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Spanning Tree Edge Densities

Michael Ferrara! Ronald Gould *  Charles Suffel?

Abstract

In the design of reliable and invulnerable networks, it is often a
goal to maximize the number of spanning trees of a graph with a given
number of vertices and edges. It is therefore logical to investigate the
importance of individual edges to the number of spanning trees of a
graph. Given a graph G, the spanning tree edge density or hereafter,
simply density, of an edge e in G is the fraction of the spanning
trees of G that contain e. Several bounds on the densities of the
edges in a graph are given, including a lower bound on the maximum
density based solely on edge-connectivity. It is also shown that the
addition of edges to a graph decreases the densities of the preexisting
edges, an important result from a vulnerability standpoint. Finally,
some challenging open problems are presented as related to this new
parameter.

1 Preliminaries

We consider undirected graphs G, possibly with multiple edges, and denote
the vertex and edge sets of G by V(@) and E(G) respectively. For any v
in V(@) let N(v) be the neighborhood of v. Also, we will denote the edge-
connectivity of @ by A(G). The shorthand P, Cn, Kp and Kp s will be
used to denote the path, eycle, complete and complete bipartite graphs on
the indicated number of vertices. A good reference for any other undefined
terms is [3].

A spanning tree T of G is a connected acyclic spanning subgraph
of G. Let T(G) denote the set of spanning trees of G and define t{(G) =
|T(G)]. In general, it is not difficult to calculate #(GF) using elementary

1 Department of Mathematics and Computer Science, Emory University, Atlanta, GA

30322
2Department of Mathematical Sciences, Stevens Insitutute of Technology, Hoboken,

NJ 07030

CONORESSTIIS NIIMER ANTIIIM 124 (WYY p 188 _1£72



linear algebraic methods, as outlined in [2] and elsewhere. We may consider
any e — uv in E(G) and contract e by associating the vertices u and v in
G and deleting the resulting loop to get the graph & - e. It is well known

that for any e,
HE) =t(G —¢e) +HG -e)

which will prove to be useful in the sequel.

2 Spanning Tree Edge Densities

Recall that Cayley’s Theorem (see [3] or numerous other sources) states
that t(K4) = 42 = 16. However, if we were to remove any edge ¢ from
K, is is easily seen that only 8 spanning irees remain. Hence one can deduce
that any edge of K3 lies in 18—6 = % of its spanning trees. The question that
arises is therefore: what is the importance of an individual edge to the
number of spanning trees of a graph? Is it possible to structure a graph
to have a large number of spanning trees in such a way that the failure of
any one of these edges does not significantly reduce the number of spanning

trees? This leads to the general idea of the densify of an edge in a graph.

Let T(e; G} denote the set of spanniﬁg trees of (7 that contain e and
te;G) = T(e; Q)| = t(G - e).

Definition 2.1 For any edge ¢ in o graph 7, the spanning tree edge
density or for our purposes, simply density of e, denoted di(e; G), is defined

» He; @)
HG) -

If G is disconnected, define di(e;G) to be O for all e in E(G).

di{e; G) =

We will simply write d;(e), t(e), orT'(e) when the context is clear. One
could also define d;(e) as
HG —€)

dg(e) =1- t(T)

Given a graph G, we can construct the digraph associated with G by replac-
ing each edge with two opposite arcs. It is shown in [5] that upon inverting
the Kirchoff matrix of this digraph, one can calculate the density of any
edge in ¢ in constant time.

The following lemma will be useful in the sequel.
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Lemma 2.2 Let G be a connected graph on n vertices. Then

Z die) =n— L.
)

eER{G

Proo¥: Consider the set of ordered pairs (¢,e} where t € T(G) and
e € E(t). Each spanning tree ¢ has exactly n — 1 edges, so there must
be {n — 1)¢(G)} such pairs. On the other hand, each edge e lies in exactly
t(e) = dy(e)t(G) pairs. Hence

(n—~1HG) =t(G) D dile)

e€F(G)

and the result follows. O

2.1 Weakly Edge Transitive Graphs

We will now calculate the densities of edges in a highly symmetric class of
graphs. We say that a permutation = of E(G) is an edge autornorphism
provided that for any edges e; and e in G,e; and ep are adjacent if and
only if me; and 7es are adjacent.

Definition 2.3 A graph G is weakly edge-transitive if for all e;, ez in
E(Q@), there exists an edge eutomorphism w such that me; = e,

Alternatively, one may say that G is weakly edge-transitive if and
only if the line graph of 7 is vertex-transitive. It is important to note
that this is not equivalent to the standard definition of edge-transitivity,
defined through vertex automorphisms. Indeed if & is edge-transitive it is
certainly weakly edge-transitive, as every vertex automorphism induces an
edge automorphism. The converse is false, as K3 U K13 is weakly edge-
transitive, but not edge-transitive.

Take note of the fact that if @ is an edge automorphism of G and

t € T(G) then wt will induce a spanning tree in G as well. Moreover, if
me; = ey then t(e;) = t(ey). This yields the following useful fact.

Fact 2.4 If a graph G is weokly edge-trensitive, the densities of all its edges
are equal.

Before proceeding, one should note that the converse of the above
theorem is in general false. Indeed, simply examine two copies of K3 joined
at one vertex. Every edge has density %, but this graph is clearly not
weakly edge transitive. However, combining Fact 2.4 with Lemma 2.2 we
get another practical result. '
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Corollary 2.5 If G is o weakly edge-transitive graph with n vertices and
m edges, then for any e in E{G),

dt(e) = n- 1.

This corollary can be applied to a variety of common graphs. Al-
though the following results are well known, the techniques employed thus
far allow simple proofs requiring very little machinery. As both K, and
Ko, are edge-transitive, they are weakly edge-transitive so we may apply
Corollary 2.5. :

Corollary 2.6 Ife € E(K,), then
2
d—t(e) = 7_7,'

Corollary 2.7 Ife € E(K; ), then

jtk-1
dt (6) = jk .

3 Spanning Tree Edge Dependence

Very often in the area of network vulnerability, we seek out the ”worst-case”
scenario. The following definition panders to that trend.

Definition 3.1 The spanning tree edge-dependence , or simply de-
pendence for our purposes, is given by

dep(G) = maz{ds(e)}), e € B(G).

The dependence of a graph is the "most damage” that a hostile party
could inflict (in terms of number of spanning trees) by destroying a single
edge. It is interesting to note that dep(C,) =3 1 and dep(Kn,) 5 0. I may
be of interest to investigate the asymptotic behavior of the dependences of
other common families of graphs.

There is a natural link between the dependence of a graph and its
edge connectivity. Indeed, let C be an edge cut-set in G and take note of
the fact that every spanning tree of G must contain at least one edge from
¢'. This allows us to give a useful bound on the dependence.
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Theorem 3.2 Let G be a graph. Then

dep(G) > —— 3 (G)

with equality holding if and only if A(G) = 1.

PrOOF: Let {e1, €z, ..., exq)} be an edge cut-set in . The above
remark implies that
MG)
| [ T(e)] =t(@).
=1
However,
MG) AG) MG)
> tler) = Y [Tes) = | U T(es)),
i=1 i=1
80
MG}

> dele) > 1
i=1

Thus, as all edges are nonnegative rational numbers from [0, 1, at least one
of the e; has density ﬁﬂ or greater.

If ¢ contains a bridge b then we can see that dep(@) = dy(b) =1 so
equality holds. It is easy to show that when A(G) > 1 there exist spanning
trees of & that contain two or more of the e;. In this case,

MG)

de 61,

s0 at least one of the e; has density strictly greater than A( 7 O

4 Monotonicity

It is reasonable to investigate the behavior of reliability criterion when the
graph is modified, for example when edges or vertices are added. In our
case the addition of edges is of a great deal more interest, although the
addition of vertices may be of interest to study in the future. We would
like to know how the densities of edges behave when we either add new
edges to a graph or delete existing edges. In order to do so, we first need
to examine how subsets of edges behave with respect to spanning trees.



4.1 Densities of Subsets

Let S be a subset of E(G) and define T(S; ) to be the set of all spanning
trees of & containing all of 5. As above, let t(5;G) = |T(S; G)I.

Definition 4.1 Let S be a subset of E(G). The spanning tree edge
density of S, denoted d:(S;G) is given by

tHS;G)
HG)

di(S; G) =

The next theorem is from Cayley, and can be found in [1].

Theorem 4.2 Let Ty, be any tree on k vertices. Then for anyn > k

k
dt(Tk;Kn) = Ay

It is also possible to relate the density of a pair of edges to the
densities of the individual edges, as was shown in [6]. In the language of
probability theory, which integrates nicely with the concept of densities,
the next claim shows that densities are negatively correlated.

Theorem 4.3 (Pemantle, [6]) Let G be a graph and let e, f be in E(G).

Then
di(e, f) < di(e}de(f)

. 4.2 Densities are Monotone Decreasing
We would like to answer the following question:
Question 4.4 Suppose G is a graph and H is a spanning subgraph of G
such that e € E(H) N E(G). Is it then true that
di(e; () < dile; H)?

Note that if e is a bridge in & or H then the answer is yes. First,
we state a straightfoward number theoretic lemma that is provable using

elementary algebra.
Lemma 4.5 Leta < b and z < y be integers such that b and y are positive,
z<aandy<b Thenif 3 <§,

a—1=xT

b—y

2

| &
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To answer Question 4.4, consider the following. Let e and f be
distinct edges in G, where f is not a bridge and note that
H{e; G) —tle, 1 G)
HG) —t(f;G)

di(e: G—f) =

or equivalently,

Thus, Theorem 4.3 and Lemma 4.5 immediately imply the following.

Theorem 4.6 Let H be o graph and let G be obtained from H by adding
any number of edges. Then for any e in E(H),

di(e;G) < dy(e; H).

Hence spanning tree edge densities are monotone decreasing with
respect to adding edges.

1t is not difficult to show, through a similar argument, that adding
copies of existing edges to G will not increase the density of any edge.
This does not imply, however, that adding edges to G will decrease the
dependence of G, as we are unsure of the relationship between the densities
of the previous edges and the density of the new edge. It would also be
interesting to investigate the monotonicities of dependences.

Ome consequence of the above statement, when viewed together with
Corollary 2.6, is that no simple graph can have an edge with density less
than ]W%ﬂ The question is then, how quickly does the density of an edge
approach this value? We can, at this time, provide only a partial answer.

Theorem 4.7 Let G be o simple graph and let |V(G)| = n. If there exist
2,y € V(G) such that N(z) = V(G) — {&} and N(y) = V(G) - {y} then
dy(zy) = 2. :

ProoF: Let § = G — {z,y},e = zy and note that every spanning
tree in @ induces a spanning forest in H = (S). We shall thus partition
T(@) and T(G;e) over all spanning forests of H.

Consider such a forest F and let ¢;,..., ¢, denote the components
of F having orders ny, ..., ny. Moreover,let N = niny ...np and Tx(G;e€)
and Tx(G) denote the subsets of T'(G) and T(G; E) respectively that induce
7 in H. Now observe that each tree in T(G; e) has the property that either
z or y, but not both, is adjacent to exactly one vertex in each ;. Thus

|T=(G;e)| = 2P N.
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On the other hand, each tree in Tx(G) — T#(G;e) has the property that
both z and y are adjacent to exactly one C; and exactly one of x or y is

adjacent to each of the other C;’s. Thus

P
1 o N _
|T#(G) — Te(Gs e)| = ZZP 1n§—a =2"Hn - 2)N.

t=1

Hence

IT(Gie)| = 3 |ITF(G e)| = D 2°N,
F

F
IT(G)] = D IT#(G)]
F

=3 (2PN + 27 (n - 2)N)

F
= g 3 927N,
F

The result follows. O

5 Open Problems

In this final section we give two open problems that may be of interest.

5.1 Constructibility

One can show [4] that given any rational number r in [0, 1} there exists a
multigraph that has an edge with density r. The question then arises, can
one always find a simple graph that contains an edge with density r?

The above formulas show that we can construct a number of densities
using familiar graphs. Unfortunately, these densities all have a tendency
to fall near the boundary of [0,1]. With a few exceptions, we have viewed
densities as a global property. We believe that progress could be made on
this problem, and others cited above, by taking a more local approach. For
instance, an examination of the densities of induced subgraphs may allow
for a better handle on the densities of the edges therein.
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5.2 Realizability

Another problem related to that of constructing densities is trying to de-
termine when rationals occur together as densities in a graph. We say

a sequence of rational numbers, § : 11, ro,..., Tm is realizable {with
respect to spanning tree edge densities) if there exists a graph G with
E(G) = {es,..., em} such that di(e;) = ri. We say that such a graph

realizes 8. The primary goal would be to find necessary and suflicient
conditions for a sequence to be realizable.

From above results, the necessity of several conditions is clear. First,
a realizable sequence should sum to an integer, specifically if G realizes
and has n vertices, then ¥ 7; should equal n — 1. Tt should also be clear
that if some 7; = 0 then S is realizable if and only if it is the zero sequence.
Additionally, note that contracting a bridge in G will not change any of the
densities of the other edges. Hence, if any r; == 1 and S is realizable, then
80 too is S — {r;}.

In closing, it should be noted that there are a lot of potentially
interesting questions connected to the idea of densities. It is our hope that
this paper will pique the interest of some of its readers so that some progress

will be made.
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