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Abstract

Every 2-factor of a graph @ consists of a spanning collection of
vertex disjoint cycles. In particular, a hamiltonian cycle is an exam-
ple of a 2-factor cousisting of precisely one cycle. A characterization
has been given of all pairs of forbidden subgraphs that imply a 2-
counected graph of order n > 10 is hamiltonian. We generalize this
idea by examining some pairs of forbidden subgraphs that imply a
2-connected graph of order 1 > 3k+ 15 contains a 2-factor consisting
of k disjoint cycles.

1 Introduction

The use of forbidden subgraphs to obtain classes of graphs possessing special
properties has long been studied. For instance, a characterization has been
given of all pairs of forbidden subgraphs that imply a 2-connected graph
of order n > 10 is hamiltonian [4]. We generalize this idea by examining
some pairs of forbidden subgraphs that imply a 2-connected graph of order
n > 3k+15 contains a 2-factor consisting of & disjoint cycles. This continues
a line of investigation generalizing results on hamiltonian graphs to results
on 2-factors. In each case, the conditions sufficient to imply the graph is
hamiltonian are actually sufficient to imply it contains a wide range of 2-
factors. See for example, [1] or [3]. All graphs in this paper will be simple
finite graphs with vertex set V(G and edge set E(G). For terms or notation
not defined here, see [2].

The graph H is called a subgraph of the graph G if V(H) C V(&)
and E(H) C E(G). For a set § C V(G), we define the subgraph induced
by S, denoted (S), to be the subgraph of G with vertex set S and edge
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set {uv € E(Q)|u,v € S} If a graph G contains no nduced subgraph
M.oEoH.E,:n to H, we say G is H-free and we call H a forbidden u,.;e.SES of

We say a subgraph H spans the graph Gif V(H) = 1" (G ). The subgraph
H of G is said to be 1 2-factor of G if H spans G and for every v € 1'(H),
degy v = 2. A trivial consequence of the definition is that every 2-factor
of a graph G cousists of a spauning collection of vertex disjoint cycles. In
particular, a hamiltonian cycle is an example of a 2-lactor consisting of
precisely one cycle.

The following theorein, found in (3], will be useful to us. The result
is that in graphs that do not contain the induced subgraph K 3, we can

always find a collection of disjoint triangles and thus a collection of disjoint
cycles.

Theorem 1 Let G be q Iy 3-free graph of order n, and k > 2 an integer-
Ifn > 3k+15 and 0(G) > maz(3,k), then G contains k disjoint triangles.

Figure 1: Important forbidden subgraphs.

In Theorem 2 we forbid the graph Z» in addition to Ky and in The-
orem 3 we forbid the graph Py in addition to I 1,3- We will show that by
forbidding these additional subgraphs in a graph G we can now always find
a range of 2-factors in G.

w
”
1
,
f
A.
_
!

2 Theorems

Theorem 2 If G is a 2-connected, K 3-free, Zs-free graph of order n >
3k + 15 such that 6(G) > wnaa(3, k), then G contains o 2-factor consisting
of k disjoint cycles.

Proof: We know G is hamiltonian which gives us the case when k = 1.
We will consider & > 2. By Theorem 1, we know that G contains k disjoint
triangles and hence k& disjoint cycles. We choose % such cycles {Ch,...,Cy }
such that they include a maximum number of vertices of . We place
an orientation on each of the cycles C;, i = Lok, and for w € V(Cy),
we let w™ (w™) be the predecessor (successor) of w on the cycle. Now,
suppose that C“,HH V(Cy) 5 V(G). Then there exists » € VIGN\UV(CY)
and v € V(C;) for some i = 1,...,k such that zv € E(G). Since G is
2-connected there exists an 2 — v~ path that does not contain v. Let P~
be the shortest such path. Similary, let P+ be the shortest = — vt path
that does not contain v. Now, from all such z,v, P, Pt choose x,v and
P € {P~,P*} such that P is as short as possible. Clearly we may assume
that zv™,zvt € E(G), else we may extend C; through z, contradicting
the maximality of our cycle system. Thus < {v,v7,v", 2} >= K| 3, unless
we have v~vt € E(G). We will assume, without loss of generality, that
P = P~ and thus let P = zzy2y..2,0". By our choice of P, z; # vt
for i € {1,2,...,t}, else we could have chosen a shorter path. Suppose
r1 € V(G)\UV(C;). Then < {v7, vt 02,21} >= Z,, unless we have at
least one of wy1v™, z 0", 10 € E(G). If z1v™ or z1vt € E(G), then we
may extend C; through » and z;. If z;0 € E(@), then we contradict our
choice of P. Thus 1 € V(C}) or 2 € V(Cy),5 #i.

Case 1 Suppose 21 € V().

It v~ € E(C}), then vauy ..o v~ v extends Ci. If ayut € E(Cy), then
vazy..v”vTe extends C;. Thus aw,aﬂgeﬁ,ﬁ € V(C;) are all distinct.
Furthermore, < {o, 2,0 a7} >= K 3, unless we lLave atur € B(Q).
Now we see that < A\N\_f,.c...hcqﬁsl >= 75, unless we have at least one
of myv™, w0 € E(G). If v~ € BE(G), then vrw v .. Lty
extends Cy. If z1v% € BE(G). then :sﬁ.c+...“~nﬂnau.....cl_\,_ extends ;. Thus
ww € B(G). If z7vT € B(C), then vezi ey 2 v vt extends C;. Then
< Axr, 0,01, 07T} >= 7, unless we have at least one of vttty otta,
vty € B(G). If vtty, ¢ E(G), then vazzivT. 27 2. o~ vt extends
Ci. If vttz € E(G), then vputt e xf..v~vte extends C;. Thus
vttty € E(G). Also, < {27, 27, 21,v,97} > Z,, unless we have at
least one of v yoxy yutiey, .c+s.wr,c+§1 € E(G). If vaf € BE(G),then
vzzizy ..ot v at v extends Cy. If vz € E(G), then vzzyzy ... v ot ..
2y v extends C;. If vta, € E(G), then vezivt..z7 2l .. v v extends C.




If vtzf € BE(Q), then vz ay ..ot 2. v”v extends C;. If vtel € B(@),
then vzzyzt. v=ut Ly ..v v extends C;. Thus in all cases we extend Cj,

a contradiction, and Case 1 is complete. O
Case 2 Suppose 2 € V(C;), 7 #1.
Subcase 1 Suppose Cj # K.

We see that < {u, vtz > K13, unless p=ot € E(G), and
similarly < {a1,2,27,2} >= K, unless 22l € E(G). Then <
{7, vt v, 2,21} >= Z,, unless we have one of 2,07, 210", 210 € E(Q). If
210~ € E(G) we can extend our cycle system by letting C! = v~z avet.. .y~
and Cf = zyaf ..x7. So, 210~ ¢ E(G) and similarly z;v* ¢ E(G). Conse-
quently, it must be the case that T1v € E(G). Then < {v~, v+ #.85} >
= 75, unless we have at, least one of v, wut, af o, afe vt € B(G).
If 2,0~ € E(G), then let C{ = vzzv~..v7v and Om = Hw.ﬁﬂ:.n..._w. If
ot € E(G), then let C! = vazzyvt. v~ v and Ci = xfuy . af, and we
have extended our cycle system. If H%e € E(G), then < ,_f.:ﬂcl_au., @} >
K1 3, unless we have at least one of ey, 25Ty € E(G). If ..N.@.ﬂr € E(@),
then we can easily extend Cj through z. Thus we may assume that
2{v™ € E(G). Also, {v,oF, 2T, 2} >= K, 3, unless we have vt € E(G).
Then < {v~,v%,2f, 2,4} >= Z, which is a contradiction that arises
from assuming that zyv € E(G). So, it must now be the case that either
vt € B(G) or v~ € E(G). By symmetry we may assume, without loss
of generality, that 2 vt € E(G). As before, < {v= vt v,2,u07 ) > 2,
unless we have at least one of v~z vter € B(G). fvz; € E(G), then
let € = v=..wraf. 270 and C} = vzzyv, extending the cycle system.
Thus vtz € E(G). Then < ?ﬂ.aw%ﬁc“i >= 75, unless at least one
of vz, vzf € E(Q). Say, without loss of generality, that z7v € E(G).
Then < {v,2,v",27} >= K 1.3 which contradicts our assumption that our
graph G is K j-free. a
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Subcase 2 Suppose C; = K.

We may assume ¢ = K3, or reversing the roles of v and T1, We are
back to Subcase 2.1. We know that z is adjacent to both Cy and C}.
We first consider the case that z is adjacent to another cycle €, k s
i, j. So, there exists y € V(Ck) N N(x) and Cp = Ka. or we are back
to Subcase 2.1. Then <« {w,v,20,y} >= Ky, unless. without loss of
generality, v € E(G). Then < = ut vy, a7 ) > Zy, unless at least
oue of v oyt ur v aToT aTet € E(G). If 210 € E(G), then cither
< ,_lurcli.nﬂti >= Ky or we can oxtend either i or ¢ through u,
or vz € B(G). Now, < {107 2 2} > Ky 3, unless v= ol € B(@G).

Then < {7, 27,0, v, @} > 7y, unless we have, without loss of generality,
vz; € E(G). Now, either < {v, v, 2,27} > Ky or we can extend
a cycle through z, or vtay € E(G). Now let Ci = v vtz v~ and
O«. = vzxv. This is a contradiction to the maximality of our cycle system
that arises from the assumption that z1v” € E(G). With similar arguments
we conclude that 2 vt uxT & E(G). Thus we may say, without loss of
generality, that 270~ € E(@). Again, < {v7,v", v, 21,27} > Z,, unless
we have at least one of vt ,v=zf € E(G). If vt € B(QG), then let
Ci = vtv~ a2z vt and Cf = vezyv. Thus v-at € E(G). Then either
< Tfliﬁﬁ VT, 0,2} >2= Zy or we can extend a cycle through z, unless
vzf € E(G). Then < {v,2F,vF 2} >= I 3, and again we are done, unless
afvt € E(G). Finally, let Ci =vvtafa v~ and Cj = vz v. Thus we
have extended our maximurm cycle system, contradicting the assumption
that z is adjacent to some cycle Cg, k #4,j. Hence, it must be the case
that = is not adjacent to any other cycle. In other words, N(z)nUV(C)) =
{v,z1}. Since 6(G) > 3, then z must have a neighbor y € V(@)\ U V().
Then we have < {o=, v 02,9} >= Z, unless yv € E(G). Similarly,
yry € E(G). Now, again because 6(G) > 3, T must have a neighbor
besides v and ©~. Thig neighbor cannot be z or y. Suppose there exists
w € Nwr)\{UUV(C:),y.x}. Then < {2, 0,07 W) >= Z,, unless vw €
E(G). But now we let Ci = vo~wtwo, which returns us to Subcase 2.1.
Consequently, N(v+) C UV(Ci). Suppose first that Nt)nv(C;) # 0.
Then v*«; € B(Q). If not, then, without loss of generality, vtu € E(G).
But then < W,z my, w7, 0T} > Z, unless vte, € E(@). As a result
of the fact that vtz ¢ E(G), we get that < {z1, 0,0, 27} >= K, 4
unless o vt € B(Q) and < {z1,2,0%, 27} >= K| 5 unless z vt € E(G).
In addition, < {v,2,20,v7, 07} >= Z, unless VT € E(G). Then let
Ci = v~vyre, v and Q = vrar ot extending our maximum cycle
System and contradicting our assumption. Hence, it must be the case that
Nt n VI(C)) = 0. So, ¢* must have a neighbor w € V(Cy) such that
k#i,j. Let wt and w™ be the neighbors of w on Ci,. Now vtwt and vtw—
cannot be edges in G or we can extend C, through v+ and let Ci = wvyav. In
this way we have included z and Y in our cycle system losing only v~ thus
contradicting the assumption of maximality. This forces w—w* € E(G)
or < {w,vt, 0w, wt} > Ky 3. Similarly, v~w~ and v=w*t cannot be
edges in our graph G, or we can extend Ck through both v~ and v+ and
let Cf = vyzv, again a contradiction. But this forces wu~™ € E(G) or
we have < A.E|i:_+,,shc+,ely >= Zy. If Cp 2 K, we are returned to
Subecage 2.1 by letting C! = v~ wuty, so we assume Cr = K. Finally
we see that < {wt, w4 ,0} > 7, unless v owt, or v € E(G).
The rentaining conclusions are drawn from some previous results and the
fact that 2 has no adjacencies on the cycle Cr. If vw™ € E(G), then <




{v,2,07,w™ } > Ky 3. lfvwt € E(G), then < {v,z, 0™, wt} >= [y, If
vw € E(G), then < {wt.w™,w,v, 2} >= Z,. Thus, we have contradicted
the assumption that G is { &7 3, Z» }-free and hence, thie theoremn is proved.
O

Theorem 3 If G is a 2-connected, I; 3-free, Py-freec graph of order n >
3k + 15 such that 5(G) > max(3,k), then G contains o 2-factor consisting
of k disjoint cycles.

Proof: We know  is hamiltonian which gives us the case when k& = 1.
We will consider & > 2. By Theorem 1 we know that G contains k disjoint
triangles and hence & disjoint cycles. We choose k such cycles {Cy, ..., Ci}
such that they include a maximum number of vertices of G. We place
an orientation on each of the cycles Cj, 1« = 1,..., k, and for w € 17(C;),
we let w™(wt) be the predecessor (successor) of w oun the cycle. Now,
suppose that C“_..,.HH V(C;) # V(G). Then if we let R = V(G)\|J V(C;) we
know, by connectivity, that there exists x € R and v € V(C;), for some
i €{1,....,k}, such that zv € E(G). Now, for w € V(C}), w # v, we define
S, to be the segment of the cycle C; from v to w™. Suppose there is
a path P from the vertex = to w € V(C;), w # v, such that the interior
of P is contained in R. (We will say that such a path is in R). We want
to choose such a path P so that there are no paths in R that originate
at @ and end at a vertex in S,,. In addition, from among all such paths.
we choose P to be as short as possible. Clearly vw € E(C;) or we can
extend € through . Suppose zw ¢ E(G). Then let w; and wa be the
first two vertices encountered when travelling along the path P from w to
2. (Note that wz could be z) Then < {w™,w,wy,ws} >= Py unless we
have one of w™wy, w™wy. wws € E(G). If wwy,wwy € E(G), we have
a path in R from z to a vertex in Sy, a contradiction. If ww. € E(G), we
have shortened the path from z to w, another contradiction. Consequently,
zw € B(G). Clearly we may assume that zv™, 20t & E(G), else we may
extend C; through z. Thus < {v,v™,vt,2} >= K 3 unless v~ot € E(G).
If wo= € B(C;), then vaw..vTv~ v extends C;. If woet € E(C;), then
vrw...o” vt extends €. Thus, the vertices wt,w™,v™, v~ are all distinct.
Furthermore, < {w,w™,wT,r} >= K, 3, unless we have whw™ € E(G). If
vtw= € E(Cy), then vrww™ wt..v~vtw extends C;. So. v™™ and w™ are
distinct. Thus, < {&,v,vT, 01T} >= P, unless one of xv™,2v™ vott €
E(G). But zvT,ze™ ¢ E(G) by our choice of P, so it must be the
case that vot™ € E(G). By a similar argument, we get that vy € E(G)
for all y € S,.. But now, vzwwt..v vt w™v extends the cycle C;, a
contradiction. So there are no paths from z to C; in R except for the edge
xv. By the 2-connectedness of our graph G, we know there must be a path
from z to at least one other cycle Cj, j # i, that does not contain the
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vertex v. Take the shortest such path P = LAy ..z such that z; € R
for all © € {1,...,7} and z € V(Cj). If |V(P)| > 4, we must get a shorter
path in the process of insuring that we do not have an induced P,. Either
way we arrive at a contradiction. So, if 2z ¢ E(G), then P = 2,z Thus.
< Aw,w1,2,27 ) >= Py unless one of 427,12~ € E(d). I az™ € MAQV.
we get a shorter path from « to C; and if 2,2~ € E(G) we can extend
Cj through .z, both contradictions. Consequently, zz € E(G). So, & has
exactly one ncighbor on each of | different cycles, [ > 2. The remainder
of the proof is considered in two cases, based on whether or not = has any
adjacencies off of the cycles. (

Case 1 The vertex x hos at least one adjacency y € R.

Let 2v € B(G) for v € V(C;) and for i € {1, ..., k}. Then < {y..x,v,v"}
>= Py unless one of zv™, yv™,yv € E(G). We know w0~ & EB(G), and if
yv~ € E(G) then vut. v~ yzv extends the cycle C;. So, it must be the
case that yv € E(G). Recall that z has exactly one neighbor on eacli of |
different cycles, { > 2. Using the same argument for cach neighbor of ¢ in
UV(Ci) we can see that N (x) N |JV(C;) = Ny)nlJ V(Ci).

Subcase 1 There exists C; such that N(z) N VI(Ci) # 0 and [V(C})| > 4.

We will assume, without loss of generality, that i« = 1. Let v € 17(C))
such that av € E(G). Then, since z cannot be adjacent to any other
element of V(C1), < {w,v,vt,vt+} >= P, unless vut+ ¢ @AQV,. By a
mEEE, argument, we can show that v is actually adjacent to every vertex
of C1. Now suppose we have a,b € V(Cy) such that ab ¢ E(G). Then
<A{w,z,a,0} >= K4, a coufradiction, which means that C) is a clique.
.95:@13 all cycles that are adjacent to x must be cliques. We know =
18 adjacent to at least one other cycle and, without loss of generality. we
will assume = is adjacent to Cy. Let w € V(Cy) such that ww € WAQV.
Then < {w™,w,z,v} >= P, unless one of vw”ew € E(G). If ew €
E(G), we let €Y = v=oT..0~ and Cy = vzyww’...w v, extending the
cycle system and giving us a contradiction. So. it must be the case that
vw € E(G). Now we have that < {vt,v,w,w™} >= Py unless one of
vtw™ vtw € B(@). Suppose vtw— € E(G). Then < {v=,v,w,wt} >=
Py unless one of v wt v wowt € E(G). If vwt € E(G), let Q =
veywe and C) = v~wt w vt wT. I ovmw € E(G). Lot Cl = vy
m_ma Cy = v wwt. w vt v-. If vut € E(G), let €] = wayw and

3 =vwt. w vt v In all cases we get a contradiction by extending
the cycle system through x and y. Hence, it follows that vtw™ ¢ E (¢) and

vt f
0T . \ , 2= . ~ - NP
v € E(G). But then < {w,w™ vt 2} >= K| 4, another contradiction.

O

We must now assume that any cycle adjacent to u is a triangle.
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Subcase 2 If N(z)NV(C;) # 0, then C; = K.

Let v,w € N(z) NJV(C;). Recall that y ¢ |JV(C;) but that zy, you,
and yw € E(G). Assume, without loss of generality, that v € 17(C;) and
w € V(Cz). Thus < {v,2,w,w™} >= Py unless one of vw,vw~ € FE(G).
If vw™ € E(G), then < {v,z,w™ v} >= K| 5 unless vtw™ € E(G) and
< A{zv,w”,wt} >= Py ounless vwt € E(G). If we let C} = wywz and
Cy = vwtw~vtv~ v, then we have extended our cycle system giving us a

s

contradiction. Therefore, it must be the case that vw™ ¢ E(G) and vw €
E(G). In addition, we can show by a similar argument that wvt ¢ E(G).
But that means that < {v™,v,w,w™} >= P; unless vtuw™ € E(G). Now,
< A{v7,vt,w™,wt} >= Py unless one of v=w™,vtwt, v wt € B(G). If
v~ wt € E(G), welet Cf = veywv and Cy = v™vrw ™ wru™, extending our
cycle system and again giving us a contradiction. So cither v~ w™ € E(G)
or vtwt € E(G). Without loss of generality, assume that v~ w™ € E(G).
We have shown that v~w*,vw™ € E(G). So, < {v,v™,w™,wt} >= P
unless vwt € E(G). But then we let C] = zywz and C) = vwtw = vto v,
which again extends our cycle system and gives us a contradiction. So in
all cases where x has an adjacency outside the cycle systen, we are able
to extend the cycle system which contradicts the maximality of the cycle
systern. 0O

Case 2 Suppose N(z) N R = 0.

Since §(G) > k, x must have exactly one neighbor on each of the k cycles.
Let v € N(z) N V(Cy) and w € N(z) NV (Cy). Now since §(G) > 3 and
d(z) = k we know that & > 3. Thus, if no neighbors of z are joined by
an edge, we have an induced K 3 centered at z. We can then assume,
without loss of generality, that vw € E(G). Now, if vTwt ¢ E(G) then
< {vF,v,w,wt} >= Py unless one of vwt,wvt € E(G). But then <
{v,z,wt, 0T} >= K3 if vwt € E(G) and < {w,z,v",w} > K, 4 if
wvt € E(G). In each case we get a contradiction and so we conclude that
vtwt € E(G). Similarly, v~ w™ € E(G). It C, = K3 and Cy = Kj, then
let C] = vwzv and C5 = v~ w wtoTo™. which extends our cycle system,
a contradiction. So, without loss of generality, assume that |V (C})| > 4.
We see that < {z,v,v",wt} >= P, unless vw™ € E(G). But, we can
now let Cf = v~ vt..v7 and C) = zvw™ ..~ waz, which again extends our
cycle system. Thus, we have in all cases contradicted the assumption of
maximality of our cycle system and hence, the theoren is proved. O
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