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Abstract

The object of this paper is to review the general problem of using degree conditions to
determine the structure of 2-factors in graphs. We shall discuss open problems and developments
in this area and to a very limited extent, provide examples of the proof techniques used. We
shall also consider some of the corresponding questions and development for digraphs. This is
not intended as a complete survey, but rather an overview, indicating some new directions and
open problems. (© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple finite graphs unless otherwise stated.
Let G be a graph. The minimum degree of G will be denoted by d(G). A hamiltonian
cycle of G is a cycle of G which spans V(G), that is, it contains every vertex of
G. The girth of G, denoted g(G), is the length of a shortest cycle in G. We use the
notation G to denote the complement of the graph G. For any graph G, F is a 2-factor
of G if and only if F is a union of vertex disjoint cycles that span V(G).

Throughout this paper we are motivated by the following natural questions.

Question 1. What conditions on 3(G) (or degree conditions in general) are sufficient
to ensure that G contains a 2-factor? Further, from these conditions can we determine
the number of cycles in the 2-factor or the size of these cycles, or both?

Clearly, hamiltonian cycles are 2-factors. Further, there are many results relating
degree conditions and hamiltonian cycles. For example, two of the most well-known
are stated below. Here, 6,(G) = min{degu + degv|u,v € V(G), uv ¢ E(G)}.
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Theorem 1 (Ore [27]). Let G be a graph of order n = 3. If 6,(G) = n, then G is
hamiltonian.

Theorem 2 (Dirac [14]). Let G be a graph of order n = 3. If the minimum degree
o(G) = n/2, then G is hamiltonian.

However, we shall not concern ourselves here with hamiltonian results. The interested
reader should see [22]. We shall instead concentrate on trying to determine the structure
of general 2-factors. Terms not defined here can be found in [21].

2. More general conjectures and early results

The fundamental conjecture relating degree conditions and general subgraph contain-
ment is the following powerful conjecture due independently to Bollobas and Eldridge
[7] and Catlin [9,10].

Conjecture 1. If G and H are graphs of order n such that (A(H)+1)(4(G)+1) < n+1,
then H is a subgraph of G.

This conjecture has many interesting implications, however, we shall restrict our
attention to the question at hand. For 2-factors, or more generally when A(H ) =2, this
becomes:

Conjecture 2. If G and H are graphs of order n with A4(H) < 2 and A(G) < (n—2)/3,
then H is a subgraph of G.

The bound in Conjecture 2 corresponds to that given in the following well-known
result due to Corradi and Hajnal [13].

Theorem 3. Let G be a graph of order n =3k with 6(G) =2k, (k= 1), then G
contains the vertex disjoint union of k cycles.

A long-standing conjecture due to Erdos would generalize the Corradi—Hajnal result.
Using the Regularity Lemma, Komlods et al. [19] have shown this conjecture holds for
large n.

Conjecture 3. Let H be a graph of order 4k with 6(H ) > 2k, then H contains k vertex
disjoint 4-cycles.

Another beautiful conjecture due to Alon and Yuster [4] was recently solved by
Komlos et al. [19]. Their solution of the Erdos Conjecture is a special case of this
result.
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Theorem 4. Let G be a graph of order n. For every graph H there is a constant K
such that 6(G) = (1 — 1/y(H))n implies that there is a union of disjoint copies of H
covering all but at most K vertices of G.

Note that when H is a 2-factor, y(H) < 3 and the bound of 6(G) > 2n/3 appears
once again.

Catlin, in his Ph.D. thesis [9], investigated Conjecture 2 and in so doing bolstered
the study of the structure of 2-factors. He announced the following more general result,
also found independently by Sauer and Spencer [29]. The proof presented here is from
Catlin’s Thesis [9].

Theorem 5. If G and H are graphs of order n such that 2A(G)A(H) < n, then H is
a subgraph of G.

Proof. Given G and H satisfying the conditions of the statement, suppose H is an
edge minimal graph that is not a subgraph of G. Then for any fixed edge e = ww' in
E(H), H — e is a subgraph of G. Let n : V(H) — V(G) be an embedding of H — e
into G. To find an embedding of H, we shall alter 7 by transposing 7(w) with another
vertex z of G so that the resulting embedding still embeds H — e and also maps e onto
an edge of G, hence embedding H, a contradiction to our assumptions. The vertex z
must preserve the adjacency structure of m(w) and allow the missing edge e to also
be embedded in G.

To find such a vertex, define M(v) = {v"" € V(G): n~'(v)n '(v")EEH — e)}. A
successor of v is any vertex vy € V(G) such that for each v’ € M(v), vy is adjacent to
v" in G and v; # v. Let S(v) be the set of all successors of v. We also define v to be
a predecessor of vy if v; € S(v). Let P(v;) denote the set of all predecessors of v;.

Let v = n(w) and note that if v; € S(v) N P(v) and if v; # v, then v; is a candidate
for the vertex z. For each vertex x € V(H), the map

n(x) if w(x) # v or vy,
T, (x) = q v1 if n(x)=uv,
v if n(x)=nuv.

A vertex x is not in S(v) if x is adjacent in G to a vertex x’ in M(v). For any vertex
x' € M(v), there are at most A(G) choices for x. Since degy_,(w) <A4(H) -1, we
have |M(v)| < A(H) — 1 choices of x’. Hence, at most A(G)[A(H) — 1] vertices x are
not in S(v). Neighbors (in H) of any nonneighbor (in G) of v cannot be exchanged
with v. There are at most A(G)A(H) — 1 such neighbors possible, since x’ = n(w') is
a nonneighbor of v (in G) and w’ has at most A(H)— 1 neighbors in H different from
v. Thus,

IP(v) N S()| = [V(G)| = [V(G) = P(V)| = [V(G) = S(v)|

> n—[A(G)AH) — 1] — A(G)[A(H) — 1]
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= n—24(H)A(G)+ A(G) + 1
> 2+ A(G).

But at most 1 + A(G) vertices are not adjacent in G to m(w’) Therefore, there is
a vy € P(v) N S(v) that is adjacent to n(w') in G. Thus, 7, is an embedding of H
into G. [

The 2-factor version of Theorem 5 is the following corollary.

Corollary 6. If G has order n and H is any 2-factor on n vertices and 44(G) < n,
then H is a subgraph of G.

We can conclude from this corollary that if G has minimum degree J(G) = 3n/4,
then G contains any graph of order » and maximum degree two as a subgraph. Sauer
and Spencer [29] also conjectured that the minimum degree condition could be lowered
to 0(G) = 2n/3. They also showed via a probabilistic argument that Theorem 5 is
essentially best possible by proving the existence of graphs G and H of order n for
which A(G)A(H) is about 4nlog n and for which H is not a subgraph of G.

Catlin [9] also gave a slight improvement of Theorem 5 for the case of interest here,
however, this result is still not best possible. His proof technique was similar to that
of Theorem 5.

Theorem 7. Let G and H be graphs of order n with A(H)=2. If A(G) < (2n—11)/7,
then H is a subgraph of G.

Catlin [9,10] continued his assault on the 2-factor problem with the following:

Theorem 8. If G has order n=ny+ny +---+n; with n; =3 for each i=1,...,k and
(G) = 2n/3 +On'?), then G contains k vertex disjoint cycles Ci,...,Cy of lengths
ni,...,Nng, respectively.

Catlin later improved this result by replacing O(n'?) by O(1). However, it would be
many years before Conjecture 2 would be completely settled. In the meantime, other
results would be obtained. For example, for the case k£ =2, the following strong result
was obtained by El-Zahar [16].

Theorem 9. Let G be a graph of order n and let ny = 3 and ny = 3 be two integers
such that ny+ny =n. If the minimum degree 5(G) = [n1/2] + [ny/2], then G has two
vertex disjoint cycles C, and C, of length ny and ny, respectively.

The key to the proof of Theorem 9 is the following lemma.

Lemma 1 (El-Zahar [16]). Let G have order n=n, +ny and 6(G) = [n1/2] + [ny/2].
Then there is a partition of G into subgraphs Gy and G, such that one of the following
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conditions holds:

(1) [V(G)| =n; and 5(G;) = nif2, i=1,2,
(2) Gi contains a path on n; — 1 vertices, |V(G,)| =n; + 1 and 6(G>) = n;/2 + 1
where {i,j}={1,2}.

Proof of Theorem 9 (Sketch, El —Zahar [16]). If G has a partition satisfying condition
(1) of Lemma 1, then the result follows easily from the classic hamiltonian result of
Dirac (Theorem 2).

If instead (2) holds with |[V(Gy)|=n; + 1 and |V(Gy)| =ny + 1, the idea is to find
a vertex w € V' (G,) such that G| + w is hamiltonian. Then again by Dirac’s Theorem,
G, — w will also be hamiltonian.

Thus, if G| has a hamiltonian path from vertex a to vertex b and if

degg a+degg b <n —1 (1)

then degg, a +degg, b > ny + 1, and hence, aw,bw € E(G) for some w € V(G). Thus,
Gy + w is hamiltonian. Now we can assume Eq. (1) does not hold. Then by (1) of
Lemma 1 and Ore’s Theorem (Theorem 1), G| contains a hamiltonian cycle, call it C.

Now let X = {x € V(G)|degs x < n1/2}. By considering the three cases: [X| > 2,
|[X| =1, and X =0, the proof is completed. We consider here only the first of these
cases.

Thus, suppose that |X| > 2. For any x;,x; € V'(X') we have that deg;, x; +degg, x2 >
ny + 2. Thus, x;w,x,w € E(G) for some w € V(G,). If x; and x, were adjacent on C,
then G| 4w would be hamiltonian as required. Hence, assume no two vertices in X are
adjacent on C and let p; and s; be the predecessor and successor of x; (i=1,2), respec-
tively, according to some orientation of C. Then we get a path p;C ™ syxowx1s;CT py
where p;C~sy and s;C" p, denote subpaths of C, respectively, opposite to and in
the same direction as the orientation. Since p;, p» are not in X, this path contains a
hamiltonian cycle by the proof of Theorem 1. [J

In the same paper, El-Zahar conjectured that if G is a graph of order n = n; +
ny + -+ ng (n; = 3) with minimum degree
n ny N
w0 = [F]+[F]++ 3]
then contains £ vertex disjoint cycles of length ny,ny,...,n;, respectively.

If El-Zahar’s conjecture is true, then it follows that if G is a graph of order
n=n;+n+ -+ n (n; =3) with 6(G) = 2n/3, then G contains k vertex disjoint
cycles Cy,Cy,...,Cy, of lengths ny,n,...,n;, respectively. Recall Theorem 5 implies
that El-Zahar’s conjecture holds with 6(G) = 3n/4 — 1.

Recently, Wang [31] has provided a slight strengthening to Theorem 9.

Theorem 10. Let G be a graph of order n = 6 with 6(G) = [(n + 1)/2]. Then for
any two integers s and t with s = 3, t = 3 and s+t < n, G contains two vertex-disjoint
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cycles of lengths s and t, respectively, unless n,s and t are odd and
G = Ku—1)2,—1)2 + K.

Clearly K(,—1)2,(ni—1y2 + K1 does not contain two vertex disjoint odd cycles for
any odd n > 3. If n is even, K5 ,» contains no odd cycles at all. Wang [31] also
considered this situation.

Theorem 11. Let G be a graph of order n =8 with n even and 5(G) = n/2. Then
for any two even integers s and t with s 24, t =24 and s +t < n, G contains two
vertex disjoint cycles of lengths s and t, respectively.

In 1993, Aigner and Brandt [2] finally settled Conjecture 2.

Theorem 12. Let G be a graph of order n with 6(G) = (2n — 1)/3, then G contains
any graph H of order at most n with A(H) = 2.

The degree condition of Theorem 12 is best possible. To see this consider the com-
plete tripartite graph G = K, /+1,—1. This graph has order » =3¢ 4+ 1 and minimum
degree 2¢t = (2n — 2)/3, but it fails to contain ¢ vertex disjoint triangles.

Alon and Fischer [3] independently proved that if G has sufficiently large order n
and minimum degree at least 2n/3, then G contains any graph H with A(H) < 2.

3. Relaxing the problem

Theorem 12 is very powerful as it guarantees the graph H contains all possible
2-factors. But Theorem 12 also requires a very high minimum degree. It is now natural
to ask if we can obtain a little less in graphs where the minimum degree is not as
high. Our new problem becomes:

Problem 1. What minimum degree (or degree condition) is sufficient to guarantee a
graph G contains a 2-factor consisting of a specified number k of cycles.

In this study, both Theorem 3 and the following result on independent cycles have
proven useful.

Theorem 13 (Justesen [17]). If G is a graph of order n = 3k such that o(G) = 4k,
then G contains k vertex disjoint cycles.

Using Theorem 13 the following was shown in [8].

Theorem 14. Let k be a positive integer and let G be a graph of order n = 4k. If
02(G) = n, then G has a 2-factor with exactly k vertex disjoint cycles.
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Note that Theorem 14 generalizes the classic hamiltonian result of Ore [27] for the
case when n > 4k. The complete bipartite graph K, ,» shows that this result is best
possible. The following generalization of Theorem 2 is also clear.

Corollary 15 (Brandt et al. [8]). Let k be a positive integer and let G be a graph
of order n = 4k. If 0(G) = n/2, then G has a 2-factor with exactly k vertex disjoint
cycles.

The next result gives a sufficient condition for a graph to have & disjoint cycles
which are either triangles or 4-cycles. This result is also from Brandt et al. [8].

Theorem 16. Let s < k be two nonnegative integers and let G be a graph of order
n=3s+ 4k —s). If 62(G)=(n+s)/2, then G contains k vertex disjoint cycles
Cy,Cs,...,Cy such that

V(C)I=3 for1<i<s,
V(G <4 fors+1<i<k

that is, the first s cycles are triangles and the others are either triangles or 4-cycles.

4. Special cases and restricted classes

In this section we consider some results on restricted classes of graphs. We say G
is {H,...,Hy}-free if G contains no subgraph isomorphic to any H;, i=1,...,k. Each
graph H; is said to be forbidden in G. We begin with a special case of a more general
result from Egawa and Ota [15].

Theorem 17. If G is a connected K, 3-free graph with 6(G) = 4, then G contains a
2-factor.

Egawa and Ota [15] extended this approach to K ,-free graphs.

Theorem 18. Let G be a connected K, ,-free graph (r = 3) with

r? 3r—6 r-—1
(G) = ,
(G) {S(r—l)—'— 2 + 8 —‘

then G has a 2-factor.

Acree [1] found several results where the Corradi-Hajnal condition (from
Theorem 3) could be used in conjunction with forbidden subgraphs to obtain 2-factor
results. The graph Z, is formed by identifying a vertex of a triangle with an end vertex
of a path of length 2.
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Theorem 19 (Acree [1]). If G is a 2-connected {K,3,Z,}-free graph of order n =
3k (k= 1) such that 6(G) = 2k, then G contains a 2-factor consisting of exactly k
disjoint cycles.

A graph G is said to be locally connected if for each vertex x € V(G), the graph
induced by the neighborhood of x, N(x) = {w € V(G)|xw € E(G)}, is connected.

Theorem 20 (Acree [1]). If G is a comnected, locally connected K, s3-free graph of
order n =3k with 5(G) = 2k, then G contains a 2-factor consisting of exactly k
disjoint cycles.

Turning to another restricted class of graphs, let G=(V, V2; E) be a bipartite graph.
We say G is balanced if |Vi| = |V2|. Amar [5] obtained the following:

Theorem 21. If G is a balanced bipartite graph of order 2n with degu+degv > n+2
for any u€Vy and v € V,, then for any ny =2, n, = 2 with ny +n, =n, G contains
two vertex disjoint cycles of lengths 2ny and 2n;.

Wang [32] obtained a bipartite result reminiscent of El-Zahar’s Theorem.

Theorem 22. If G is a balanced bipartite graph of order 2n with n=n; + --- + n
and (G) = ny +ny + -+ -+ ng_1 + n/2, then G contains k disjoint cycles of lengths
2ny,2ny,. .., 20, respectively.

Moon and Moser [26] obtained the following well-known hamiltonian result.

Theorem 23. Let G be a balanced bipartite graph of order 2n. If (G) = (n+ 1)/2,
then G is hamiltonian.

This result was generalized in [11].
Theorem 24. Let k be a positive integer and let G be a balanced bipartite graph of
order 2n where n > max{52,2k*+1}. If (G) = (n+1)/2, then G contains a 2-factor

with exactly k cycles.

Finally, Las Vergnas [18] determined a condition sufficient to insure a hamiltonian
cycle that contains all edges of a perfect matching.

Theorem 25. Let G be a balanced bipartite graph of order 2n. If degu+degv > n+2
for every pair of nonadjacent vertices u and v from different parts, then each perfect

matching of G is contained in a hamiltonian cycle.

In [12], the following 2-factor result related to Theorem 25 was obtained.
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Theorem 26. Let k be a positive integer and G a balanced bipartite graph of order
2n where n = 9%k. If (G) = (n+2)/2, then for every perfect matching M, G contains
a 2-factor with exactly k cycles including every edge of M.

5. Digraphs

It is natural to ask similar questions for digraphs. This has been done to some
degree and a variety of results have been obtained. Kotzig [20] showed regular multi-
digraphs contain 2-factors. A great deal of recent work has centered on special classes
of digraphs where connectivity rather than degree conditions become critical. A very
reasonable approach would be to consider the special class of tournaments, that is,
complete graphs where each edge receives a direction. Thomassen (see [30]) raised
the problem of finding a 2-factor consisting of exactly two cycles. The cycles of such
a 2-factor are called complementary cycles. The following result is due to Reid [28].

Theorem 27. Every 2-connected tournament on n = 6 vertices contains two comple-
mentary cycles of lengths 3 and n — 3, respectively, unless the tournament is T; (see
Fig. 2).

If for each integer ¢, 3 <t <n — 3 a digraph D of order n contains two comple-
mentary cycles of lengths ¢ and n — ¢, then we say that D is complementary pancyclic.
Song [30] used induction to extend Reid’s Theorem.

Theorem 28. Every 2-connected tournament on n = 6 vertices is complementary pan-
cyclic unless it is isomorphic to T?.

It is natural now to consider digraphs that are close to tournaments structurally. We
say a digraph is semicomplete if for any two vertices x and y, there is at least one
arc (directed edge) between them. Clearly tournaments are semicomplete. Recall that
the out-neighbors of a vertex x are those vertices which receive a directed arc from x,
while the in-neighbors of x are those vertices which send an arc into x. A digraph D is
locally semicomplete if the graphs induced by both the out-neighbors, denoted N*(x),
and in-neighbors, denoted N ~(x), of every vertex x form a semicomplete digraph. The
closed neighborhood of x is N(x) U {x} = N[x]. Let deg" x = [N*(x)| and deg™ (x) =
IN~(x)|. For convenience, let 7" ={TJ, T2,TZ, T}, T#} (see Figs. 1 and 2). Note that
each digraph in 7’ is 2-connected and locally semicomplete. Further, note that none is
cycle complementary.

A digraph is termed round if we can label its vertices vy,...,v,_; such that N*(v;)=
{vis1,iv2,5 -5 Vigdegt (o)} @ad N™(Vi) = {U;_geg—(uy)>- - - » Vi—1}» Where all subscripts are
taken modulo 7. Let R? be a 2-regular round, local tournament on n-vertices. We define

R ={R?|nis odd and n > 7}.
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T3
6 > ;

2
6

T

Fig. 1. Some exceptional digraphs.

=

A

\ '/}A.*\\l 4

Fig. 2. Other exceptional digraphs.

A digraph is strong if there is a directed path between any two vertices. Bang-Jensen
[6] showed that strong locally semicomplete digraphs are hamiltonian, extending earlier
work on tournaments. As a result of this, a semicomplete digraph D is cycle comple-
mentary if and only if it has a cycle C such that D—V(C) is strong. Guo and Volkman
[25] proved that even more is possible.
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Theorem 29 (Guo and Volkman [25]). If D is a 2-connected locally semicomplete di-
graph on n = 6 vertices, then D contains a g(D) cycle C such that D—V(C) is strong
and the closed neighborhood of C is V(D), unless D is a member of T' UTq UR'.

Corollary 30 (Guo and Volkman [24]). Let D be a 2-connected locally semicomplete
digraph on n = 8 vertices. Then D is not cycle complementary if and only if D is
2-regular (that is, each vertex has outdegree and indegree 2) and n is odd.

Guo [23] proposed a question similar to our original question on graphs.

Problem 2. Let k be a positive integer. What is the least integer f(k) such that
all but a finite number of f(k)-connected locally semicomplete digraphs contain a
2-factor with exactly k cycles?

Clearly, f(1) =1 from the result of Bang-Jensen mentioned earlier. Corollary 30
shows that f(2) =2. In fact, Guo [23] conjectures the following:

Conjecture 4. Let D be a k-connected locally semicomplete digraph on at least 3k
vertices. Then D contains a 2-factor consisting of exactly k cycles, each of length at
least 3, unless D is a member of a finite family of k-connected locally semicomplete
digraphs.

Guo and Volkman [25] continued to extend their earlier work on complementary
cycles to complementary m-pancyclic digraphs. The next result also generalizes Song’s
Theorem.

Theorem 31. If D is a 2-connected locally semicomplete digraph on n = 6 vertices,
then D is complementary g(D)-pancyclic, unless D is isomorphic to a member of
T'"U{T{}UR.

Corollary 32 (Guo and Volkman [25]). If D is a 2-connected, chordal locally semi-
complete digraph on at least six vertices, then D is complementary pancyclic unless
D is isomorphic to one of {TS, T2, T3, T} }.

Corollary 33 (Guo and Volkman [25]). Let D be a 2-connected locally semicomplete
digraph on at least six vertices. If D has a minimum separating set S such that D—S is
semicomplete, then D is complementary pancyclic unless D is isomorphic to a member

of {T}, T2, T}

Theorem 34 (Guo and Volkman [25]). Let D be a 2-connected locally semi-
complete digraph on n vertices. If D has a k-cycle C with 3 <k < n/2—1, such that
D — V(C) is strong and the closed neighborhood of C is V(D), then D is comple-
mentary k-pancyclic.
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We conclude with a problem and conjecture both from Guo [23].

Problem 3. Let k = 1 be an integer. What is the least integer h(k) such that all but
a finite number of h(k)-connected locally semicomplete digraphs contain a 2-factor
consisting of k vertex disjoint cycles of lengths ny,...,n; where n; = g(D) for i =
1,....k and Y5 n; = n?

Conjecture 5 (Guo [23]). For all k, h(k) = f(k) where f(k) is as defined in
Problem 2.
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