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PATH SPECTRA AND FORBIDDEN FAMILIES

ALLEN G. FULLER AND RONALD J, GOULD

ABsTrRAOT. The path spectrum, sp(G), of a graph G is the set of
all lengths of maximal paths in . The path spectrum is con-
tinuous if sp(G) = {£,£+1,...,m} for some £ < m. A graph
whose path spectrum consists of a single element is called secenic
and is by definition continuous. In this paper, we determine when a
{K1,3, S}-free graph has a continuouns path spectrum where S is one
of Ca, Py, Ps, Ps, 71,72, Z3, N, B, or W.

1. INTRODUCTION

All graphs considered in this paper are simple graphs, no loops or mul-
tiple edges are allowed. For terms not defined here, see [4]. A graph G
is hemiltonien if G contains a cycle spanning the vertex set of G. A
path P in G is mazimal if it cannot be extended to a longer path by
adding an edge and a vertex to one of the end vertices of P. A graph G is
{Hy,Ha,...,Hy}-free (k > 1) if G contains no induced subgraph isomor-
phic to an H;, 1 <<k

The path spectrum of a connected graph G, sp(G), is the set of lengths
of all maximal paths in G. The path spectra of graphs have been studied in
[5] and {2]. In [5] and [2], the focus of the work is on determining whether
a given set of integers is in the path spectrum of some graph. Also, in
[5], Jacobson et af. asked about the complexity of computing the path
spectrum of a given graph (. They considered the related question of
whether there is a maximal path of length k. This question is NP-hard
since if k is one less than the order of 3, the problem asks whether the
graph has a hamiltonian path. Hence, the path spectrum question for an
arbitrary graph was determined to be NP-complete.

However, Bedrossian in [1] proved the following (see Figure 1 for drawings
of some of the graphs).

Theorem 1. Let R and § be connected graphs with R, S # P, and let
G be a 2-connected graph that is not a cycle. Then G being {R, S}-free
implies G is hamiltonian if and only if (up to symmetry) R = K; 3 and
S =Py, P5,P,C3,71,%2,B,N, ot W.
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Faudree and Gould in [3] improved on the work of Bedrossian to get the
following theorem,

Theorem 2. Let R and 5 be connected graphs with R, 5 # Py, and let
be a 2-connected graph of order n > 10. Then G being {R, S}-free implies G
is hamiltonian if and only if R = K13 and S = Py, Py, P3,C3, Z1, Z2, 73, B,
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" FI1GURE 1. The graphs B, N, W, Zy, Zs, Zs.

Since we know that these 2-connected, {R, S}-free graphs are hamilton-
ian (and hence have a hamiltonian path), we ask what can be said about
the path spectrum of such graphs. In particular, are they continuous? By
a continuous path spectrum, we mean that sp(G) = {£,£+1,... ,m} where
£ is the length of the shortest maximal path in 7 and m is the length of the
longest maximal path in . Note a path spectrum consisting of only one
element is continuous. A graph with such a path spectrum is called scenic.
Thomassen characterized when a traceable graph is scenic in {7]. Jacobson,
Kézdy, and Lehel also studied scenic graphs in [6].

We need some notation to state Thomassen's result. A matching of ¢
edges will be denoted by tHy. A graph that is a complete graph minus
a matching with I < ¢ < n/2 will be denoted by K,, — tKs. A complete
bipartite graph plus (resp. minus) an edge is denoted by K, , + Ky (resp.
K,p» — K3). The graph obtained by adding an edge to each partite set
of Kp; is denoted by K, + 2K,. If H € {K3,2K, K, 4}, the graph
Kppy1 + H denotes the graph formed by adding all the edges of H to the
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largest partite set of K, 1. The cube is the graph K44 — 4K5 and the
prism is the graph formed from Kg by removing the edges of a six-cycle,
The following result is Thomassen’s characterization of traceable, scenic
graphs. ' '

Theorem 3. [7] A traceable graph is scenic if and only if it belongs to
one of the following families:

O[K,] = {Kn K,—tK;(15t<n/2)},
@{Km’] = {Kp,p’ Kp,p - Ko, Kp,p + Ky, Kpp+ 2K2},
S[Kpp+1] = {Kppt1, Kppy1 + Kz, Kppia + 2Kz,
Kpp+1 + K14 (1 <q<p)},
¥ = {P,,Cy,prism, cube}.

We answer the question concerning the 2-connected, {R, §}-free graphs
in Theorem 2 that have continuous path spectra in the following result.

Theorem 4. Let G be a 2-connected, { Ky 3, S}-free graph of order n > 10
where S is one of C3, Py, Bs, Ps, 21,72, 73, N,B; or W. Then G has a
continuous path spectrum if and only if S is one of the graphs Ca, Py, Zy
or Zy. Furthermore, (G is scenic if and only if & is one of K,,, K,, —tK, or
Ch.

The proof of this theorem is in Section 3. Two preparatory propositions
are in the next section.

2. Two RESULTS

Proposition 2.1. Let G be a 2-connected, {K13, Z2}-free graph of order
n. Let P be a maximal u-v path of order m < n. Then P can be extended
to a maximal u—v path of order m + 1.

Proof. Let P be u = 1,%s,... ,Z, = v. Since G is connected, m < n, and
P is maximal, there is a vertex w in V{(G) — V(P) such that w is adjacent
to a vertex z;, 1 < j <n, on P. Also, since G is 2-connected, there is at
least one other path from w to P, Consider the collection € of these paths
that have the shortest length. Let @ be the path from ' that hits closest
to z;. Suppose that ¢ hits P at x; and with out loss of generality that
j<k<n Let Q bexy=2z,22,...,% = u.

CASE 1: Supposethat & > j+3. We first note that {{z; 1, z;, j41,w})
is a claw centered at z; and that ({Zr—_1,Tk, 5141, 22}) forms a claw cen-
tered at zx. Observe that w cannot be adjacent to z;_; or x4, otherwise
() would not be the closest path to z; from w to P. Also, 2z is not adjacent
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to 31 or else {) would not hit closest to x;. Now if 2, is adjacent to x4,
then P can be easily extended as follows:

U= T1, T2y, Thy 22, Bhg 1y T = V.

Thus, suppose that zs is not adjacent to z5_; or zx41. Consequently,
Ty 1Z;41 and Tp..1 231 must be edges of G.

Now, if ¢} has 3 or more vertices, then ({21, 2, Tp41,23, 23}) forms a
Zy. Thus, either zx_129, T4 22, Tp—123, Try123, OF LTy2g is an edge of G.
Since @) is the shortest path from w to P, .1 23, £34123, and 2323 cannot
be edges in G. Since @ hits closest to z;, T4—122 cannot be an edge in G.
If zy41 is adjacent to zp, then P can be extended as above. Therefore, we
assume that ¢) has only two vertices; that is, w is adjacent to z.

Next, we note that {z;_1,z;, 2,41, w, 2} induces a Z;. Hence at least
one of the following edges is in G @;_12x, 412k, or z;2g. (The pairs
wx; 1 and wg;y, were eliminated since @ hits closest to z;.) If o; 124 (or
similarly #;;12) is an edge, then P can be extended as follows:

U= T, 82, 1, Tpy, Wy Ty Tkl 0 v v 3 Bl Bhtl, -+ v 4 B = U,

Therefore, assume that z;z; is an edge in G.

Note that by a symmetric argument on zy, the edges WEE 11, Tp—1L4,
and rppi12; can shown to extend the path P.

Before proceeding, we make the following notational convention and two
observations. We will denote the subpath {z,, o 1,... 25} of P as [z,, z5].
Now we observe that if z;_; and =1 are adjacent to adjacent vertices of
(%511, 25-1], then P can be extended. To see why, suppose that Tj_1 is
adjacent to z; and that x4 is adjacent to z;41. Then a path of order
m - 1 can be formed as follows:

U=21,T2,... ,L5j1,Li,Ti—1,... s g, W LRy 1.0,
Tit1y Th41y .00 3T = V.
Secondly, we note that if z; and =z, are adjacent to adjacent vertices of
[#j41,@5—1], then P can be extended to a path of order m + 1. To see

this, suppose without loss of generality that z; is adjacent to x; and zj, is
adjacent to z;y1. Then a path of order m + 1 is formed as follows:

U=T1,To,... LY B R P s Ly Ty Wy B, Big 1,00,
Th—1,Tht1ss v, B = V.

Now, notice that ({w,w;, zx, x—1,2:-2}) and ({w,z;, 24, i1, 2542 })
each forms a Z;. We will only consider the Z; induced by {w, z;, zj,z_1,
Tk-2} in detail since the Zy ({w,z;,x, 2j41,T442}) is symmetric. We see
that at least one of the following pairs is an edge of G: TiTh g, T;Th—1,
or zy_szy. If either of the edges z;xx_o or z;z4.1 is an edge of @, then
rj—1 and i1 are adjacent to adjacent vertices in [z;i1,2%_1], and thus
P can be extended, Hence, we assume that z;xy.» and TjTg_1 are not
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edges in G but that z;_szy is an edge in G. By symmetry, we assume that
TpZipe and TpTiq1 are not edges in G but that ;7544 is an edge in G. If
j+2 = k—2, then z; and z are adjacent to adjacent vertices in [x;4.1, Tx—1]
and P can be extended. If j + 2 # k — 2, we apply arguments similar to the
preceding arguments to the following Zo’s: {({w,z;, &k, %r 2, %4 3}) and
({w, x;, Tk, Tj4+2, Tj+3}). We see that the only edges that do not immedi-
ately lead to a path of length m + 1 are z;x;43 and x4, xr_3. We continue
the process until the path extends or we reach a point where z; and 4 are
adjacent to adjacent vertices in {z;41,25—1] which also implies P can be
extended.

Thus, we see that if ¥ > 7 + 3, P can be extended to a path of length
m—+ 1.

CASE 2: Suppose that k = j + 2. Then, by the arguments of Case
1, we may assume that the edges z;_12;41 and Tx_12¢41 and that w is
adiacent to z. Thus P can be extended as follows:

W=Tty. ., Tj—1,Tj41,Tf, W, Thy Eptly. - 2 Tm = V.

CASE 3: Suppose that k = j + 1. Note that if w is adjacent to both z;
and =z, P can easily be extended by exactly one vertex. Thus, we assume
that w is not adjacent to zy; that is, @ has at least three vertices. Thus,
({5, Tk, Tr41, 22 }) forms a Ky 5 centered at zy. If either z;2; or Tgy1 22 Is
an edge in G, P is easily seen to be extendable. Hence, we suppose that
z;Try1 is an edge of G. Since ({z;, z,%;-1,w}) forms a claw centered at
7, we assume by symmetry that z;_zx € E(G).

Now, we note that if @ has more than three vertices, a Z3 is formed by
{({zj, 2k, Thi1,22,23}). Observe that z4+123 cannot be an edge of G or @
would not be the shortest path from w to P. If z; is adjacent to Tp+1, P is
easily seen to be extendable to a path of length m + 1. Thus, we suppose
that z;23 is an edge of G. Observe that this is really the case when () has
exactly three vertices as 23 assumes the role of w.

Thus, suppose that ¢ has three vertices, say w, z, and z;. Note that
{w, z;1, T, Te41}) forms a claw centered at z;. Since @ is the shortest
path from w to P (except for wz;),o;_12x_1 must be an edge in G. How-
ever, we see that {z, i, 41, Tk, 2, w} induces a Zy. Since Q) is the shortest
path, the only possible edges that can exist are z;_;z and zy,12. Clearly
if z4412 is an edge of G, P can be extended. Now, if z;_,2 € E(G), P can
be extended as follows: ‘

=Tty 00 3 Tj-1, 2, Tk gy Tty - -, Tm = Y.
Thus, when k = j +1, P can be extended to a path of length m+1. U

Proposition 2.2. Let G be a 2-connected, {K) 3, P4}-free graph of order
n. Let P be a maximal u—v path of order m < n. Then P can be extended
to a maximal u—v path of order m + 1.
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Proof. Let P be w =2,%9,... ,2m =v. Since G is connected and m < n,
there is a vertex w in V(G) — V' (P) such that w is adjacent to a vertex z; on
P. Also, since 7 is 2-connected, there is at least one other path from w to
P, Consider the collection C' of these paths that have the shortest length.
Among this collection let ¢ be the path that hits closest to z;. Suppose
that € hits P at x3 and with out loss of generality that j < k < n. Let Q
be zp = 21, %2,... ,2¢ = w. Observe that since G is Py-free, £ < 3.

CASE 1: Suppose that k > j + 2. First, we note that since & is claw-
free, x;,_1z;41 and zx_1or41 are edges in G. Next, we observe that £ = 2.
To see why, suppose £ = 3. Then wzezpxzy 1 forms a Py. Note that the
addition of any edge to this Py contradicts the choice of . Hence, £ = 2:
that is, w is adjacent to zj.

Now, we see that if K = 7 + 2, P can be extended as follows:

U =T1,T2,... , L5, W, By Lh—1,Tht1y+-+ , T = V.

Thus, we assume that &k > j + 2 and observe that ({#;_1,z;,w, 51 }) forms
a Py. The vertex w cannot be adjacent to z;_1 (contradicts the choice of
Q). If z;_1 is adjacent to zy, then P can be extended as follows:

U=1,82; -« 3851, Thy W, Ty Tjglse s 3 Bhe1y Thbly e T = V.
Thus, we suppose that z; is adjacent to zp.
Now, we see that ({z;,1,%;, Tk, Ths1}) forms a Py. If 2,4, is adjacent
to g1, then P can be extended as follows:
U=T1,82, . s T4, W, Bpy, Pp—1,Tk—2,.++ yTj+1y Thtlse0 . , T = V.
If #;44 is adjacent to zy, then P can be extended as follows:
U=T1,02,... , 25, W, Tp,Bi41,%542, - L—1,Th31 .+ 3Ty = V.
Finally, if z; is adjacent to g41, then P can be extended as follows:
UZ=L1,80,- 0« 851, T4541, L5420 3 T, W, T, Tl 1y , By = U
CASE 2: Suppose that k= j+ 1. I £ = 2, then P is easily extendable.
Hence, we assume that £ = 3. Then {({w, 23, 2, 2g41}) forms a Py. The

edges wzy and wrpyy cannot be in G by the choice of @ Thus, w4122
must be an edge in G. Consequently, P is easily seen to be extendable. [

3. Proor oF THEOREM 4

Proof. First we note that if 7 is a 2-connected, {K 3,C3}-free graph, then
G is a cycle, Cp,n > 10. Also note that a 2-connected, { K7 3, Z1 }-free graph
is either a cycle or a complete graph minus a matching. By Theorem 3,
the only 2-connected, {K; 3,S}-free scenic graphs of order n > 10 are
K, K, — tKs, and C),. Thus, these graphs have contimious path spectra.

Now suppose G is a nonscenic, 2-connected, { K 3, 5}-free graph of order
n > 10 where S is P (or Z3). Then by choosing the shortest maximal path
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in G and repeatedly applying Proposition 2.2 {or Proposition 2.1), we see
that the path spectrum of & is continuous.

Finally, suppose that G is a nonscenic, 2-connected {K; 3, S}-free graph
of oxrder n > 10 where S is one of B, N, W, B, Fs, or Z3. We congider
the graph H in Figure 2. The path spectrum of H is easily seen to be

K K,

FiGuRE 2. The graph H withb>a+1, a > 4.

sp(H) = {a — l,a+ 1,a-+2,... ,a+ b —1}. The graph H is also free of
claws, B’s, N’s, W’s, Fy'’s, Py's, and Z3’s. |
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