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Section 3.7 More About Counting Trees — Using Generating Functions

In this section, our fundamental goal is to introduce one of the principal tools used to
count combinatorial objects, namely generating functions.

To begin with, what is a generating function? Suppose we have a sequence of

numbers (c;); then the power series Y ¢ x' is called the generating function for the
i=0

sequence. Examples from calculus and algebra demonstrate that a power series can be

used to approximate a function of x. Our goal is to use the tools already developed for

series to help us count objects. Our purpose is not to present a complete development of

generating functions, but rather to show the reader already familiar with series how they

can be used for counting.

Suppose we consider the question of the number of binary trees T possible on a set of
n vertices. Let’s call this number b,. Clearly, if n = 1, by = 1. Forn > 1, we can
select one vertex to be the root, and the remaining n — 1 vertices can be partitioned into
those in the left and right subtrees of 7. If there are j vertices in the left subtree and
n — 1 — jvertices in the right subtree, then the number of binary trees we can form on n
vertices depends on the number of ways we can build the left and right subtrees; that is
b, depends on b; and b, _1_;. To determine exactly how many binary trees b, there are,
we must sum the products b;b,_q_; for j =0, 1,..., n — 1. This gives us the
following recurrence relation:

b, =bob,_1 +b1b,_»+ - + b,_1byg.
We now illustrate how to solve this recurrence relation using generating functions.
Suppose our generating function g(x) = Y b;x'. When we square g(x), we obtain

i=0
the following:

() =gx) xgx) = X (Y bj by ) x"

nz0 0<j<n
= Z (bObn + blbn—l + b2bn—2 + - + bnbO) x™
n=0

But on careful examination we see that the coefficient of x in g2(x) is nothing but
b, +1. Hence, we obtain another relationship, namely

1 + xgz(x) = g(x).
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But this equation is quadratic' in g(x), and so it yields the solution

1 -1 - 4x
glx) = P :
Now, to obtain a series expansion for g(x), we use the binomial generating function
1+2)" " =1+rz+r( r-1 ) 22 + 1 ( (r=1)(r=-2) yz3d 4+ oo

6
We write the coefficients of this power series using the definition of generalized binomial
coefficients, where for any real number r and integer k,
(" ) _or(r=1)r-2)---
k7= k!

while it has value zero if k¥ < 0 and 1 when k = 0. Thus, we can rewrite the binomial
generating function as

(r-k+1) Jor k > 0,

(1+2z) =Y (;‘)zk.

k20
Substituting this function in our expression for g( x ), we obtain

1 72
s = (1= 5 () (-40)%),

k20
Changing the dummy variable kto n + 1 and simplifying yields
1 )
= — ]_.... _4 n+1
g0) = o (1= 2 () (=40
1 % 2n+1
= - 3 Z ( )(_1)n2n+xn
2x niteo M1

)
— Z ( ntl )( -1 )n22n+1xn.
n20

But this process yields coefficients of x" which match b, in our original definition of
g(x). Thus, we have that,

bn = (nl./:.l )(_1)n22n+1.
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Using exercise 26, we can simplify this expression for b, to obtain:

1 2n
bn = n+1(n )

Exercises

1. Show that if T = (V, E) is a tree, then for any e € E, T — e has exactly two
components.

2. Show that any connected graph on p vertices contains at least p — 1 edges.
Show that if 7" is a tree with A(7T) = k, then T has at least k leaves.

4. In a connected graph G, a vertex v is called central if mx%; ) d(u, v) = rad(G).
ue

Show that for a tree T, the set of central vertices consists of either one vertex or
two adjacent vertices.

5. Show that the sequence di, d, ,..., d, of positive integers is the degree

p
sequence of a tree if, and only if, the graph is connected and Y, d; = 2(p — 1).
i=1

6. Show that the number of end vertices in a nontrivial tree of order n equals
2 + >, (degv;—2).
degv; 23

7. Determine the time complexity of Kruskal’s algorithm.

8.  What happens to the time complexity of Kruskal’s Algorithm if we do not presort
the edges in nondecreasing order of weight?

9. Apply Kruskal’s algorithm to the graph:




