2-Factors and Forbidden Subgraphs

Ronald J. Gould * Emory University Atlanta GA 30322

Emily A. Hynds Samford University Birmingham AL 35229

April 23, 2001

Abstract

Every 2-factor of a graph G consists of a spanning collection of vertex disjoint cycles. In particular, a hamiltonian cycle is an example of a 2-factor consisting of precisely one cycle. A characterization has been given of all pairs of forbidden subgraphs that imply a 2-connected graph of order $n \geq 10$ is hamiltonian. We generalize this idea by examining some pairs of forbidden subgraphs that imply a 2-connected graph of order n > 3k+15 contains a 2-factor consisting of k disjoint cycles.

Introduction

The use of forbidden subgraphs to obtain classes of graphs possessing special properties has long been studied. For instance, a characterization has been given of all pairs of forbidden subgraphs that imply a 2-connected graph of order $n \geq 10$ is hamiltonian [4]. We generalize this idea by examining some pairs of forbidden subgraphs that imply a 2-connected graph of order n > 3k+15 contains a 2-factor consisting of k disjoint cycles. This continues a line of investigation generalizing results on hamiltonian graphs to results on 2-factors. In each case, the conditions sufficient to imply the graph is hamiltonian are actually sufficient to imply it contains a wide range of 2-factors. See for example, [1] or [3]. All graphs in this paper will be simple finite graphs with vertex set V(G) and edge set E(G). For terms or notation not defined here, see [2].

The graph H is called a subgraph of the graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For a set $S \subseteq V(G)$, we define the subgraph induced by S, denoted (S), to be the subgraph of G with vertex set S and edge

^{*}Supported by O.N.R. Grant N00014-97-1-0499

set $\{uv \in E(G)|u,v \in S\}$. If a graph G contains no induced subgraph isomorphic to H, we say G is H-free and we call H a forbidden subgraph of G.

We say a subgraph H spans the graph G if V(H) = V(G). The subgraph H of G is said to be a 2-factor of G if H spans G and for every $v \in V(H)$, deg $_H$ v=2. A trivial consequence of the definition is that every 2-factor of a graph G consists of a spanning collection of vertex disjoint cycles. In particular, a hamiltonian cycle is an example of a 2-factor consisting of precisely one cycle.

The following theorem, found in [3], will be useful to us. The result is that in graphs that do not contain the induced subgraph $K_{1,3}$, we can always find a collection of disjoint triangles and thus a collection of disjoint cycles.

Theorem 1 Let G be a $K_{1,3}$ -free graph of order n, and $k \geq 2$ an integer. If n > 3k + 15 and $\delta(G) \geq max(3, k)$, then G contains k disjoint triangles.

Figure 1: Important forbidden subgraphs.

In Theorem 2 we forbid the graph Z_2 in addition to $K_{1,3}$ and in Theorem 3 we forbid the graph P_4 in addition to $K_{1,3}$. We will show that by forbidding these additional subgraphs in a graph G we can now always find a range of 2-factors in G.

2 Theorems

Theorem 2 If G is a &-connected, $K_{1,3}$ -free, Z_2 -free graph of order n > 3k + 15 such that $\delta(G) \ge max(3,k)$, then G contains a &-factor consisting of k disjoint cycles.

 $x_1 \in V(G) \setminus \bigcup V(C_i)$. Then $\{v^-, v^+, v, x, x_1\} \geq Z_2$, unless we have at for $i \in \{1, 2, ..., t\}$, else we could have chosen a shorter path. Suppose choice of P. Thus $x_1 \in V(C_i)$ or $x_1 \in V(C_j), j \neq i$. may extend C_i through x and x_1 . If $x_1v \in E(G)$, then we contradict our least one of $x_1v^-, x_1v^+, x_1v \in E(G)$. If x_1v^- or $x_1v^+ \in E(G)$, then we we have $v^-v^+\in E(G)$. We will assume, without loss of generality, that the maximality of our cycle system. Thus $\langle \{v, v^-, v^+, x\} \rangle \cong K_{1,3}$, unless $P=P^-$ and thus let $P=xx_1x_2...x_tv^-$. By our choice of $P, x_i \neq v^+$ that $xv^-, xv^+ \notin E(G)$, else we may extend C_i through x, contradicting $P \in \{P^-, P^+\}$ such that P is as short as possible. Clearly we may assume that does not contain v. Now, from all such x, v, P^-, P^+ , choose x, v and suppose that $\bigcup_{i=1}^k V(C_i) \neq V(G)$. Then there exists $x \in V(G) \setminus \bigcup V(C_i)$ be the shortest such path. Similary, let P^+ be the shortest $x-v^+$ path and $v \in V(C_i)$ for some i = 1,...,k such that $xv \in E(G)$. Since G is such that they include a maximum number of vertices of G. We place 2-connected there exists an $x-v^-$ path that does not contain v. Let $P^$ we let $w^-(w^+)$ be the predecessor (successor) of w on the cycle. Now, an orientation on each of the cycles C_i , i=1,...,k, and for $w\in V(C_i)$, triangles and hence k disjoint cycles. We choose k such cycles $\{C_1,...,C_k\}$ We will consider $k \geq 2$. By Theorem 1, we know that G contains k disjoint **Proof:** We know G is hamiltonian which gives us the case when k = 1.

Case 1 Suppose $x_1 \in V(C_i)$.

If $v^+x_1^+ \in E(G)$, then $vxx_1x_1^-...v^+ x_1^+...v^-v$ extends C_i . If $v^+x_1^- \in E(G)$, then $vxx_1x_1^+...v^-v^+x_1^-...v^{++}v$ extends C_i . Thus in all cases we extend C_i , a contradiction, and Case 1 is complete.

Case 2 Suppose $x_1 \in V(C_j), j \neq i$.

Subcase 1 Suppose $C_j \ncong K_3$.

Similarly < $\{x_1, x_1^+, x_1^-, x_1^+ > \ge K_{1,3}$, unless $v^-v^+ \in E(G)$, and $\{v^-, v^+, v, x, x_1\} > \ge Z_2$, unless we have one of x_1v^- , x_1v^+ , $x_1v \in E(G)$. Then < $x_1v^- \in E(G)$ we can extend our cycle system by letting $C_i^v = v^-v_1xvv^+ \dots v^-$ and $C_j^v = x_1^-x_1^+ \dots x_1^-$. So, $x_1v^- \not\in E(G)$ and similarly $x_1v^+ \not\in E(G)$. Consequently, it must be the case that $x_1v \in E(G)$. Then $\{v^-, x_1^+v^+, x_1^+v^-, x_1^+v^+\} > E(G)$. Then let $C_i^v = vx_1v^- \dots v^+$ and $C_j^v = x_1^+x_1^- \dots x_1^+$. If $x_1v^+ \in E(G)$, then let $C_i^v = vx_1v^+ \dots v^+$ and $C_j^v = x_1^+x_1^- \dots x_1^+$. If $x_1v^+ \in E(G)$, then let $C_i^v = vx_1v^+ \dots v^+$ and $C_j^v = x_1^+x_1^- \dots x_1^+$, and we have extended our cycle system. If $x_1^+v \in E(G)$, then < $\{v, v^-, x_1^+, x_1^+ > \ge K_{1,3}$, unless we have at least one of $xx_1^+, x_1^+v^- \in E(G)$. If $xx_1^+ \in E(G)$, then we can easily extend C_j through x. Thus we may assume that $x_1^+v^- \in E(G)$. Also, $\{v, v^+, x_1^+, x_1^+, x^+\} > \ge K_{1,3}$, unless we have $x_1^+v^+ \in E(G)$. So, it must now be the case that either of generality, that $x_1^+v^- \in E(G)$. By symmetry we may assume, without loss of generality, that $x_1^+v^- \in E(G)$. As before, < $\{v^-, v^+, v_+, v_1, x_1^-, x_1^-\} > \ge Z_2$ unless we have at least one of $vx_1^-, v^+x_1^- \in E(G)$. If $vx_1^- \in E(G)$, then let $C_i^v = v^- \dots v^+x_1^+ \dots x_1^-v^-$ and $C_j^v = vxx_1v$, extending the cycle system. Thus $v^+x_1^- \in E(G)$. Then < $\{x_1^-, x_1^+, v^+, v, x_1^-\} > \ge Z_2$, unless at least one of $vx_1^-, vx_1^+ \in E(G)$. Say, without loss of generality, that $x_1^-v \in E(G)$. Say, without loss of generality, that $x_1^-v \in E(G)$. Say, without loss of generality, that $x_1^-v \in E(G)$. Figure 1.

Subcase 2 Suppose $C_j \cong K_3$

We may assume $C_i \cong K_3$, or reversing the roles of v and x_1 , we are back to Subcase 2.1. We know that x is adjacent to both C_i and C_j . We first consider the case that x is adjacent to another cycle C_k , $k \neq i, j$. So, there exists $y \in V(C_k) \cap N(x)$ and $C_k \cong K_3$, or we are back to Subcase 2.1. Then $<\{x,v,x_1,y\}>\cong K_{1,3}$, unless, without loss of generality, $vx_1 \in E(G)$. Then $<\{v^-,v^+,v,x_1,x_1^-\}>\cong Z_2$, unless at least one of $x_1v^-, x_1v^+, x_1^-v, x_1^-v^-, x_1^-v^+ \in E(G)$. If $x_1v^- \in E(G)$, then either $<\{x_1,v^-,x_1^-,x_1^-\}>\cong K_{1,3}$ or we can extend either C_i or C_j through x_i or $v^-x_1^- \in E(G)$. Now, $<\{x_1,v^-,x_1^+,x_1^+\}>\cong K_{1,3}$, unless $v^-x_1^+ \in E(G)$.

fact that x has no adjacencies on the cycle C_k . If $vw^- \in E(G)$, then <of the fact that $v^+x_1 \in E(G)$, we get that $\langle \{x_1, x, v^+, x_1^+\} \rangle \cong K_{1,3}$ unless $x_1^+v^+ \in E(G)$ and $\langle \{x_1, x, v^+, x_1^-\} \rangle \cong K_{1,3}$ unless $x_1^-v^+ \in E(G)$. In addition, $\langle \{y, x, x_1, v^+, v^-\} \rangle \cong Z_2$ unless $v^-x_1 \in E(G)$. Then let $C_i' = v^-vyxx_1v^-$ and $C_j' = v^+x_1^-x_1^+v^+$, extending our maximum cycle The remaining conclusions are drawn from some previous results and the we see that $\langle \{w^+, w^-, w, v^-, v\} \rangle \cong \mathbb{Z}_2$ unless vw^-, vw^+ , or $vw \in E(G)$. Subcase 2.1 by letting $C'_i = vv^-wv^+v$, so we assume $C_k \cong K_3$. Finally we have $\langle \{w^-, w^+, w, v^+, v^-\} \rangle \cong Z_2$. If $C_k \ncong K_3$, we are returned to let $C_i'=vyxv$, again a contradiction. But this forces $wv^-\in E(G)$ or edges in our graph G, or we can extend C_k through both v^- and v^+ and or $\langle \{w, v^+, w^-, w^+\} \rangle \cong K_{1,3}$. Similarly, v^-w^- and v^-w^+ cannot be contradicting the assumption of maximality. This forces $w^-w^+ \in E(G)$ $N(v^+) \cap V(C_j) = \emptyset$. So, v^+ must have a neighbor $w \in V(C_k)$ such that $k \neq i, j$. Let w^+ and w^- be the neighbors of w on C_k . Now v^+w^+ and $v^+w^$ this way we have included x and y in our cycle system losing only v^- , thus cannot be edges in G or we can extend C_k through v^+ and let $C_i'=vyxv$. In system and contradicting our assumption. Hence, it must be the case that Then $v^+x_1 \in E(G)$. If not, then, without loss of generality, $v^+x_1^- \in E(G)$. But then $\langle \{y, x, x_1, x_1^-, v^+\} \rangle \cong Z_2$ unless $v^+x_1 \in E(G)$. As a result Then we have $\langle \{v^-, v^+, v, x, y\} \rangle \cong Z_2$ unless $yv \in E(G)$. Similarly, $yx_1 \in E(G)$. Now, again because $\delta(G) \geq 3$, v^+ must have a neighbor besides v and v^- . This neighbor cannot be x or y. Suppose there exists $<\{x_1^-,x_1^+,v^-,v,x\}>\cong Z_2$ or we can extend a cycle through x, unless $vx_1^+\in E(G)$. Then $<\{v,x_1^+,v^+,x\}>\cong K_{1,3}$, and again we are done, unless $x_1^+v^+\in E(G)$. Finally, let $C_i'=v^-v^+x_1^+x_1^-v^-$ and $C_j'=vxx_1v$. Thus we Consequently, $N(v^+) \subseteq \bigcup V(C_i)$. Suppose first that $N(v^+) \cap V(C_j) \neq \emptyset$. E(G). But now we let $C'_i = vv^-v^+wv$, which returns us to Subcase 2.1. $w \in N(v^+) \setminus \{ \bigcup V(C_i), y, x \}$. Then $\{ \{y, x, v, v^+, w \} \ge \mathbb{Z}_2, \text{ unless } vw \in \mathbb{Z}_2 \}$ that x is not adjacent to any other cycle. In other words, $N(x) \cap \bigcup V(C_i) =$ that x is adjacent to some cycle C_k , $k \neq i, j$. Hence, it must be the case $\{v, x_1\}$. Since $\delta(G) \geq 3$, then x must have a neighbor $y \in V(G) \setminus \bigcup V(C_i)$. have extended our maximum cycle system, contradicting the assumption generality, that $x_1^-v^- \in E(G)$. Again, $\{v^-, v^+, v, x_1, x_1^+\} > \cong Z_2$, unless we have at least one of $v^+x_1^+, v^-x_1^+ \in E(G)$. If $v^+x_1^+ \in E(G)$, then let $C_i' = v^+v^-x_1^-x_1^+v^+$ and $C_j' = vxx_1v$. Thus $v^-x_1^+ \in E(G)$. Then either we conclude that $x_1v^+, vx_1^- \notin E(G)$. Thus we may say, without loss of that arises from the assumption that $x_1v^- \in E(G)$. With similar arguments $C'_j = vxx_1v$. This is a contradiction to the maximality of our cycle system a cycle through x, or $v^+x_1^- \in E(G)$. Now let $C_i' = v^-v^+x_1^-v_1^+v^-$ and Then $\langle \{x_1^+, x_1^-, v^-, v, x\} \rangle \cong Z_2$, unless we have, without loss of generality, $vx_1^- \in E(G)$. Now, either $\langle \{v, v^+, x, x_1^-\} \rangle \cong K_{1,3}$ or we can extend

)

 $\{v,x,v^-,w^-\} \ge K_{1,3}$. If $vw^+ \in E(G)$, then $<\{v,x,v^-,w^+\} \ge K_{1,3}$. If $vw \in E(G)$, then $<\{w^+,w^-,w,v,x\} \ge Z_2$. Thus, we have contradicted the assumption that G is $\{K_{1,3},Z_2\}$ -free and hence, the theorem is proved. \square

Theorem 3 If G is a 2-connected, $K_{1,3}$ -free, P_4 -free graph of order n > 3k + 15 such that $\delta(G) \ge \max(3, k)$, then G contains a 2-factor consisting of k disjoint cycles.

at x and end at a vertex in S_w . In addition, from among all such paths, we choose P to be as short as possible. Clearly $vw \notin E(C_i)$ or we can of P is contained in R. (We will say that such a path is in R). We want a path P from the vertex x to $w \in V(C_i)$, $w \neq v$, such that the interior triangles and hence k disjoint cycles. We choose k such cycles $\{C_1,...,C_k\}$ extend C_i through x. Suppose $xw \notin E(G)$. Then let w_1 and w_2 be the to choose such a path P so that there are no paths in R that originate S_w to be the segment of the cycle C_i from v^+ to w^- . Suppose there is $i \in \{1,...,k\}$, such that $xv \in E(G)$. Now, for $w \in V(C_i)$, $w \neq v$, we define know, by connectivity, that there exists $x \in R$ and $v \in V(C_i)$, for some suppose that $\bigcup_{i=1}^k V(C_i) \neq V(G)$. Then if we let $R = V(G) \setminus \bigcup V(C_i)$ we we let $w^-(w^+)$ be the predecessor (successor) of w on the cycle. Now. an orientation on each of the cycles C_i , i = 1,...,k, and for $w \in V(C_i)$, such that they include a maximum number of vertices of G. We place extend C_i through x. Thus $\langle \{v, v^-, v^+, x\} \rangle \cong K_{1,3}$ unless $v^-v^+ \in E(G)$. $xw \in E(G)$. Clearly we may assume that $xv^-, xv^+ \notin E(G)$, else we may a path in R from x to a vertex in S_w , a contradiction. If $ww_2 \in E(G)$, we have one of $w^-w_1, w^-w_2, ww_2 \in E(G)$. If $w^-w_1, w^-w_2 \in E(G)$, we have x. (Note that w_2 could be x) Then $\langle \{w^-, w, w_1, w_2\} \rangle \cong P_4$ unless we first two vertices encountered when travelling along the path P from w to We will consider $k \geq 2$. By Theorem 1 we know that G contains k disjoint case that $vv^{++} \in E(G)$. By a similar argument, we get that $vy \in E(G)$ for all $y \in S_w$. But now, $vxww^+...v^-v^+...w^-v$ extends the cycle C_i , a distinct. Thus, $\langle \{x, v, v^+, v^{++}\} \rangle \cong P_1$ unless one of $xv^+, xv^{++}, vv^{++} \in E(G)$. But $xv^+, xv^{++} \notin E(G)$ by our choice of P, so it must be the $vxw...v^-v^+v$ extends C_i . Thus, the vertices w^+, w^-, v^+, v^- are all distinct. If $wv^- \in E(C_i)$, then $vxw...v^+v^-v$ extends C_i . If $wv^+ \in E(C_i)$, then have shortened the path from x to w, another contradiction. Consequently, from x to at least one other cycle C_j , $j \neq i$, that does not contain the xv. By the 2-connectedness of our graph G, we know there must be a path contradiction. So there are no paths from x to C_i in R except for the edge $v^+w^- \in E(C_i)$, then $vxww^-w^+...v^-v^+v$ extends C_i . So, v^{++} and w^- are Furthermore, $\langle \{w, w^-, w^+, x \} \rangle \cong K_{1,3}$, unless we have $w^+w^- \in E(G)$. If **Proof:** We know G is hamiltonian which gives us the case when k = 1.

vertex v. Take the shortest such path $P = xx_1x_2...x_rz$ such that $x_i \in R$ for all $i \in \{1,...,r\}$ and $z \in V(C_j)$. If $|V(P)| \ge 4$, we must get a shorter path in the process of insuring that we do not have an induced P_4 . Either way we arrive at a contradiction. So, if $xz \notin E(G)$, then $P = xx_1z$. Thus, $\langle \{x, x_1, z, z^-\} \rangle \cong P_4$ unless one of $xz^-, x_1z^- \in E(G)$. If $xz^- \in E(G)$ we get a shorter path from x to C_j and if $x_1z^- \in E(G)$ we can extend C_j through x, both contradictions. Consequently, $xz \in E(G)$. So, x has exactly one neighbor on each of l different cycles, $l \ge 2$. The remainder of the proof is considered in two cases, based on whether or not x has any adjacencies off of the cycles.

Case 1 The vertex x has at least one adjacency $y \in R$.

Let $xv \in E(G)$ for $v \in V(C_i)$ and for $i \in \{1,...,k\}$. Then $\langle \{y,x,v,v^-\} \rangle \cong P_4$ unless one of $xv^-, yv^-, yv \in E(G)$. We know $xv^- \notin E(G)$, and if $yv^- \in E(G)$ then $vv^+...v^-yxv$ extends the cycle C_i . So, it must be the case that $yv \in E(G)$. Recall that x has exactly one neighbor on each of l different cycles, $l \geq 2$. Using the same argument for each neighbor of x in $\bigcup V(C_i)$ we can see that $N(x) \cap \bigcup V(C_i) = N(y) \cap \bigcup V(C_i)$.

Subcase 1 There exists C_i such that $N(x) \cap V(C_i) \neq \emptyset$ and $|V(C_i)| \geq 4$.

We will assume, without loss of generality, that i=1. Let $v\in V(C_1)$ such that $xv\in E(G)$. Then, since x cannot be adjacent to any other element of $V(C_1)$, $<\{x,v,v^+,v^++\}>\cong P_4$ unless $vv^++\in E(G)$. By a similar argument, we can show that v is actually adjacent to every vertex of C_1 . Now suppose we have $a,b\in V(C_1)$ such that $ab\notin E(G)$. Then $<\{v,x,a,b\}>\cong K_{1,3}$, a contradiction, which means that C_1 is a clique. Similarly, all cycles that are adjacent to x must be cliques. We know x is adjacent to at least one other cycle and, without loss of generality, we will assume x is adjacent to C_2 . Let $w\in V(C_2)$ such that $xw\in E(G)$. If $vw^-\in E(G)$, we let $C_1'=v^-v^+...v^-$ and $C_2'=vxyww^+...w^-v$. extending the cycle system and giving us a contradiction. So, it must be the case that $vw\in E(G)$. Now we have that $<\{v^+,v,w,w^-\}>\cong P_4$ unless one of $v^-w^+,v^-w,vw^+\in E(G)$. If $v^-w^+\in E(G)$. If $v^-w^+\in E(G)$. Suppose $v^+w^-\in E(G)$. If $v^-w^+\in E(G)$, let $C_1'=vxyw$ and $C_2'=vw^+...w^-v^+...v^-$. If $v^-w^+\in E(G)$, let $C_1'=vxyw$ and $C_2'=vw^+...w^-v^+...v^-$. If $v^-w^+\in E(G)$, let $C_1'=vxyw$ and $C_2'=vw^+...w^-v^+...v^-$. In all cases we get a contradiction by extending the cycle system through x and y. Hence, it follows that $v^+w^-\notin E(G)$ and $v^+w\in E(G)$. But then $<\{w,w^-,v^+,x^+\}>\cong K_{1,3}$, another contradiction.

We must now assume that any cycle adjacent to x is a triangle.

Subcase 2 If $N(x) \cap V(C_i) \neq \emptyset$, then $C_i \cong K_3$.

which again extends our cycle system and gives us a contradiction. So in all cases where x has an adjacency outside the cycle system, we are able unless $vw^+ \in E(G)$. But then we let $C'_1 = xywx$ and $C'_2 = vw^+w^-v^+v^-v$, or $v^+w^+ \in E(G)$. Without loss of generality, assume that $v^-w^- \in E(G)$. cycle system and again giving us a contradiction. So either $v^-w^- \in E(G)$ $v^-w^+ \in E(G)$, we let $C_1' = vxywv$ and $C_2' = v^-v^+w^-w^+v^-$, extending our $w \in V(C_2)$. Thus $\langle \{v, x, w, w^-\} \rangle \cong P_4$ unless one of $vw, vw^- \in E(G)$. and $yw \in E(G)$. Assume, without loss of generality, that $v \in V(C_1)$ and to extend the cycle system which contradicts the maximality of the cycle We have shown that v^-w^+ , $vw^- \notin E(G)$. So, $\langle \{v,v^-,w^-,w^+\} \rangle \cong P_d$ $\{v^-, v^+, w^-, w^+\} \ge P_4$ unless one of $v^-w^-, v^+w^+, v^-w^+ \in E(G)$. If But that means that $\langle \{v^+, v, w, w^-\} \rangle \cong P_4$ unless $v^+w^- \in E(G)$. Now, E(G). In addition, we can show by a similar argument that $wv^+ \notin E(G)$. contradiction. Therefore, it must be the case that $vw^- \notin E(G)$ and $vw \in$ $C_2' = vw^+w^-v^+v^-v$, then we have extended our cycle system giving us a If $vw^- \in E(G)$, then $<\{v,x,w^-v^+\}>\cong K_{1,3}$ unless $v^+w^- \in E(G)$ and $<\{x,v,w^-,w^+\}>\cong P_4$ unless $vw^+ \in E(G)$. If we let $C_1'=xywx$ and Let $v, w \in N(x) \cap \bigcup V(C_i)$. Recall that $y \notin \bigcup V(C_i)$ but that xy, yv.

Case 2 Suppose $N(x) \cap R = \emptyset$.

Since $\delta(G) \geq k$, x must have exactly one neighbor on each of the k cycles. Let $v \in N(x) \cap V(C_1)$ and $w \in N(x) \cap V(C_2)$. Now since $\delta(G) \geq 3$ and d(x) = k we know that $k \geq 3$. Thus, if no neighbors of x are joined by an edge, we have an induced $K_{1,3}$ centered at x. We can then assume, without loss of generality, that $vw \in E(G)$. Now, if $v^+w^+ \notin E(G)$ then $<\{v^+, v, w, w^+\} > \cong F_4$ unless one of $vw^+, wv^+ \in E(G)$. But then $<\{v, x, w^+, v^+\} > \cong K_{1,3}$ if $vw^+ \in E(G)$ and $<\{w, x, v^+, w^+\} > \cong K_{1,3}$ if $wv^+ \in E(G)$. In each case we get a contradiction and so we conclude that $v^+w^+ \in E(G)$. Similarly, $v^-w^- \in E(G)$. If $C_1 \cong K_3$ and $C_2 \cong K_3$, then let $C_1' = vwxv$ and $C_2' = v^-w^-w^+v^+v^-$, which extends our cycle system, a contradiction. So, without loss of generality, assume that $|V(C_1)| \geq 4$. We see that $<\{x, v, v^+, w^+\} > \cong P_4$ unless $vw^+ \in E(G)$. But, we can now let $C_1' = v^-v^+...v^-$ and $C_2' = xvw^+...w^-wx$, which again extends our cycle system. Thus, we have in all cases contradicted the assumption of maximality of our cycle system and hence, the theorem is proved.

References

 S. Brandt, G. Chen, R.J. Fandree, R.J. Gould and L. Lesniak. On the number of cycles in a 2-factor, J. Graph Theory, Vol. 24, No. 2 (1997).

00-1/3.

- [2] G. Chartrand and L. Lesniak, Graphs & Digraphs, Chapman and Hi London, 1996.
- [3] G. Chen, J.R. Faudree, R.J. Gould and A. Saito, Cycles in 2-fact of claw-free graphs, Discussiones Mathematicae - Graph Theory, appear.
- [4] R.J. Faudree and R.J. Gould, Characterizing forbidden pairs for hartonian properties, Discrete Math 173(1997) 45–60.