1 Counting and Stirling Numbers

Natural Numbers: We let N = {0,1,2,...} denote the set of natural numbers.
[n]: For n € N we let [n] ={1,2,... ,n}.

Sym: For a set X we let Sym(X) denote the set of bijections from X to X.

Permutations: We define S, = Sym([n]) and we call elements of S, permutations. If

T € S, we may view 7 as the sequence (m(1),7(2),...,7(n))
Falling Factorial: For n, k € N the falling factorial is (n), = n(n—1)(n—2) ... (n—k+ 1).
(1): For n,k € N we let (%) denote the number of k element subsets of [n].

Observation 1.1 (}) = (;;_"k')—,k,

Proof: Construct a k element subset K C [n] by taking a permutation 7 € S, and then letting
K De the first & elements in the corresponding sequence. The total number of permutations
is n! and each set of size k is obtained from exactly k!(n — k)! permutations since the first &

and last n — k elements may be freely permuted among themselves. Ol
((})): We let ((7)) denote the number of multisets with ground set [n] and size k.

Observation 1.2 ((Z)) = ('“Iﬁ;l)

Proof: Consider-a sequence-of length &k +n— 1 terms each of which is either o or | and so
that there are exactly k copies of o and n — 1 copies of |. For instance o] o o o [lo. We may
associate each such sequence with a multiset with ground set [n] and size k by treating the
number of copies of o in between the i** and (i + 1)* copies of | as the number of copies of ¢
in the multiset. (so the example is associated with {1,23 4}). This is a correspondence, so

the total number of multisets of the given type is equal to the number of sequences, but this

k4+n—1

o ) since we may choose any n — 1 of the k +n — 1 terms to be a |. a

is just (

Partitions of Sets: If X is a set, a partition of X is a set P with the property that
AN B = ) whenever A, B € P are distinct, UsepA =X and 0 & X. If A € P we call A a
block of P.

S(n, k): For n,k € N we let S(n, k) denote the number of partitions of [n] into k blocks.



Observation 1.3 S(n,k) =kS(n—1,k)+S(n—1,k — 1)

Proof: Every partition of [n] into & blocks is either obtained from a partition of [n— 1] into k
blocks by inserting n into one of the & blocks (this can be done in k& ways) or from a partition
of [n — 1] into & — 1 blocks by adding the new block {n}. This correspondence vields the
desired equality. (]

Partitions of Numbers: If n € N a partition of n is a sequence \ = (A1, A9, ..., Ag) such
that Ay > Xy > ...\, and Zf:l Ai = n. We say that A is a partition of n into k parts. The
Young Diagram of a partition of n is a collection of left-aligned boxes so that the number in

the 7" row is \;.
pi(n): For k,n € N we let py(n) denote the number of partitions of 7 into k parts.
Observation 1.4 pi(n) = pe_1(n — 1) + pp(n — k)

Proof: The number of partitions A = (A, .. ., Ax) of n into k parts is equal to the number of
such partitions with A\;, = 1 plus the number with A\, > 1. The first set is in correspondence
with the number of partitions of n — 1 (just remove the last element), while the second is in

correspondence with the number of partitions of n — k into k parts (decrease each \; by 1).

O

Indistinguishable Domain & Codomain: We say that two functions f,g : N — X
are equivalent with N indistinguishable if there exists 7 € Sym(N) so that for = g and

equivalent with X indistinguishable if there exists o € Sym(X) so that o o f = g (and
similarly for N and X indistinguishable).

Theorem 1.5 The following table lists the number of equivalence classes of functions from

N to X where [N| =n and | X| = z with the indicated properties:

Elts. of N | Elts. of X | Any Function Injections Surjections
dist. dist. " () z!S(n,x)
wdis. | di. | (() R (=)
dist. indist. S(n, 1)+ S(n,2) |1ifn<z S(n,x)
..+ 8S(n,x) 0ifn>x
indist. indist. pi(n) + pa(n) lifn<z pz(n)
ot pa(n) Oifn>uz
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Proof: The identities for functions with N and X indistinguishable are fairly straightforward,

with the last one following from the observation that every surjection f: N — X yields a
partition of N as {f~'(1), f7'(2),... f~*(z)} and each such partition gives rise to exactly z!
such functions. When N is indistinguishable and X is distinguishable an arbitrary function
J N — X corresponds to a multiset of size n with ground set X where the element z € X
appears exactly [f~!(z)| times. If we add the constraint that f is injective, then we are
simply counting sets instead of multisets. Finally, our surjections f: N — X correspond
to multisets where every element of X appears at least once. However, by removing one
copy of each element, the number of such multisets is precisely equivalent to the number of
arbitrary multisets with ground set X and size n — . When N is distinguishable and X is
indistinguishable, we have a correspondence between partitions of N into exactly x blocks
and surjections from N to X. The number of arbitrary functions from N to X is the sum of
the number with range of size 1, size 2, up to size z (and so the result follows as before), and
finally any two injections are equivalent so the answer for this box is 1 if such an injection
exists and 0 otherwise. Finally, if both N and X are indistinguishable, then our surjections
correspond precisely to partitions of the number n into z parts. The number of arbitrary
functions from N to X is the sum of the number with range of size 1, size 2, up to size z
(and so the result follows as before), and then any two injections are equivalent so this box
is as given. (]

Proposition 1.6 S(n, k) = & 320 (—1)¥(¥)n

3

Proof: Let N, K be sets with [N| = n and |K| = k. For a subset H C K let f(H) denote
the number of functions from N to K \ H. Now using the above chart, inclusion-exclusion

and the substitution ¢ = k — j we find

klS(n, k) = #{f : N — K : f is a surjection}
= > (1))

HCK



Proposition 1.7 2" = Y7 S(n, k)(z)x

Proof: The left hand side of the above equation is the total number of functions from N to
X where |[N| = n and |X| = z. By counting these functions according to the size of their

range we get
" =#{f: N - X}

=Y H#{ N X |f(N)] =k}

= ; (i) E1S(n, k)

= (2)pS(n, k) O
k=0
Cycles: If f € Sym(X) a cycle of f is a sequence (z1,3,...,x}) with the property that
f(w:) =241 for 1 <70 < k—1and f(xz) = 2;. We consider two cycles equivalent if one is a
cyclic shift of the other. A cycle representation of f is a list of cycles of f including exactly

one from each equivalence class.

c(n, k): For n,k € N we let ¢(n, k) denote the number of permutations of [n] with exactly k
cycles. Note that c(0,0) =1 but ¢(s,0) = ¢(0,t) whenever s,t > 0.

Observation 1.8 c(n, k) = (n—1)c(n — 1,k) +c(n -1,k — 1)

Proof: Every permutation of [n] with k cycles is either obtained from a permutation of
[n — 1] with k cycles by inserting n into any of the n — 1 positions immediately following
some number (which can be done in n — 1 ways) or from a permutation of [ — 1] with &k — 1
cycles by adding a new cycle (n). This correspondence gives the above equation. O
s(n,k): We define the Stirling number of the first kind by s(n, k) = (=1)"*c(n, k)

Proposition 1.9
1) Yiocmk)ar =z(z+1)(z+2)...(z+n—-1)

(i) (2)n =2 k—o8(n, k)z*



)

Proof: For (i) we shall consider the left hand side and the right hand side as polynomials
in z. Let F,(x) denote the right hand side and define the coefficients b(n, k) by the rule
Fo(z) = 325 b(n, k)z* where b(0,0) = 1 and b(s,0) = b(0,t) = 0 whenever s, > 0. Now

we have

Xn:b(n, k)z* = F,(z)
k=0

=(x+n—1)F,_1(z)

|
—
3‘
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=) bn—1LE)z" +(n—1)Y bln—1,k)2*
=0
b(n—1,k—1)a"+(n—1)Y bn—1k)az"
=0

kol

3 |l

=}
g
I
—

I

a
It

1

&

So we find that b(n, k) = b(n — 1,k — 1) + (n — 1)b(n — 1, k) for n, k > 1. Tt follows that the
terms b(n, k) satisfy the same recurrence as c(n, k) and are equal whenever either input is
zero, so we find that b(n, k) = c(n, k). This completes the proof of (i).

For (ii) we have

n n

Flx]: For a field F we let Flz] denote the ring of polynomials with indeterminate z and

coefficients in F.

Bases of C[z]: We define B, to be the basis of C[z] given by By = {1,722, 2,2 ,.. .} and
B; to be the basis of C[z] given by {1, (z), (z)s, (2)s,...}.
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Proposition 1.10 Regard s = {s(n,k)}pxen and S = {S(n,k)}nren as infinite matrices.

Then we have:

(i) S is the basis transformation matriz from By and B;.
(ii) s is the basis transformation matriz from By to Bs.
(iii) S and s are inverse matrices.

(iv) > p,. S(n,k)s(k,m) = 0y

Proof: Parts (i) and (ii) follow immediately from Propositions 1.6 and 1.9. Part (iii) is an

immediate consequence of (i) and (i), and (iv) is a restatement of (iii). O
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The text mentions Stirling numbers briefly but does not go into them in any depth. However, they are
fascinating numbers with a lot of interesting properties, so I thought I would post a handout about them.
This is just for fun and mainly for those who may be interested. You are not required to know the material
of this handout, except you should at least know the definition of the Stirling numbers of the second kind
and how they are used in counting. That material is in your text.

Stirling Numbers of the First Kind

The falling factorial polynomial of degree n is
(@) =z(@—-1)(z-2)(x—3)--- (—n+1),

a polynomial of degree n in one indeterminate z. If we evaluate the polynomial at m, we get the number of
n-permutations chosen from a set of size m:

m!

() =mim = 1) —2)(m ~3) - (m —n+1) =

= P(m,n).

Here are the first few of these polynomials.

(the empty product!)

The coefficients appearing in (z), are called Stirling numbers of the first kind. The coefficient of z* in (2)n
is denoted s(n, k), thus

n

()n = Z s(n, k)z".

k=0

The absolute value of s(n, k) is denoted |s(n, k)| and is called an unsigned Stirling number of the first kind.
The signs alternate, so s(n, k) = (—1)"F|s(n, k).

The signed and unsigned Stirling numbers of the first kind satisfy Pascal-like recurrence relations:
(i) s(n,
(i) s(n,0)=0foralln >1

(iii) s(n, k

(i) [s(n,n)| =1 for all n > 0

n)=1for alln > 0
)=s(n—Lk-1)—(n—1)-s(n—1,k)for 0<k <n

(i) |s(n,0)| =0foralln >1
(iil') [s(n, k)| =|s(n -1,k = 1)+ (n—1)-|s(n—1,k)| for 0 < k < n.

Arranging the numbers in Pascal-like triangles, the recurrences (iii) and (iii’) say how to obtain an interior
entry from the two entries immediately above it. For example, 35 = 11 +4 - 6.

1/5
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1 1
0 1 0 1
0 -1 1 0 1 1
0 2 -3 1 0 2 3 1
0 -6 11 -6 1 0 6 11 6 1
0 24 =50 35 -10 1 0 24 50 35 10 1
0 -—120 274 -225 85 -—15 1 0 120 274 225 85 15 1

The recurrence (iii) can be proved by observing that
(@)n = (@)na(z = n+1) = 2(2)n1 — (n— 1)(2)n-1,

so the coefficient of 2* in (), is the coefficient of z¥= in (z),_; less n — 1 times the coefficient of z* in
(Z)n—1-

Now here is an interesting fact: [s(n, k)| is the number of ways to seat n people around k circular tables
with at least one person at each table, where we consider two seatings to be equivalent if everyone has the
same left and right neighbor. The particular table one is assigned to is irrelevant; all that matters is the
partitioning of the people into tables and the circular ordering around the tables. If you know something
about finite permutation groups, it is the number of permutations of n objects with k cycles.

For example, [s(4,2)| = 11 is the number of ways to seat four people around two circular tables with no

table left empty.
b a C
(= (O O O
c

b d

In the left-hand diagram, we have seated three people at one table and one at another. There are 8 = 4 - 2
ways to do this, four ways to pick the lonely person and two circular permutations of the remaining three
people. In the right-hand diagram, we have seated two people at each table. There are three ways to do
this, since @ can be paired with either b, ¢, or d. (Switching tables does not matter.) There are 8 +3 = 11
seatings in all.

To prove the relationship between circular table seatings and falling factorials, we argue that the numbers of

seatings for various values-of n-and k satisfy the recurrence given by (i'), (ii’), and (iii’). As the recurrence

uniquely determines the function, it follows by induction that this number must equal |s(n, k)|. Certainly
there is only one way to seat n people at n tables with no empty tables, as this can only happen if there
is one person at each table, therefore (i) holds. There are no ways to seat n people at 0 tables, therefore
(ii’) holds. Finally, for (iii’), to add an nth person to obtain a seating at k tables, we either add a new table
with that new person alone to an existing seating of n — 1 people at k — 1 tables, giving the first term of
(iii"), or we insert that person into an existing seating of n — 1 people at & tables in any one of n — 1 possible
positions, giving the second term of (iii’).

Here are a few more interesting properties that are not hard to prove.
(iv) [s(n,1)|=(n—1)! forall n > 1

(v) k=0 s(n, k) =0

(V) ko Is(n, k)| = n!

Intuitively, (vi) says that the number of permutations of an n-element set is the sum over all k£ of the number
of permutations with k cycles. The property (iv) says that there are (n — 1)! permutations of an n-element
set with a single cycle. An alternative interpretation of (iv) is the number of ways to seat n people at one
table—there are n! permutations, but we must divide by n because n permutations give the same circular
seating.
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Stirling Numbers of the Second Kind

Stirling numbers of the second kind are denoted S(n,k). The number S(n,k) is the number of ways to
partition a set of size n into k nonempty sets. Equivalently, S(n, k) is the number of equivalence relations
on a set of size n.

These numbers also satisfy a Pascal-like recurrence:
(i) S(n,n)=1foralln >0
(ii) S(n,0)=0foralln>1
(iii) S(n,k)=8(n—-1,k—1)+k-S(n—1,k) forall 0 < k < n.

Intuitively, there is one equivalence relation on an n element set with n equivalence classes, namely the
identity relation; there are no equivalence relations on an n-element set with no equivalence classes for
n > 1; and to add a new element and have k classes, one can either add it to an equivalence class of an
existing equivalence relation with k classes in k possible ways or add it as a new singleton class to an existing
equivalence relation with k& — 1 classes.

There is a summation formula for S(n, k):

k L
S(n,k) = 17 Y(-1) (j) k= 35)"

To prove this, note first that it suffices to prove

k- S(n, k) = Ek:(—l)j (f) (k7)™

=0

The left-hand side is the number of surjective functions f : X — Y, where |X| = n and |Y| = k. This
is because such a function f is determined by the equivalence relation z = y iff f(z) = f(y) on X and
an assignment of a value in Y to each equivalence class. There are S (n, k) ways to choose an equivalence
relation on X with k equivalence classes and k! ways to assign values in Y to the equivalence classes.

It therefore suffices to prove that the number of surjective functions X — Y, where | X| = n and Y| =k, is
k
k .
>0 () k-3
§=0 J

We can do this using the inclusion-exclusion principle. We did not say much in class about the inclusion-
exclusion principle, but you have seen small instances of it in the homework for two and three sets:

|[AUB| = |A|+|B| - |AN B|
[AUBUC| = [A]+|B|+|C| - |[ANB|-|ANC| - |BNC|+|ANBNC|
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In general, let Y = {1,2,...,k}. Then

k

k
J Al =>4 - > AN Ayl + S ANA N AR~ [A NN A
=1

i=1 1<i<j<k 1<i<j<m<k

This can be proved by induction on %.
To apply this to the problem at hand, let X = {1,2,...,n} and ¥ = {1,2,...,k}. Fori € Y, let

Ai={f: X =Y |Vze X f(z) #1i}.
Then Ule Aj; is the set of functions f : X — Y that are not surjective. Also, for BC Y, |B| = j,

NAi={f:X>Y|VzeX fz) Y - B} [V Ail =Y = BI" = (k - j)".
1€B i€B

Thus

Il
™=

k
UAl=3 07+ 37 1N 4

j=1 BCY i€B
|Bl=j
k -
=N (k-
Jj=1 BCY
|Bl=3

Il

: e (H -

J

The number of surjective functions is the total number of functions minus the number of non-surjective

k

functions, or

e —ij (o=
e +i 29 (5) -
- i 17 (5w -

7

= Al =

i=1

I

Another interesting property of the Stirling numbers of the second kind is

m® =" 8(n,k)P(m, k) = > S(n, k) (m)s. 1)
k=0 k=0

Intuitively, there are m™ functions from an n-element set to an m-element set. Bach such function f
determines an equivalence relation = = y iff f (z) = f(y). We can first choose the equivalence relation on
the n-element set, then choose the values for the elements of each equivalence class. There are S(n, k) ways
to choose an equivalence relation with k equivalence classes in the first step, and there are P(m, k) ways to
choose the values for the k equivalence classes in the second step. Thus there are S(n, k)P(m, k) ways to
choose a function with k equivalence classes, therefore Y v S(n, k)P(m, k) functions in all.



CS2800 Fall 2013 Stirling Numbers 5/5

Relationship between Stirling Numbers of the First and Second Kinds

If you have taken linear algebra, you will appreciate this part. The polynomials in one variable form an
infinite-dimensional vector space. The usual basis for that space is the set of monomials 1,z,22,2% ... . The
polynomials of degree m or less form a subspace of dimension m + 1 with basis 1, z, z2, ... ™.

There is another basis for the space of all polynomials, namely (), ()1, ()2, ()3, . . . . It is also fairly clear
that ()o, ()1, (2)2; ..., (¢)m form a basis for the polynomials of degree m. We have already seen that

(@)= s(n,k)z",

k=0

e

so the Stirling numbers of the first kind s(n,k) for 0 < k < m, arranged in an (m + 1) x (m+ 1)
triangular matrix, form a linear transformation that transforms the basis 1,z,2%,...,2™ to the basis

(CL’)O, ("I;)h (x)Q’ B (I)m

1 0 0 0 0 0 o] [ 17 T (0]
0 1 0 0 0 0 0 x ()1
0 -1 1 0 0 0 0 z? ()2
0o 2 -3 1 0 0 0 3 | = | (z)3
0 -6 11 -6 1 0 0 at ()4
0 24 -5 35 -10 1 0 z° (z)s

[0 —120 274 -225 85 —15 1| | 2% | | (2)s |

Now the Stirling numbers of the second kind transform the space in the inverse direction. The property (1)
holds for all m, and two polynomials of degree n that agree on n + 1 inputs agree everywhere, therefore

& = > S(n, k) ().

k=0

This says that the Stirling numbers of the second kind S(n, k) for 0 < k < m, arranged in an (m+1) x (m+1)

triangular matrix, form a linear transformation that transforms the basis (z)o, ()1, (%)2, ..., (£)m to the basis
1,z,22,..., ™.
[1 0 0 0 0 0 0] [(@o] [ 1]
01 0 0 0 0 O (@)1 z
01 1 0 0 0 0 ()2 z?
001 3 1 0 0 0 (@)s | = | 28
01 7 6 1 0 0 ()4 zt
01 15 25 10 1 0 (x)s 25
[0 1 31 9 65 15 1| | (x)s | | ° |

Thus the two matrices are inverses:

[1 0 0 0 0 0 0] 100 0 o0 o00o0] [10000°00]
0 1 0 0 0 0 0 01 0 0 0 0 0 010000O
0 -1 1 0 0 0 0 01 1 0 0 0 0 0010000
0 2 -3 1 0 0 0 01 3 1 0 0 O0|=|0001000
0 -6 11 -6 1 0 0 01 7 6 1 00 0000100
0 24 -5 35 -10 1 0 01 15 25 10 1 0 0000O0T10

| 0 —120 274 -225 85 15 1] |0 1 31 90 65 15 1| [0 0 0 0 0 0 1




