that dH(uℓ) ≥ 3. Then uℓv2 ∈ E(H).
Since dP1

(v3) ≥ 1, 〈P1 ∪ P2〉 contains a cycle with chord v2v3, a
contradiction.

Case 3. Suppose |P2| = t ≥ 4.

Recall dP1
(v1) ≤ 1 and dP1

(vt) ≤ 2. We consider two subcases as
follows.



Subcase 1. Suppose dP1
(v1) = 1.

By Claim 2, dP1
(vt) ≥ 1. Then dP2

(v1) = dP2
(vt) = 1, otherwise,

there exists a cycle in 〈P1 ∪ P2〉 with chord adjacent to v1 or vt, a
contradiction. Thus dH(v1) = 2 by Lemma 11 (iii). If dP1

(vt) = 1,
then dH(vt) = 2 by Lemma 11 (iii). Then X = {u1, us, v1, vt} is
the desired set. Thus dP1

(vt) = 2. Let ui, uj ∈ NP1
(vt) with i < j.

Consider the vertex vt−1. If dH(vt−1) = 2, thenX = {u1, us, v1, vt−1}
is the desired set. Thus dH(vt−1) ≥ 3. If dP2

(vt−1) ≥ 3, then there
exists a cycle in 〈P1∪P2〉 with chord adjacent to vt−1, a contradiction.
Thus dP2

(vt−1) = 2, and then NP1
(vt−1) 6= ∅ or NR(vt−1) 6= ∅.

First suppose NP1
(vt−1) 6= ∅. If v1 or vt−1 has a neighbor in

P1[u1, ui] ∪ P1[uj , us], then there exist three parallel edges between
P1 and P2, and by Lemma 3, a chorded cycle exists in 〈P1 ∪ P2〉, a
contradiction. Thus NP1(ui,uj)(vℓ) 6= ∅ for each ℓ ∈ {1, t − 1}. Then
we again have three parallel edges or three crossing edges, and by
Lemma 3, a chorded cycle exists in 〈P1 ∪ P2〉, a contradiction.

Next suppose NR(vt−1) 6= ∅. Let w ∈ NR(vt−1). If dH(w) ≤ 2,
then X = {u1, us, v1, w} is the desired set. Thus dH(w) ≥ 3. Then
dP1

(w) ≤ 1, otherwise, since dP1
(vt) = 2, there exists a chorded cycle

in 〈P1 ∪P2〉 by Lemma 5, a contradiction. Since P2 is a longest path
in H − P1, NR(w) = ∅. Thus dP1

(w) = 1 and dP2
(w) = 2. Let up ∈

NP1
(v1) and uq ∈ NP1

(w). Without loss of generality, we may assume
p ≤ q. By Lemma 11 (iii), wv1, wvt 6∈ E(H). Thus wvℓ ∈ E(H) for
some 2 ≤ ℓ ≤ t − 2. Then w, vt−1, P

−
2 [vt−1, v1], up, P1[up, uq], w is a

cycle with chord wvℓ, a contradiction.

Subcase 2. Suppose dP1
(v1) = 0.

Suppose v1vt ∈ E(H). Then note dH(v1) = 2. Now we consider
the path P ′

2 = P−
2 [vt−1, v1], vt. Then vt−1 can be regarded as an

endpoint of P ′
2. Since dP1

(v1) = 0 by the assumption, we may assume
dP1

(vt−1) = 0 by considering vt−1 instead of v1. Thus dH(vt−1) = 2.
Recall u1us 6∈ E(H). Then X = {u1, us, v1, vt−1} is the desired set.
Thus v1vt 6∈ E(H). If dH(vt) ≤ 2, then X = {u1, us, v1, vt} is the
desired set. Thus dH(vt) ≥ 3. By Lemma 11 (iii), (iv), and (v), we
have dH(vt) ≤ 4 and dP1

(vt) ∈ {1, 2}.



First suppose dP1
(vt) = 2. Let ui, uj ∈ NP1

(vt) with i < j. Note
i ≥ 2 and j ≤ s−1 by Lemma 11 (i), and |P1| ≥ |P2| ≥ 4. If j = i+1,
then there exists a longer path than P1, a contradiction. Thus j ≥
i+ 2. Therefore, |P1| ≥ 5. If dH(uℓ) = 2 for some ℓ ∈ {i+ 1, j − 1},
then X = {u1, uℓ, us, v1} is the desired set. Thus dH(uℓ) ≥ 3 for each
ℓ ∈ {i+1, j−1}. By Lemma 9, we may assume H 6= 〈P1 ∪ P2〉. Now
we claim NR(uℓ) 6= ∅ for some ℓ ∈ {i+ 1, j − 1}. Assume not. Note
NP2

(uℓ) = ∅ since P1 is a longest path inH. SinceH does not contain
a chorded cycle, there exist edges ui+1uh with h > j and uj−1uh′ with
h′ < i. Then P1[uh′ , ui], vt, uj , P1[uj , uh], ui+1, P1[ui+1, uj−1], uh′ is a
cycle with chord uiui+1 (and uj−1uj), a contradiction. Thus the
claim holds. If j ≥ i + 3, then we may assume ℓ = j − 1, that is,
NR(uj−1) 6= ∅, otherwise, consider P−[us, u1]. Let w1 ∈ NR(uj−1),
and let P3 = w1, . . . , wp (p ≥ 1) be a longest path starting from w1 in
R. If dH(wp) ≤ 2, then X = {u1, us, v1, wp} is the desired set. Thus
dH(wp) ≥ 3. If NP2

(w) 6= ∅ for some w ∈ V (P3), that is, vℓ ∈ NP2
(w)

for some 1 ≤ ℓ ≤ t, then

P1[u1, uj−1], w1, P3[w1, w], vℓ, P2[vℓ, vt], uj , P1[uj , us]

is a longer path than P1, a contradiction. Thus NP2
(w) = ∅ for

any w ∈ V (P3). Since P3 is a longest path starting from w1 in R,
NR−P3

(wp) = ∅. Suppose |P3| = p = 1. Since NR(w1) = ∅ and
dH(wp) ≥ 3, dP1

(w1) ≥ 3. This contradicts Lemma 11 (v). Suppose
|P3| = p = 2. Then dH(w2) ≥ 3, and by Lemma 11 (v), dP1

(w2) = 2.
If uℓ ∈ NP1

(w2) for some j ≤ ℓ ≤ s, then

P1[ui, uj−1], w1, P3[w1, w2], uℓ, P
−
1 [uℓ, uj ], vt, ui

is a cycle with chord uj−1uj , a contradiction. Thus uℓ, uℓ′ ∈ NP1
(w2)

for some 1 ≤ ℓ < ℓ′ ≤ j − 1. Then P1[uℓ, uj−1], w1, P3[w1, w2], uℓ is a
cycle with chord w2uℓ′ , a contradiction. Suppose |P3| = p ≥ 3. Then
dP3

(wp) ≤ 2. Assume dP3
(wp) = 2. Since dP1

(wp) ≥ 1, there exists a
cycle in 〈P1 ∪ P3〉 with chord adjacent to wp, a contradiction. Thus
dP3

(wp) = 1, and dP1
(wp) = 2. Then we have a chorded cycle in

〈P1 ∪ P3〉 as in the case where |P3| = 2 by considering wp instead of
w2, a contradiction.

Next suppose dP1
(vt) = 1. Let ui ∈ NP1

(vt) with 1 ≤ i ≤ s. Note
i 6∈ {1, s} by Lemma 11 (i). Since dH(vt) ≥ 3, dP2

(vt) = 2 by Lemmas



11 (iii) and (iv). Let vℓ ∈ NP2
(vt) with ℓ ≤ t−2. Now we consider the

path P ′
2 = P2[v1, vℓ], vt, P

−
2 [vt, vℓ+1]. Then vℓ+1 can be regarded as

an endpoint of P ′
2. Since dP1

(vt) = 1, we may assume dP1
(vℓ+1) = 1.

Let uj ∈ NP1
(vℓ+1) with 1 ≤ j ≤ s. Note j 6∈ {1, s} by Lemma 11 (i).

Then we may assume j ≤ i, otherwise, consider P−[us, u1]. Suppose
ℓ = t − 2, that is, vtvt−2 ∈ E(H). Then P1[uj , ui], vt, vt−2, vt−1, uj
is a cycle with chord vt−1vt, a contradiction. Thus ℓ ≤ t − 3. If
j = i− 1, then there exists a longer path than P1, a contradiction.

Suppose j = i. Recall vtvℓ ∈ E(H) with ℓ ≤ t− 3. If dH(vt−1) =
2, then X = {u1, us, v1, vt−1} is the desired set. Thus dH(vt−1) ≥ 3.
Assume uj ∈ NP1

(vt−1) for some 1 ≤ j ≤ s. We may assume j ≤ i,
otherwise, consider P−[us, u1]. Then P1[uj , ui], vt, P2[vℓ, vt−1], uj is
a cycle with chord vt−1vt, a contradiction. Assume vℓ′ ∈ NP2

(vt−1)
for some ℓ′ ≤ t− 3. Since vtvℓ ∈ E(H), we may assume ℓ′ < ℓ. Then
P2[vℓ′ , vℓ], vt, ui, P2[vℓ+1, vt−1], vℓ′ is a cycle with chord vℓvℓ+1 (and
vt−1vt), a contradiction. Assume NR(vt−1) 6= ∅. Let w ∈ NR(vt−1).
Now we consider the path P ′

2 = P2[v1, vt−1], w. Then w can be
regarded as an endpoint of P ′

2. Since dP1
(vt) = 1, we may assume

dP1
(w) = 1. Let uj ∈ NP1

(w) for some 1 ≤ j ≤ s. We may assume
j ≤ i. Then P2[vℓ, vt−1], w, P1[uj , ui], vt, vℓ is a cycle with chord
vt−1vt, a contradiction.

Suppose j ≤ i − 2. If dH(uh) = 2 for some h ∈ {j + 1, i − 1},
then X = {u1, uh, us, v1} is the desired set. Thus dH(uh) ≥ 3 for
each h ∈ {j + 1, i − 1}. Now we claim NR(uh) 6= ∅ for some
h ∈ {j + 1, i − 1}. Assume not. Note NP2

(uh) = ∅, since P1 is a
longest path in H. Since H does not contain a chorded cycle, there
exist edges uj+1um with m > i and ui−1um′ with m′ < j. Then
P1[um′ , uj ], vℓ+1, P2[vℓ+1, vt], ui, P1[ui, um], uj+1, P1[uj+1, ui−1], um′ is
a cycle with chord ujuj+1 (and ui−1ui), a contradiction. Thus the
claim holds. We also note that if j ≤ i − 3, then we may assume
NR(ui−1) 6= ∅, otherwise, consider P−[us, u1]. Let w1 ∈ NR(ui−1),
and let P3 = w1, . . . , wp (p ≥ 1) be a longest path in R. Then, as in
the above case where dP1

(vt) = 2, there exists a chorded cycle in H,
a contradiction.

Lemma 13 ([11]). Let k ≥ 2 be an integer, and let G be a graph.

Suppose G does not contain k vertex-disjoint chorded cycles. Let



C = {C1, . . . , Ck−1} be a minimal set of k−1 vertex-disjoint chorded

cycles in G, and let H = G − C and X ⊆ V (H) with |X| = 4.
Suppose H contains a Hamiltonian path. Then dCi

(X) ≤ 12 for

each 1 ≤ i ≤ k − 1.

4 Proof of Theorem 4

Suppose G does not contain a chorded cycle.

Claim 1. G is connected.

Proof. Suppose not, then comp(G) ≥ 2. Let G1, G2, . . . , Gcomp(G) be
the components of G.

First suppose comp(G) ≥ 4. By Theorem 1, there exists xi ∈
V (Gi) for each 1 ≤ i ≤ 4 such that dGi

(xi) ≤ 2. Let
X = {x1, x2,x3, x4}. Then X is an independent set with dG(X) ≤ 8.
This contradicts the σ4(G) condition.

Next suppose comp(G) = 3. Let |G1| ≥ |G2| ≥ |G3|. Since |G| ≥
15 by the assumption, we have |G1| ≥ 5. If G1 is complete, then G1

contains a chorded cycle. Thus we may assume G1 is not complete.
By Theorem 2, there exist non-adjacent x0, x1 ∈ V (G1) such that
dG1

({x0, x1}) ≤ 4. Also, by Theorem 1, there exists xi ∈ V (Gi) for
each i ∈ {2, 3} such that dGi

(xi) ≤ 2. Then X = {x0, x1, x2, x3} is
an independent set with dG(X) ≤ 8, a contradiction.

Finally, suppose comp(G) = 2. Let |G1| ≥ |G2|. Since |G| ≥ 15,
|G1| ≥ 8. By Theorem 3 (Remark 1), G1 contains an independent set
X0 of three vertices with dG1

(X0) ≤ 6. Also, by Theorem 1, there
exists x ∈ V (G2) such that dG2

(x) ≤ 2. Then X = X0 ∪ {x} is an
independent set with dG(X) ≤ 8, a contradiction.

Let P1 = u1, . . . , us be a longest path in G. Note s ≥ 3, since
|G| ≥ 15 and G is connected by Claim 1.

Claim 2. G contains a Hamiltonian path.

Proof. Suppose not, then P1 is not a Hamiltonian path in G, and
V (G − P1) 6= ∅. Let P2 = v1, . . . , vt (t ≥ 1) be a longest path in



G − P1 such that dP1
(v1) ≤ dP1

(vt). By Lemma 12, there exists an
independent set X of four vertices in G such that dG(X) ≤ 8. This
contradicts the σ4(G) condition.

Since |G| ≥ 15, by Claim 2 and Lemma 10, there exists an inde-
pendent set X of four vertices in G such that dG(X) ≤ 8, a contra-
diction. This completes the proof of Theorem 4.

5 Proof of Theorem 5

By Theorem 4, we may assume k ≥ 2. Suppose Theorem 5 does
not hold. Let G be an edge-maximal counter-example. If G is com-
plete, then G contains k vertex-disjoint chorded cycles. Thus we may
assume G is not complete. Let xy 6∈ E(G) for some x, y ∈ V (G), and
defineG′ = G+xy, the graph obtained fromG by adding the edge xy.
By the edge-maximality of G, G′ is not a counter-example. Thus G′

contains k vertex-disjoint chorded cycles C1, . . . , Ck. Without loss of
generality, we may assume xy 6∈ ∪k−1

i=1E(Ci), that is, G contains k−1
vertex-disjoint chorded cycles. Over all sets of k − 1 vertex-disjoint
chorded cycles, choose C1, . . . , Ck−1 with C = ∪k−1

i=1Ci, H = G− C ,
and with P1 a longest path in H, such that:

(A1) |C | is as small as possible,

(A2) subject to (A1), comp(H) is as small as possible, and

(A3) subject to (A1) and (A2), |P1| is as large as possible.

We may also assume H does not contain a chorded cycle, other-
wise, G contains k vertex-disjoint chorded cycles, a contradiction.

Claim 1. H has an order at least 18.

Proof. Suppose to the contrary that |H| ≤ 17. Next suppose |Ci| ≤
11 for each 1 ≤ i ≤ k − 1. Since |G| ≥ 11k + 7 by assumption, it
follows that |H| ≥ (11k+7)− 11(k− 1) = 18, a contradiction. Thus
|Ci| ≥ 12 for some 1 ≤ i ≤ k− 1. Without loss of generality, we may
assume C1 is a longest cycle in C . Then |C1| ≥ 12. By Lemma 1, C1



contains at most two chords, and if C1 has two chords, then these
chords must be crossing. For integers t and r, let |C1| = 4t+r, where
t ≥ 3 and 0 ≤ r ≤ 3.

Subclaim 1.1. Let t ≥ 3 be an integer. The cycle C1 contains t
vertex-disjoint sets X1, . . . , Xt of four independent vertices each in

G such that dC1
(∪t

i=1Xi) ≤ 8t+ 4.

Proof. For any 4t vertices of C1, their degree sum in C1 is at most
4t × 2 + 4 = 8t + 4, since C1 has at most two chords. Thus it
only remains to show that C1 contains t vertex-disjoint sets of four
independent vertices each. Recall |C1| = 4t+r ≥ 4t. Start anywhere
on C1 and label the first 4t vertices of C1 with labels 1 through t in
order, starting over again with 1 after using label t. If r ≥ 1, then
label the remaining r vertices of C1 with the labels t + 1, . . . , t + r.
(See Fig. 2.) The labeling above yields t vertex-disjoint sets of four
vertices each, where all the vertices labeled with 1 are one set, all
the vertices labeled with 2 are another set, and so on. Given this
labeling, since t ≥ 3, any vertex in C1 has a different label than
the vertex that precedes it on C1 and the vertex that succeeds it on
C1. Let C0 be the cycle obtained from C1 by removing all chords.
Then the vertices in each of the sets are independent in C0. Thus
the only way vertices in the same set are not independent in C1 is if
the endpoints of a chord of C1 were given the same label. Note any
vertex labeled i is distance at least 3 in C0 from any other vertex
labeled i. Thus even if we exchange the label of x in C0 for the one
of x− (or x+), the vertices in each of the resulting t sets are still
independent in C0.

Case 1. No chord of C1 has endpoints with the same label.

Then there exist t vertex-disjoint sets of four independent vertices
each in C1.

Case 2. Exactly one chord of C1 has endpoints with the same label.

Recall C1 contains at most two chords, and if C1 contains two
chords, then these chords must be crossing. Since |C1| ≥ 12, even
if C1 has two chords, each chord has an endpoint x such that there
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Fig. 2. An example when t = 3 and r = 2.

exists a vertex x′ ∈ {x−, x+} which is not an endpoint of the other
chord. Choose such an endpoint x of the chord whose endpoints were
assigned the same label, and exchange the label of x for the one of
x′. The vertices in each of the resulting t sets are independent in C1,
and now no chord of C1 has endpoints with the same label. Thus
there exist t vertex-disjoint sets of four independent vertices each in
C1.

Case 3. Two chords of C1 each have endpoints with the same label.

Then the two chords are crossing. Since endpoints of a chord
have the same label in this case, recall these endpoints have distance
at least 3. First suppose there exists an endpoint x of one chord of
C1 which is adjacent to an endpoint y (= x+) of the other chord on
C1. (See Fig. 3 (a).) Now we exchange the label of x for the one of
y. Then no chord of C1 has endpoints with the same label, and the
vertices in each of the resulting t sets are independent in C1. Thus
there exist t vertex-disjoint sets of four independent vertices each in
C1.

Next suppose no endpoint of one chord of C1 is adjacent to an
endpoint of the other chord on C1. (See Fig. 3 (b).) Let x1x2, y1y2
be the two distinct chords of C1. Since the two chords are crossing,
without loss of generality, we may assume x1, y1, x2, y2 are in that
order on C1. Now we exchange the labels of x1 and x+1 , and next the



ones of y2 and y−2 . Then no chord of C1 has endpoints with the same
label, and the vertices in each of the resulting t sets are independent
in C1. Thus there exist t vertex-disjoint sets of four independent
vertices each in C1.

x
y (x+)

x1

x2y2

y1

2[3]

2

3

2[3]

2

1

1[3]

x+

1

3[2]

y−

2

3[2]

3[1]

(a) (b)

Fig. 3. Examples: (a) – the labels of x and y

are 2 and 3, (b) – the labels of x1 and y2 are 2
and 1. ([i] means i is a new label for a vertex
after the exchange.)

Since |C1| ≥ 12, dC1
(v) ≤ 2 for any v ∈ V (H) by Lemma 2

and (A1). Thus since |H| ≤ 17 by our assumption, it follows that
|E(H,C1)| ≤ 34. Let X = ∪t

i=1Xi be as in Subclaim 1.1. By the
σ4(G) condition, dG(X ) ≥ t(12k − 3). Suppose k = 2. Then C has
only one cycle C1. Since k = 2 and t ≥ 3, |E(C1, H)| ≥ dH(X ) ≥
t(12k − 3) − (8t + 4) = 13t − 4 ≥ 35, a contradiction. Thus k ≥ 3.
Then we have

|E(X ,C − C1)| = dG(X )− dC1
(X )− dH(X )

≥ t(12k − 3)− (8t+ 4)− 34

= 12kt− 11t− 38,

and since t ≥ 3,

12kt− 11t− 38 = 12t(k − 1) + t− 38 ≥ 12t(k − 1)− 35

> 12t(k − 1)− 12t

= 12t(k − 2).



Thus |E(X , C ′)| > 12t for some C ′ in C −C1, since C −C1 contains
k − 2 vertex-disjoint chorded cycles. Let h = max{dC′(v)|v ∈ X }.
Let v∗ be a vertex of X such that dC′(v∗) = h. Since |E(X , C ′)| >
12t, if h ≤ 3, then |E(X , C ′)| ≤ 3× 4t = 12t, a contradiction. Thus
we may assume h ≥ 4. By the maximality of C1, |C

′| ≤ |C1| = 4t+r.
It follows that h = dC′(v∗) ≤ |C ′| ≤ 4t + r. Recall t ≥ 3 and
0 ≤ r ≤ 3. Then

|E(X − {v∗}, C ′)| ≥ (12t+ 1)− dC′(v∗) ≥ (12t+ 1)− (4t+ r)

= 8t− r + 1 ≥ 22. (1)

Since h = dC′(v∗) ≥ 4, let v1, v2, v3, v4 be neighbors of v∗ in that
order on C ′. Note that v1, v2, v3, v4 partition C ′ into four inter-
vals C ′[vi, vi+1) for each 1 ≤ i ≤ 4, where v5 = v1. By (1), there
exist at least 22 edges from C1 − v∗ to C ′. Thus some interval
C ′[vi, vi+1) contains at least six of these edges. Without loss of gen-
erality, we may assume this interval is C ′[v4, v1). Then by Lemma 4,
〈(C1 − v∗) ∪ C ′[v4, v1)〉 contains a chorded cycle not containing at
least one vertex of

〈

(C1 − v∗) ∪ C ′[v4, v1)
〉

.

Also, v∗, C ′[v1, v3], v
∗ is a cycle with chord v∗v2, and it uses no

vertices from C ′[v4, v1). Thus we have two shorter vertex-disjoint
chorded cycles in 〈C1 ∪ C ′〉, contradicting (A1). Hence Claim 1
holds.

Claim 2. H is connected.

Proof. Suppose not, then comp(H) ≥ 2. Let H1, H2, . . . , Hcomp(H)

be the components of H. First we prove the following subclaim.

Subclaim 2.1. Suppose X is an independent set of four vertices

in H such that dH(X) ≤ 8. Then there exists some C in C such

that the degree sequences from four vertices of X to C are (4, 4, 4, 1),
(4, 4, 3, 2) or (4, 3, 3, 3). Furthermore, then |C| = 4.

Proof. By the σ4(G) condition, dC (X) ≥ (12k− 3)− 8 = 12k− 11 >
12(k − 1). Thus there exists some C in C such that dC(X) ≥ 13.



By Lemma 2, dC(x) ≤ 4 for any x ∈ X. Now we consider degree
sequences defined in Section 1 (Introduction) from four vertices of X
to C. Recall that when we write (d1, d2, d3, d4), we assume dC(xj) =
dj for each 1 ≤ j ≤ 4, since it is sufficient to consider the case of
equality. It follows that the degree sequences from four vertices of
X to C are (4, 4, 4, 1), (4, 4, 3, 2) or (4, 3, 3, 3). Since each degree
sequence contains a vertex with degree 4 in C, we have |C| = 4 by
Lemma 2. Thus the subclaim holds.

Now we consider the following three cases based on comp(H).

Case 1. Suppose comp(H) ≥ 4.

By Theorem 1, there exists xi ∈ V (Hi) for each 1 ≤ i ≤ 4 such
that dHi

(xi) ≤ 2. Let X = {x1, x2, x3, x4}. Then X is an indepen-
dent set and dH(X) ≤ 8. By Subclaim 2.1, the degree sequences
from four vertices of X to some C in C are (4, 4, 4, 1), (4, 4, 3, 2) or
(4, 3, 3, 3) and |C| = 4. Let C = v1, v2, v3, v4, v1. Without loss of
generality, we may assume dC(x1) ≥ dC(x2) ≥ dC(x3) ≥ dC(x4).
Then dC(x1) = 4. Since |C| = 4, for each degree sequence, x2, x3, x4
must all have a common neighbor in C, say v1. Since dC(x1) = 4,
C ′ = x1, v2, v3, v4, x1 is a 4-cycle with chord x1v3. If x1 is not a
cut-vertex of H1, then H1 − x1 is connected. Replacing C in C by
C ′, we consider the new H ′. Then comp(H ′) ≤ comp(H) − 2. This
contradicts (A2). Thus we may assume x1 is a cut-vertex of H1.
Since dH1

(x1) ≤ 2, dH1
(x1) = 2. Thus comp(H1 − x1) = 2, and

comp(H ′) ≤ comp(H)− 1 for the new H ′. This contradicts (A2).

Case 2. Suppose comp(H) = 3.

Without loss of generality, we may assume |H1| ≥ |H2| ≥ |H3|.
Since |H| ≥ 18 by Claim 1, we have |H1| ≥ 6. Let P1 = u1, . . . , us
be a longest path in H1. Note s ≥ 3. By Theorem 1, there exists
xj ∈ V (Hj) for each j ∈ {2, 3} such that dHj

(xj) ≤ 2.

First suppose u1us ∈ E(G). Then P1[u1, us], u1 is a Hamiltonian
cycle in H1, otherwise, since H1 is connected, there exists a longer
path than P1, a contradiction. Since H1 does not contain a chorded
cycle, we have u1u3 6∈ E(H1). Note dH1

(ui) = 2 for each i ∈ {1, 3}.



LetX = {u1, u3, x2, x3}. ThenX is an independent set and dH(X) ≤
8. By Subclaim 2.1, the degree sequences from four vertices of X to
some C in C are (4, 4, 4, 1), (4, 4, 3, 2) or (4, 3, 3, 3) and |C| = 4.
Let C = v1, v2, v3, v4, v1. Without loss of generality, we may assume
dC(u1) ≥ dC(u3). Then dC(u1) ≥ 3 and NC(u3)∩NC(x2)∩NC(x3) 6=
∅ by the degree sequences. Without loss of generality, we may assume
v1 ∈ NC(u3) ∩ NC(x2) ∩ NC(x3). Suppose dC(u1) = 4. Then C ′ =
u1, v2, v3, v4, u1 is a 4-cycle with chord u1v3. Since H1 contains a
Hamiltonian cycle, u1 is not a cut-vertex of H1. Thus H1 − u1 is
connected. Replacing C in C by C ′, we consider the new H ′. Then
comp(H ′) ≤ comp(H)− 2 = 3− 2 = 1. This contradicts (A2). Thus
dC(u1) = 3 since dC(u1) ≥ 3. Then the degree sequence is (4, 4, 3, 2)
or (4, 3, 3, 3).

In either case, it suffices to consider dC(u1) = 3, dC(u3) = 2
and dC(x2) = 3 and dC(x3) = 4. Without loss of generality, we may
assume vj ∈ NC(u1) for each 1 ≤ j ≤ 3. If v4 ∈ NC(x2) ∩ NC(x3)
then C ′ = u1, v1, v2, v3, u1 is a 4-cycle with chord u1v2. Further,
replacing C with C ′ we again reduce the number of components
in H, a contradiction. Thus, we may asssume NC(u1) = NC(x2).
ALso, note that C has a chord. Suppose v1v3 ∈ E(G). Then C ′ =
u1, v1, v4, v3, u1 is a 4-cycle with chord v1v3. Since dC(x3) = 4, v4 ∈
NC(x3). Thus, we can again reduce the number of components in H,
a contradiction. A similar argument applies if v2v4 ∈ E(G).

Next suppose u1us 6∈ E(G). Let X = {u1, us, x2, x3}. Since H1

does not contain a chorded cycle, dH1
(ui) ≤ 2 for each i ∈ {1, s}.

Then X is an independent set and dH(X) ≤ 8. Replacing u3 by us
in the above case where u1us ∈ E(G), we get a similar contradiction.

Case 3. Suppose comp(H) = 2.

Let |H1| ≥ |H2|. Since |H| ≥ 18 by Claim 1, |H1| ≥ 9. Let
P1 = u1, . . . , us be a longest path in H1. Note s ≥ 3. By Theorem 1,
there exists x2 ∈ V (H2) such that dH2

(x2) ≤ 2.

First suppose u1us ∈ E(H1). Note P1[u1, us], u1 is a Hamiltonian
cycle in H1. Then X0 = {u1, u3, u5} is an independent set and
dH1

(X0) = 6, and X = X0∪{x2} is an independent set and dH(X) ≤
8. By Subclaim 2.1, the degree sequences from four vertices of X to



some C in C are (4, 4, 4, 1), (4, 4, 3, 2) or (4, 3, 3, 3), and |C| = 4. Let
C = v1, v2, v3, v4, v1. Since X0 is on the Hamiltonian cycle, we may
assume dC(u1) = max{dC(u) |u ∈ {u1, u3, u5}}. Then dC(u1) ≥ 3 by
the degree sequences. Suppose dC(u1) = 4. Since NC(u3)∩NC(x2) 6=
∅ by the degree sequences, without loss of generality, we may assume
v4 ∈ NC(u3) ∩ NC(x2). Since dC(u1) = 4, vi ∈ NC(u1) for each
1 ≤ i ≤ 3. Then C ′ = u1, v1, v2, v3, u1 is a 4-cycle with chord u1v2.
Since H1 contains a Hamiltonian cycle, u1 is not a cut-vertex of H1.
Thus H1 − u1 is connected. Replacing C in C by C ′, we consider
the new H ′. Then comp(H ′) ≤ comp(H) − 1 = 2 − 1 = 1 for the
new H ′. This contradicts (A2). Now suppose dC(u1) = 3. Then by
the maximality of dC(u1), we have only to consider the case where
dC(ui) = 3 for each i ∈ {1, 3, 5}, and dC(x2) = 4. Let vi ∈ NC(u1) for
each 1 ≤ i ≤ 3. Then we may assume NC(u1) = NC(u3) = NC(u5),
otherwise, we get a contradiction by the same arguments as the case
where dC(u1) = 4. Note C has a chord. Suppose v1v3 ∈ E(G). Then
C ′ = u1, v1, v4, v3, u1 is a 4-cycle with chord v1v3. Since dC(x2) = 4,
v2 ∈ NC(u3) ∩ NC(x2). Then comp(H ′) ≤ comp(H) − 1 = 2 − 1 =
1 for the new H ′, a contradiction. Suppose v2v4 ∈ E(G). Then
C ′ = u1, v1, v4, v2, u1 is a 4-cycle with chord v1v2. Since dC(x2) = 4,
v3 ∈ NC(u3) ∩NC(x2). Then comp(H ′) ≤ comp(H)− 1 = 2− 1 = 1
for the new H ′, a contradiction.

Next suppose u1us 6∈ E(H1). Without loss of generality, we may
assume dC(u1) ≥ dC(us). Assume P1 is a Hamiltonian path in H1.
Note s ≥ 9 since |H1| ≥ 9. Since P1 is a Hamiltonian path in H1,
note dP1

(u) = dH1
(u) for any u ∈ V (P1). We also note dP1

(ui) ≤ 2
for each i ∈ {1, s}. Suppose dP1

(u1) = 1. By Lemma 7, dH1
(ui) = 2

for some 3 ≤ i ≤ 5. Since s ≥ 9, X0 = {u1, ui, us} is an independent
set and dH1

(X0) ≤ 6. Thus X = X0∪{x2} is an independent set and
dH(X) ≤ 8. Then we get a contradiction by the same arguments as
the case where u1us ∈ E(G). Next suppose dP1

(u1) = 2. Now assume
u1u3 ∈ E(H1). By Lemma 7, dH1

(ui) = 2 for some 4 ≤ i ≤ 6. Since
s ≥ 9, X0 = {u1, ui, us} is an independent set and dH1

(X0) ≤ 6,
and we get a contradiction by considering X = X0 ∪ {x2} similar to
the case where u1us ∈ E(H1). Thus u1u3 6∈ E(H1), that is, u1ui ∈
E(H1) for some 4 ≤ i ≤ s − 1. By Lemma 6, dH1

(ui−1) = 2. Since
s ≥ 9, X0 = {u1, ui−1, us} is an independent set and dH1

(X0) ≤ 6,



and we get a contradiction by considering X = X0 ∪ {x2}.

Assume P1 is not a Hamiltonian path in H1. Then V (H1 −
P1) 6= ∅. Let P2 = v1, . . . , vt (t ≥ 1) be a longest path in H1 − P1.
Without loss of generality, we may assume dH1

(v1) ≤ dH1
(vt). If

u1us ∈ E(H1), then since there exists a longer path than P1, we may
assume u1us 6∈ E(H1). Also we may assume dH1

(v1) ≤ 2, otherwise,
since dP1

(vi) ≥ 1 for each i ∈ {1, t} by Lemma 11 (iii) and (iv), there
exists a cycle in 〈P1∪P2〉 with chord adjacent to v1, a contradiction.
Thus X0 = {u1, us, v1} is an independent set and dH1

(X0) ≤ 6.
Then X = X0 ∪ {x2} is an independent set and dH(X) ≤ 8. By
Subclaim 2.1, the degree sequences from four vertices of X to some
C in C are (4, 4, 4, 1), (4, 4, 3, 2) or (4, 3, 3, 3), and |C| = 4. Let
C = w1, w2, w3, w4, w1. Since dC(u1) ≥ dC(us) by our assumption,
dC(u1) ≥ 3 by the degree sequences. First suppose dC(u1) = 4.
Since NC(v1) ∩NC(x2) 6= ∅ by the degree sequences, without loss of
generality, we may assume w4 ∈ NC(v1)∩NC(x2). Since dC(u1) = 4,
wi ∈ NC(u1) for each 1 ≤ i ≤ 3. Then C ′ = u1, w1, w2, w3, u1 is
a 4-cycle with chord u1w2. Since u1 is an endpoint of the longest
path P1, u1 is not a cut-vertex of H1. Thus H1 − u1 is connected.
Then comp(H ′) ≤ comp(H) − 1 = 2 − 1 = 1 for the new H ′. This
contradicts (A2). Suppose dC(u1) = 3. Then we may assume the
degree sequence is (4, 4, 3, 2) or (4, 3, 3, 3).

Then it suffices to assume that dC(u1) = 3, dC(us) = 2, and
{dC(v1), dC(x2)} = {3, 4}. Without loss of generality, we may as-
sume wi ∈ NC(u1) for each 1 ≤ i ≤ 3. Suppose dC(v1) = 3 and
dC(x2) = 4. Then we may assume NC(u1) = NC(v1), otherwise,
we get a contradiction by the same arguments as the case where
dC(u1) = 4. Note that C has a chord. Suppose w1w3 ∈ E(G). Then
C ′ = u1, w1, w4, w3, u1 is a 4-cycle with chord w1w3. Since dC(x2) =
4, w2 ∈ NC(v1)∩NC(x2). Then comp(H ′) ≤ comp(H)−1 = 2−1 = 1
for the new H ′, a contradiction. Suppose w2w4 ∈ E(G). Then C ′ =
u1, w1, w4, w2, u1 is a 4-cycle with chord w1w2. Since dC(x2) = 4,
w3 ∈ NC(v1)∩NC(x2). Then comp(H ′) ≤ comp(H)− 1 = 2− 1 = 1
for the new H ′, a contradiction. If dC(v1) = 4 and dC(x2) = 3, then
we get a contradiction in a similar manner.



Claim 3. H contains a Hamiltonian path.

Proof. Suppose not, and let P1 = u1, . . . , us be a longest path in
H. Note s ≥ 3 since |H| ≥ 18 and H is connected by Claim 2.
Let P2 = v1, . . . , vt (t ≥ 1) be a longest path in G − P1 such that
dP1

(v1) ≤ dP1
(vt). By Lemma 12, there exists an independent set

X of four vertices in H such that {u1, us, v1} ⊆ X and dH(X) ≤ 8.
Then the degree sequences from four vertices of X to some C in
C are (4, 4, 4, 1), (4, 4, 3, 2) or (4, 3, 3, 3), and |C| = 4. Let C =
x1, x2, x3, x4, x1. We may assume u1us 6∈ E(H), otherwise, a path
longer than P1 exists, a contradiction. Without loss of generality,
we may assume dC(u1) ≥ dC(us). By the degree sequences, we have
dC(u1) ≥ 3.

Suppose dC(u1) = 4. Since NC(us) ∩ NC(v1) 6= ∅ by the degree
sequences, without loss of generality, we may assume x4 ∈ NC(us) ∩
NC(v1). Since dC(u1) = 4, xi ∈ NC(u1) for each 1 ≤ i ≤ 3. Then
C ′ = u1, x1, x2, x3, u1 is a 4-cycle with chord u1x2. Since u1 is an
endpoint of the longest path P1, u1 is not a cut-vertex of H. Thus
H − u1 is connected. Replacing C in C by C ′, we consider the new
H ′. Then P1[u2, us], x4, P2[v1, vt] is a longer path than P1 inH ′. This
contradicts (A3).

Suppose dC(u1) = 3. Then we may assume the degree sequence is
(4, 4, 3, 2) or (4, 3, 3, 3). First assume the degree sequence is (4, 4, 3, 2).
Since dC(u1) ≥ dC(us), we have dC(u1) = 3, dC(us) = 2 and
dC(v1) = 4. Without loss of generality, we may assume xi ∈ NC(u1)
for each 1 ≤ i ≤ 3. Then C ′ = u1, x1, x2, x3, u1 is a 4-cycle with
chord u1x2. Note u1 is not a cut-vertex of H. If x4 ∈ NC(us),
then since dC(v1) = 4, there exists a longer path than P1 in the new
H ′, a contradiction. Thus we may assume x4 6∈ NC(us). Note C
has a chord. Suppose x1x3 ∈ E(G). Assume x2 ∈ NC(us). Then
C ′ = u1, x3, x4, x1, u1 is a 4-cycle with chord x1x3. Since dC(v1) = 4,
x2 ∈ NC(us)∩NC(v1), and there exists a longer path than P1 in the
new H ′, a contradiction. Thus x2 6∈ NC(us). Since dC(us) = 2,
x1, x3 ∈ NC(us). Then C ′ = us, x3, x4, x1, us is a 4-cycle with
chord x1x3. Note us is not a cut-vertex of H. Since dC(v1) = 4,
x2 ∈ NC(u1) ∩ NC(v1). Then P−

1 [us−1, u1], x2, P2[v1, vt] is a longer
path than P1 in the new H ′, a contradiction. Suppose x2x4 ∈ E(G).



Assume x3 ∈ NC(us). Then C ′ = u1, x1, x4, x2, u1 is a 4-cycle with
chord x1x2. Since dC(v1) = 4, x3 ∈ NC(us) ∩ NC(v1). Then there
exists a longer path than P1 in the new H ′, a contradiction. Thus
x3 6∈ NC(us). By symmetry, x1 6∈ NC(us). Thus dC(us) ≤ 1. This
contradicts dC(us) = 2.

Next assume the degree sequence is (4, 3, 3, 3). In this case, we
have only to consider the degree sequence (3, 3, 3) for {u1, us, v1}..
Then dC(u1) = dC(us) = dC(v1) = 3. Thus |NC(us) ∩NC(v1)| ≥ 2.
Let xi ∈ NC(u1) for each 1 ≤ i ≤ 3. Suppose x1x3 ∈ E(G). If
xi ∈ NC(us) ∩NC(v1) for some i ∈ {2, 4}, then there exists a longer
path than P1, a contradiction. Thus x1, x3 ∈ NC(us) ∩ NC(v1).
Suppose x4 ∈ NC(us) and x2 ∈ NC(v1). Then C ′ = us, x4, x1, x3, us
is a 4-cycle with chord x3x4, and P−

1 [us−1, u1], x2, P2[v1, vt] is a longer
path than P1 in the new H ′, a contradiction. Suppose x2 ∈ NC(us)
and x4 ∈ NC(v1). Let w ∈ X − {u1, us, v1}. Then dC(w) = 4 by
our assumption of the degree sequence (3, 3, 3). Assume w ∈ V (P1).
Then P1[u1, us], x2, u1 is a cycle with chord wx2, and v1, x1, x4, x3, v1
is the other cycle with chord x1x3. Thus we have two distinct chorded
cycles in 〈H ∪ C〉, and G contains k vertex-disjoint chorded cycles,
a contradiction. Assume w 6∈ V (P1). Then C ′ = us, x3, x4, x1, us
is a 4-cycle with chord x1x3. Since dC(w) = 4, w, x2, P1[u1, us−1]
is a longer path than P1 in the new H ′, a contradiction. Suppose
x2x4 ∈ E(G). Note |NC(us)∩NC(v1)| ≥ 2. If xi ∈ NC(us)∩NC(v1)
for some i ∈ {1, 3, 4}, then there exists a longer path than P1, a
contradiction. Thus |NC(us) ∩NC(v1)| ≤ 1, a contradiction.

By Claims 1, 3 and Lemma 10, H contains an independent set X
of four vertices such that dH(X) ≤ 8. By Claim 3 and Lemma 13,

dG(X) = dC (X) + dH(X) ≤ 12(k − 1) + 8 = 12k − 4.

This contradicts the σ4(G) condition. This completes the proof of
Theorem 5.
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