OFFPRINTS FROM THE THEORY OF APPLICATIONS OF GRAPHS

EDITED BY Dr. Gary Chartrand

COPYRIGHT © 1981 BY JOHN WILEY & SONS, INC.

Bigraphical Sets

G. CHARTRAND A.D. POLIMENI R.J. GOULD C.E. WALL*

ABSTRACT

10

Two finite nonempty sets S_1 and S_2 of positive integers are called bigraphical if they are the degree sets of the partite sets of a bipartite graph. It is shown that every two such sets are bigraphical. The minimum order of a corresponding bipartite graph is determined for certain sets S_1 and S_2 .

Bigraphical sets.

The degree set of a graph G is the set of degrees of the vertices of G. A finite nonempty set S of positive integers is called graphical if there exists a graph whose degree set is S. In [1] it was shown that every finite nonempty set of positive integers is graphical and the minimum order of a graph with a given degree set was determined.

The degree sets of a bipartite graph G with partite sets V_1 and V_2 are the sets $S_1' = \{\deg v | v \in V_1\}$ and $S_2 = \{\deg v | v \in V_2\}$. Two finite nonempty sets S_1 and S_2 of positive integers are called bigraphical if they are the degree sets of a bipartite graph. It is the object of this article to show that every two finite nonempty sets of positive integers is bigraphical and to determine, for certain pairs of sets S_1 and S_2 , the minimum order of a bipartite graph whose degree

sets are \mathbf{S}_1 and \mathbf{S}_2 . We begin with the first of these objectives.

Proposition 1. Every two finite nonempty sets of positive integers are bigraphical and can be realized by a connected graph.

Proof. Let $S_1 = \{a_1, a_2, \dots, a_m\}$ and $S_2 = \{b_1, b_2, \dots, b_n\}$ be sets of positive integers, where $m \le n$. For $1 \le i \le m$, let G_i denote the complete bipartite graph $K(a_i, b_i)$ with partite sets U_i and V_i , where $|U_i| = b_i$ and $|V_i| = a_i$. If m < n, then for $m + 1 \le i \le n$, let $G_i = K(a_1, b_i)$ with partite sets U_i and V_i , where $|U_i| = b_i$ and $|V_i| = a_1$. Now let $G = \bigcup_{i=1}^n G_i$. If we let $U = \bigcup_{i=1}^n U_i$ and $V = \bigcup_{i=1}^n V_i$, i=1

then G may be considered as a bipartite graph with partite sets U and V and degree sets S_1 and S_2 . To obtain a connected graph, delete an edge u_iv_i in G_i and $u_{i+1}v_{i+1}$ in $G_{i+1}(i=1,2,\ldots,n-1)$ and insert u_iv_{i+1} and $u_{i+1}v_i$.

In view of Proposition 1, for finite nonempty sets $S_1 = \{a_1,a_2,\ldots,a_m\}$ and $S_2 = \{b_1,b_2,\ldots,b_n\}$ of positive integers, let $\mu(S_1;S_2) = \mu(a_1,a_2,\ldots,a_m;b_1,b_2,\ldots,b_n)$ denote the minimum order of a bipartite graph having degree sets S_1 and S_2 . We now investigate the numbers $\mu(S_1;S_2)$ for certain finite nonempty sets S_1 and S_2 of positive integers. For the remainder of this article we assume that if $S_1 = \{a_1,a_2,\ldots,a_m\}$ and $S_2 = \{b_1,b_2,\ldots,b_n\}$ then $a_1 < a_2 < \ldots < a_m$ and $b_1 < b_2 < \ldots < b_n$. The following observation is elementary but useful. Proposition 2. If $S_1 = \{a_1,a_2,\ldots,a_m\}$ and $S_2 = \{b_1,b_2,\ldots,b_n\}$

are sets of positive integers, then $\mu(S_1; S_2) \geq a_m + b_n$.

If \mathbf{S}_1 and \mathbf{S}_2 have the same cardinality, then $\mu(\mathbf{S}_1;\mathbf{S}_2)$ can be evaluated.

Theorem 3. If $S_1 = \{a_1, a_2, \dots, a_n\}$ and $S_2 = \{b_1, b_2, \dots, b_n\}$ are nonempty sets of positive integers, then $\mu(S_1; S_2) = a_n + b_n$. Proof. By Proposition 2, $\mu(S_1; S_2) \geq a_n + b_n$. To show that $\mu(S_1; S_2) \leq a_n + b_n$, it suffices to show the existence of a bipartite graph of order $a_n + b_n$ having degree sets S_1 and S_2 . Let G be a bipartite graph with partite sets U and W such that $U = U_1 \cup U_2 \cup \dots \cup U_n$ and $W = W_1 \cup W_2 \cup \dots \cup W_n$, where $|U_1| = a_1$ and $|U_1| = a_1 - a_{1-1}(2 \leq i \leq n)$ and where $|W_1| = b_1$ and $|W_1| = b_1 - b_{1-1}(2 \leq i \leq n)$. To construct the edge set of G we join each vertex of $W_1(1 \leq i \leq n)$ to each of the vertices in $U_1, U_2, \dots, U_{n-i+1}$. Each vertex in $W_1(1 \leq i \leq n)$ has degree a_{n-i+1} while each vertex in $U_1(1 \leq i \leq n)$ has degree b_{n-i+1} , completing the proof.

If $|S_1| \neq |S_2|$ we have no general formula for $\mu(S_1;S_2)$. However, Proposition 1 yields an obvious upper bound on $\mu(S_1;S_2)$ and with the aid of Theorem 3 this bound can be improved. Corollary 4. If $S_1 = \{a_1, a_2, \dots, a_m\}$ and $S_2 = \{b_1, b_2, \dots, b_n\}$

are sets of positive integers where m < n and t is a positive integer, then

(I)
$$\mu(S_1; S_2) \le ta_m + \sum_{i=1}^{t} b_{im}$$
 if $n = tm$ or,

(II)
$$\mu(S_1; S_2) \le ta_m + \sum_{i=1}^{t} b_{im} + a_r + b_n$$
 if $n = tm + r$, $0 < r < n$.

Proof. For $1 \le i \le t$ let $B_i = \{b_{(i-1)m+1}, b_{(i-1)m+2}, \ldots, b_{im}\}$ and if n = tm + r, 0 < r < n, let $B_{t+1} = \{b_{tm+1}, b_{tm+2}, \ldots, b_n\}$. By Theorem 3, there exists a bipartite graph G_i of order $a_m + b_{im}$ with degree sets S_1 and $B_i(1 \le i \le t)$, and a bipartite graph G_{t+1} with degree sets B_{t+1} and $\{a_1, a_2, \ldots, a_r\}$.

If n = tm, let $G = \bigcup_{i=1}^{t} G_i$ and if n = tm + r let

 $G = \bigcup_{i=1}^{t+1} G_i$. Then G is bipartite and has order $ta_m + \sum_{i=1}^{t} b_{im}$,

if n = tm, and G has order $ta_m + \sum_{i=1}^t b_{im} + a_r + b_n$ if n = tm + r and G has degree sets S_1 and S_2 . As in Proposition 1 we may modify G to obtain a connected graph.

In particular, note that Corollary 4 implies that $\mu(a;b_1,b_2,\dots,b_n) \leq na + \sum_{i=1}^n b_i \quad \text{and if} \quad a=1 \quad \text{it is easily seen that}$

$$\mu(1;b_1,b_2,...,b_n) = n + \sum_{i=1}^{n} b_i$$
.

In what follows we deal with the case $|S_1|=1$ and $|S_2|=2$. Theorem 5. If a and b are integers such that $1 \le a < b$ then

$$\mu(a;a,b) = \begin{cases} a+b+1 & \text{if } 1 < a < b-1 \text{ and } (b-a) | b, \\ a+b+2 & \text{otherwise} \end{cases}$$

Proof. We note that $\mu(a;a,b) \leq a+b+2$ since the bipartite graph G with partite sets V_1 , containing b+1 vertices of degree a, and V_2 , containing a vertices of degree b and one vertex of degree a, can easily be constructed. Also, by Proposition 2, $\mu(a;a,b) \geq a+b$.

Let G be a bipartite graph with partite sets V_1 and V_2 with degree sets $S_1 = \{a\}$ and $S_2 = \{a,b\}$ respectively and let $\big|V(G)\big| = \mu(a;a,b)$. Then $\big|V_1\big| \geq b$ and $\big|V_2\big| \geq a$. Let V_2 contain x vertices of degree a.

Suppose $\mu(a;a,b)=a+b$. Then $|V_1|=b$ and $|V_2|=a$. By counting the number of edges incident with the vertices in

each partite set we arrive at the equation ab = ax + b(a-x). But then, ab = ab + (a-b)x < ab, a contradiction. Thus, $\mu(a;a,b) > a + b$.

Now, suppose $\mu(a;a,b)=a+b+1$. Then there are only two possibilities for the cardinalities of V_1 and V_2 . Case 1. Suppose $|V_1|=b+1$ and $|V_2|=a$. Then the equation a(b+1)=ax+b(a-x) must hold. But this implies that a(b+1)=ab+(a-b)x < ab, again a contradiction. Case 2. Suppose $|V_1|=b$ and $|V_2|=a+1$. Then we see that the equation ab=ax+b(a+1-x) must hold, where $1 \le x \le a$. Thus, b=(b-a)x so that x=b/(b-a) and hence $b/(b-a) \le a$. Since x is an integer, (b-a) must divide b. By hypothesis, a < b, moreover, $a \ne b-1$, for otherwise $b/(b-(b-1))=b \le a$, implying that a < b-1. Further, $a \ge 1$ implies that $b \ge 3$. Thus, since (b-a) divides b, we see that a > 1. Clearly, if these conditions fail, then $\mu(a;a,b)=a+b+2$.

If these conditions are satisfied, we construct a bipartite graph G with partite sets $V_1 = \{v_0, v_1, \dots, v_{b-1}\}$ and $V_2 = \{u_0, u_1, \dots, u_a\}$. Join each vertex $u_i (0 \le i \le x-1)$ to each of the vertices v_{ia} , v_{ia+1} , \cdots , $v_{(i+1)a-1}$ (subscripts expressed modulo b). Then join u_x to each of the vertices v_{xa} , v_{xa+1} , \cdots , v_{xa+b-1} . Continue to cyclically join each of the remaining vertices u_{x+1} , \cdots , u_a to the vertices of v_1 (so that each v_1 , v_1 , v_2 , v_3 , v_4

For a real number x, let $\{x\}$ denote the smallest integer not less than x. Further, let $\{x\}_e$ (respectively $\{x\}_o$) denote the smallest even integer (odd integer) not less than x.

Although no general formula is known for $~\mu(a;b_1^{},b_2^{})$, we can determine the value of $~\mu(2;b_1^{},b_2^{})$.

Theorem 6. Let b_1 and b_2 be integers with $1 \le b_1 \le b_2$ and $x = b_2/b_1$.

- (I) If b_1 is even and b_2 is odd, then $\mu(2;b_1,b_2) = b_2 + b_1/2 + 3.$
- (II) If b_1 and b_2 are even, then $\mu(2;b_1,b_2) = \min\{b_2 + b_1/2 + 3, \frac{\{x\}b_1 + b_2}{2} + \{x\} + 1\}.$
- (III) If b_1 is odd and b_2 is even, then $\mu(2;b_1,b_2) = \min\{b_1+b_2+4, \frac{\{x\}_e b_1+b_2}{2}+\{x\}_e+1\} \ .$
- (IV) If b_1 and b_2 are odd, then $\mu(2;b_1,b_2) = \min\{b_1 + b_2 + 4, \frac{\{x\}_0 b_1 + b_2}{2} + \{x\}_0 + 1\}.$

Proof. Suppose b_1 is even and b_2 is odd. Note that $\mu(2;b_1,b_2) \leq b_2 + b_1/2 + 3$ since a bipartite graph with one vertex of degree b_1 and two vertices of degree b_2 in one partite set and $b_2 + b_1/2$ vertices of degree 2 in the other partite set exists.

To see the reverse inequality holds, note that at least two vertices of degree $\,b_2^{}$ and hence at least $\,b_2^{}+b_1^{}/2$ vertices of degree 2 are necessary.

(II). Suppose that b_1 and b_2 are even. As above, there exists a bipartite graph of order $b_2 + b_1/2 + 3$ having degree sets $\{2\}$ and $\{b_1, b_2\}$. It is also straightforward to con-

struct a bipartite graph of order $\frac{\{x\}b_1+b_2}{2}+\{x\}+1$ with one vertex of degree b_2 , $\{x\}$ vertices of degree b_1 and $(\{x\}b_1+b_2)/2$ vertices of degree 2. Thus,

$$\mu(2;b_1,b_2) \leq \min\{b_2+b_1/2+3, \frac{\{x\}b_1+b_2}{2} + \{x\}+1\}.$$

Now suppose that G is a bipartite graph with degree sets {2} and {b, b,}. If G has exactly one vertex of degree b_2 , then G has at least $\{x\}$ vertices of degree b_1 and thus, at least $({x}b_1 + b_2)/2$ vertices of degree 2. Thus the order of G is at least $\frac{\{x\}b_1 + b_2}{2} + \{x\} + 1$. If on the other hand, G has at least two vertices of degree b_2 , then ${\tt G}$ has at least one vertex of degree ${\tt b}_1$ and thus at least $b_2 + b_1/2$ vertices of degree 2, implying G has order at least $b_2 + b_1/2 + 3$, thus producing the desired result. (III). Suppose b_1 is odd and b_2 is even. It is easy to construct a bipartite graph of order $b_1 + b_2 + 4$ that has two vertices of degree b_1 , two vertices of degree b_2 and $b_1 + b_2$ vertices of degree 2. Furthermore, a bipartite graph of order $\frac{\left\{x\right\}_{e}^{b_{1}+b_{2}}}{2}+\left\{x\right\}_{e}^{b_{1}+b_{2}}$ with one vertex of degree b_{2} , $\left\{x\right\}_{e}^{b_{1}+b_{2}}$ vertices of degree b_1 and $\frac{\{x\}_e b_1 + b_2}{2}$ vertices of degree 2 also exists.

Now suppose that G is a bipartite graph having degree sets $\{2\}$ and $\{b_1,b_2\}$. If G has exactly one vertex of degree b_2 , then G has at least $\{x\}_e$ vertices of degree b_1 , since b_1 is odd and b_2 is even. But then G has at least $\frac{\{x\}_e b_1 + b_2}{2}$ vertices of degree 2, implying G has order at least $\frac{\{x\}_e b_1 + b_2}{2} + \{x\}_e + 1$. If G contains at least two vertices of degree b_2 , then G must contain at least two vertices of degree b_1 and, hence, at least $b_1 + b_2$ vertices of degree 2. Therefore, G has order at least $b_1 + b_2 + 4$. It is easily seen that if G contains more than two vertices of degree b_2 , then G has order greater than $b_1 + b_2 + 4$, giving the result. (IV). Suppose that b_1 and b_2 are odd. In a manner analogous

to (III), the inequality $\mu(2;b_1,b_2) \leq \min\{b_1+b_2+4, \frac{\{x\}_ob_1+b_2}{2} + \{x\}_o+1\}$ must hold. To verify the lower bound, let G denote a bipartite graph having degree sets $\{2\}$ and $\{b_1,b_2\}$. If G has exactly one vertex of degree b_2 , then G has at least $\{x\}_o$ vertices of degree b_1 since b_1 and b_2 are odd. Thus, G has at least $(\{x\}_ob_1+b_2)/2$ vertices of degree 2, and hence, the order of G is at least

 $\frac{\{x\}_{0}b_{1}+b_{2}}{2}+\{x\}_{0}+1$. If G has exactly two vertices of degree b_{1} and therefore, at least $b_{1}+b_{2}$ vertices of degree 2. Hence, the order of G is at least $b_{1}+b_{2}+4$. Finally, if G has at least three vertices of degree b_{2} , it must have at least one vertex of degree b_{1} and so, at least $(3b_{2}+b_{1})/2$ of degree 2 and order at least $(3b_{2}+b_{1})/2+4$. However, since $b_{1} < b_{2}$,

 $b_1 + b_2 + 4 < \frac{3b_1 + b_2}{2} + 4 , \qquad \text{so that}$ $\mu(2;b_1,b_2) \geq \min\{b_1 + b_2 + 4, \frac{\{x\}_o b_1 + b_2}{2} + \{x\}_o + 1\} ,$ completing the proof.

We note that in Theorem 6, (II) - (IV), it is possible to find pairs b_1 , b_2 , so that the minimum is attained by either of the two expressions.

REFERENCES

 S.F. Kapoor, A.D. Polimeni and C.E. Wall, Degree sets for graphs, Fund. Math., XCV(1977), 189-194.

Western Michigan University, Emory University, S.U.N.Y. College at Fredonia, and Old Dominion University.