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Abstract

A graph H is said to be {F,G}-free if it contains neither
an induced copy of F nor an induced copy of G. In this paper
we describe all possible structures of { K} 3, Z2}-free connected

graphs.
1 Introduction

In this paper we consider only connected simple graphs. The graph
Z is shown below in Figure 1.

Figure 1: The graph Z,.
We say that a graph G is {K13, Z3}-free if it does not contain

any induced copy of Ki3 or of Zg as an induced subgraph. The
four-vertex star K, 3 will also be called the claw. Whenever we list
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the vertices of an induced claw, the only vertex of degree three will
always be the first vertex in the list. ‘

If the vertices w and v are adjacent in G, we write u ~ v; if u and
v are nonadjacent in G, we write u % v. For any vertex v in G we
denote the neighborhood of v by N(v). If A C V(G), then we use the
symbol N4(v) to represet the set N(v) N A and the symbol < A4 >
to represent the subgraph of G induced by A. The connectivity of
G is denoted by #(G). For definitions and notation not explained in -
this paper, see [1].

This paper tightens and expands upon Fuller’s earlier results on
the structure of {K7 3, Z;}-free graphs of connectivity at most three.

Theorem 1 [2] Let G be a {K1 3, Zo}-free connected graph which is
neither complete nor a tree such that x(G) = 1. Then G is a member
of one of the families of graphs shown in Figure 2.

Theorem 2 [2] Let G be a {K;3, Zo}-free, connected graph which
is neither complete nor a cycle such that x(G) = 2. Then G is a
member of one of the families of graphs shown in Figure 3.

Theorem 3 [2] Let G be a {K1 3, Z2}-free, connected graph that is
not complete such that k(G) = 3. Then G is a member of one of the
families of graphs shown in Figures 4 and 5.

We will use the following theorem by Shepherd [3] to tighten
Theorems 2 and 3.

Theorem 4 /3] A connected graph G is claw-free if and only if for
every minimal cut set S and every v € S, (N(v) — §) is either a
single vertex or the disjoint union of two complete graphs.

In the main body of the paper we will use Fuller’s results to
describe all {K) 3, Zy}-free graphs of connectivity at least four.
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Figure 2: {K1 3, Z2}-free Families of Connectivity One.
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Figure 3: Families of graphs from Theorem 2.
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Figure 4: Families of graphs from Theorem 3.
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Figure 5: More families of graphs from Theorem 3.

2  {Ki3, Zy}-free Graphs of Connectivity at Most |
Three |

In this section we strengthen Theorems 2 and 3, lessening the nwmber
of families that need to be considered. We achieve this result by a
series of lemmas.

Lemma 1 Family By from Figure 3 is not Zy-free.

Lemma 2 The only member of family Dy from Figure 4 that is
{K1 3, Z2}-free is the one where < § > is complete.

Proof: Suppose that < § > is not complete. Let & and ¢ be the
two vertices of S adjacent to every vertex of B and let d be the
remaining vertex of 5. Suppose that e € Np(d) and let z be as
labelled in Figure 4. Suppose that neither b nor ¢ is adjacent to d.
Then < b,¢,a,d,x >= Z3, Ifeitherb~d,ct dorc~d,bd, then -
< e,b,c,d,x >% Zy. Therefore b and ¢ must both be adjacent to d,

so < .S > must be complete. O
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Lemma 3 The only member of family Dy from Figure 4 that is
{K13, Z2}-free is the one where b ~d, bobc and c 4 d.

Proof: Let the vertices of the graph be labelled {a,b,¢,d e, f, g, 1}
as shown in Figure 4. If none of the dotted edges are used then we
have a claw < a,b,c,d >. Therefore we must use at least one of the
dotted edges.

Suppose that b is adjacent to ¢. Then < ¢,a,b,f,h >= Zy.
Similarly, if ¢ is adjacent to d then < a,d,c,e,9 >= Zs.

Therefore b must be adjacent to d and ¢ cannot be adjacent to
either b or d. -

Lemma 4 Family Dg from Figure § is not K1 3-free.

Lemma 5 Family Dy from Figure § is not { K13, Z2}-free unless the
subgraph < § >=<b,¢,d > is complete.

Proof: Let a,b,¢,d,z and y be as labelled in the figure. If ¢ # d,
then for any vertex z in Ng(c) we have < z,¢,d,y >= K 3. Thus ¢
must be adjacent to d. Suppose that neither ¢ nor d is adjacent to
b. Then < ¢, d,a,b,y > Zs. Since this cannot be the case, suppose
that exactly one of {c,d} is adjacent to b. Then < z,¢,d, b,y >= Zy.
Therefore S must be complete if G is {K1 3, Za }-free. O

Lemma 6 Family Dg from Figure 5 is not claw-free.
Lemma 7 Family Dg from Figure 5 is not Zy-free.
Lemma 8 Family Dig from Figure 5 contains a copy of Zs.
Lemma 1 gives us the following improvement of Theorem 2:

Lemma 9 If G s {Ki3, Zy}-free, G is not a cycle, and w(G) = 2,
then G 1is in one of Families By through Br.

Moreover, Lemmas 2 through 8 let us amend Theorem 3.

Lemma 10 If G is {Ki 3, Zo}-free, k(G) = 3, and G is not com-
plete, then G is in one of Families Dy through Ds or is wn Family
Ds.
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3 {Kig3,Z:}-free Graphs of Connectivity at Leas
Four

Here we extend the results in Lemma 10 to determine the structures
of all possible { K 3, Z3 }-free graphs having connectivity at least four.

Theorem 5 Let G be a {Klyg,Zg}-free connected graph of connec-
tivity at least four. Then either G is complete or G is a member of
one of the families shown in Figures 6 and 7.

Our proof uses induction on the connectivity of the graph. We
begin with an outline of the method of proof and a description of ~
the families of graphs shown in Figures 6 and 7 before moving to the
proof itself.

We start with a graph G of connectivity & > 4 and consider a cut
set S of cardinality k. Let v be any vertex in S.

Let H = G — {v}. Then H is also a {K1 3, Z>}-free graph, and
it has connectivity & — 1. Thus H is in one of families D; through
Dy in Figure 4, in family D7 from Figure 5, or in one of families
through F7 in Figures 6 and 7 and has S — {v} as a minimal cut
set. Using the structure of H, Theorem 4, and the fact that G is
- {Ki3,Z2}-free, we can determine the possible adjacencies of v.

In family Fy, (S} can be partitioned into two complete subgraphs.
Moreover, every vertex of S is adjacent to every vertex of A and to
every vertex of B. In family F, again every vertex in S is adjacent to
every vertex of A and to every vertex of B. There are two complete
subgraphs Sy and 57 within S, as well as a set Sy of vertices such
that for each s in Sy we have Sy & (Ng(s)) and Sy ¢ (Ng(s)). In
addition, we require that (S — Ng(s)} be complete.

In family Es, every vertex in S is adjacent to all but at most one
vertex of B. Let S, be the set of vertices of S that are not adjacent
to the vertex b in B. Then (S;) is complete, since if z,y € S, and
z € B~ {b} we have a claw (z,b, z,y). There are also two complete
subgraphs Sp and S in § such that every vertex in Sy and every
vertex in 57 is adjacent to every vertex of B. Family Ey is like family
E3, but it has a subgraph ({a} U Sg US; US; U B) that belongs in -
family I rather than in family E;.

In family Fj, (S) is complete and every vertex in S is adjacent to
a. We let = be adjacent to all but one vertex of B. It is possible to
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Family Eg
<8 und B are camplete, <5 and B are complete.

Family E;

Figure 7: More { K 3, Z;}-free Families.

partition § into two sets of vertices: Sy, the set of vertices adjacent
to every vertex of B and 51, the set of vertices adjacent to every
vertex of N[z]. In family Eg, (S) is complete and every vertex in
S is adjacent to a and to every vertex in B. For every 1 < ¢ < n,
N{z;) > k and for every 1 < 4,7 < n,i # 4, we have N(z;) NN (z;) =
0.

Proof: We will proceed by induction on s(G). If k(G) = 1,2, or 3,
then G falls into one of the families in Theorem 1 or in Lemmas 9
or 10.

First note that any graph in family Dy from Figure 4 could be
considered a member of family E; in Figure 6; any graph in family
Dy from Figure 4 could be considered a member of family Ej; in
Figure 6; any graph in family D3 from Figure 4 could be considered
a member of family Fg in Figure 7; and any member of family 1,
from Figure 4 or family D7 from Figure 5 could be considered a
member of family Fs in Figure 7. Therefore, we can assume that
every graph of connectivity &k — 1 falls in one of Families E; through
Er of Figures 6 and 7 unless it is in family Dj in Figure 4.
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Now, suppose that G is a k-connected, {Kj 3, Z2 }-free graph with
connectivity x(G) = k > 4, G is not complete, S is a cut-set of G such
that |S| = k and v € S. Consider the subgraph H =< G — {v} >
of G. Note that H has connectivity k& — 1, so it is either a complete
graph, in family Ds from Figure 4, or is in one of Families E; through
E; from Figure 6.

CASE 1. Suppose that H is a complete graph. If v is not adjacent
to every vertex of H, then it is not in a minimal cut set 5 of G.
Therefore, G must be a complete graph as well.

CASE 2. Suppose that H is a member of family E; from Figure 6.

Claim 1 Unless [V (4)| =1 and |V(B)| > 1, v must be adjacent to
every vertez of A and to every vertezr of B.

Suppose that |V (4)| = |V(B)] = 1. Let A= {a} and B = {b}.
Then v must be adjacent to both @ and b in order to be a member
of the minimal cut set S.

Suppose that [V(A)| = |V(B)| = 2. Then v must be adjacent to
at least one vertex of A and one vertex of B in order to be a member
of the cut set §. If v is adjacent to exactly one vertex of A and one
vertex of B, then v must be adjacent to some vertex of §—{v} since
otherwise we have a cut set of cardinality two consisting of the two
vertices adjacent to v. Let A = {a1,a2} and B = {b1,bs}, and let
v ~ a; and v ~ by. Assume that there is some s € 5 such that
v ~ s. Then (s,az,v,b2) is a claw unless v is adjacent to either ay
or by. Suppose without loss of generality that v ~ g, ¥ & by. Then
(AU BU{v}) = Zy, which contradicts our assumption that G is Zo-
free. Therefore, v must be adjacent to every vertex of A and to every
vertex of B.

Assume that {V(A)] > 2 and that |V(B)| > 2. Again, v must
be adjacent to at least one vertex of A and at least one vertex of B
in order to be a member of the cut set S. Let a; be a vertex in A
that is adjacent to v and let by be a vertex in B that is adjacent to
v. If there are two vertices bg, b3 € B such that v 4 by and v # bs,
then {(bo, b3, b1,v,a1) = Zo, which is a contradiction of our assertion
that G is {Z,}-free. Therefore, v must be adjacent to all but at most
one vertex of B. Similarly, v must be adjacent to all but at most
one vertex of A. Because v is adjacent to all but at most one vertex
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of B and |V(B)| > 2, v is adjacent to at least two vertices of B.
Let b; and by be vertices of B that are adjacent to v, and assume
there exist vertices a; and az in A such that v ~ a; and v # as.
Then {b1,b2,v,a1,a9) is a copy of Z3 in G, which contradicts our
assumption that G is Zj-free. Thus v must be adjacent to every
vertex of A. Now since v must be adjacent to at least two vertices
in A, we can use similar reasoning to show that v must be adjacent
to every vertex of 5. This concludes the proof of our claim.

If (§ — {v}) is complete, then G is a member of family £,. Oth-
erwise there exist two disjoint nonempty subsets S and Sy of S—{v}
such that {(S51) and (S2) are complete and Sy U S, = § — {v}. If v is
adjacent to every vertex from either Sy or Sy, we are once again in
family Fj. ‘

Recall that | —{v}| > 3. Suppose without loss of generality that
|51 = 1 or that |55 = 1. If v is adjacent to the vertex in S}, then G
is a member of family ¥ and we are done. Suppose instead that v is
not adjacent to the vertex in 5y, and that it is adjacent to some, but
not all, of the vertices in S3. Then every vertex in So— N (v) must be
adjacent to the vertex in S, since otherwise we have a claw centered
at a. But since < 53 > is complete and every vertex in S — N(v)
is adjacent to the vertex in S1, we can partition S U {v} into the
complete subgraphs < 57U (82 — N(v)) > and < Ng,(v)U{v} > and
we are again in family F;.

Suppose that |S1] > 2 and |S2| > 2. Again, if v is adjacent to
every vertex in 87 or to every vertex in Sy, then G is in family E;
and we are done. Suppose instead that v is not adjacent to every
vertex in 51 and it is not adjacent to every vertex in S, and suppose
that one of the cliques, say Si, is maximal. Note that (§ — N(v))
must be complete since otherwise we have a claw centered at a. Since
|S1] = 2 and |Sy| > 2, we know there exist vertices 51,1 in 81 — N{v),
51,2 in S1 NN (v}, 821 in Sy — N(v), and s55 in S5 N N(v) such that
812 ~ 811, 81,1 ~ 82,1, and 821 ~ $29. Thus, there is an induced
cycle containing exactly these five vertices.

Suppose there is another vertex u in 5;. We first claim that u
must be adjacent to four of the five vertices in the cycle induced by
{v, 812,811, 82,1, 82,2}, In order to avoid (u,s1,1, 81,2, 82,2, 52.1) & Zy,
w must be adjacent to either 52 1 or.to S2,2. Suppose that v is adjacent
to s2,2. Then s is adjacent either to v or to se; since otherwise
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(82,0,0, 82,1,u) = K3 Either way, v is adjacent to four of the five
vertices in the cycle. Suppose instead that v is not adjacent to sz
Then « must be adjacent to s21 and, similarly, © must be adjacent
to v. Similarly, any vertex in Sy — {s2,1, 52,2} must have the same
property.

This puts us in family F.

CASE 3 Suppose that H is a member of family F; as shown in
Figure 6. Then v is adjacent to every vertex of A and to every
vertex of B by the same reasoning given in Case 2.

Suppose that v is adjacent to every vertex of Sp. Consider Sy —
N(v). Since G is claw-free, v must be adjacent to every vertex in 5,
that is not adjacent to every vertex of S — N(v). Therefore, G is in
family F3. Our reasoning is similar if v 13 adjacent to every vertex
of Sl.

Suppose that Sy € N(v) and that S; € N{v). Then (S — N(v))
must be complete in order to avoid a copy of Ky 3. Therefore, G is a
member of family Fo.

CASE 4. Suppose that H is a member of family F3 as shown in
Figure 6. Then v is adjacent to a since it is a member of the minimal
cut set S, and v is adjacent to at least one vertex of B for the same
reasorn. In order to avoid a copy of Z» as shown in Figure 8, v must
be adjacent to all but at most one vertex of B. Suppose there is

Figure 8 The Z3 is shown by the dotted lines.

some vertex w in B such that v 4 w. Let S, be the set of vertices in
S that are not adjacent to w. Suppose that s is a vertex of Sy, that
is not adjacent to v. Then for any vertex z € B such that z # w,
we have (z,w,v,s) = K} 3, which contradicts our assumption that G
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is claw-free. Thus v must be adjacent to every vertex of S, which
implies that G is a member of family Fj.

Suppose that v is adjacent to every vertex in B. Consider the set
of vertices in S that are adjacent to every vertex in B. Let < S50 > be
the largest complete subgraph of the graph induced by these vertices,
and let S; contain all the vertices remaining in that set. Note that
< 51 > must be complete. Then by the same reasoning given in
Case 1, either v is adjacent to every vertex of Sy or Sy, or if we let
S" be the set of vertices in S adjacent to every vertex of B, then
({a} U 8" U B) is in family E», in which case we are in Family Ej.
CASE 5. Suppose that H is a member of family E; as shown in
Figure 6. Then the argument is similar to that shown in Cases 3 and
4.

CASE 6. Suppose that I is a member of family Ej; as shown in
Figure 7. Then v must be adjacent to a since v is a member of
the minimal cut set S and v must be adjacent to either z or to
some vertex of B. Recall that Sy is the set of vertices in S that
are adjacent to every vertex of B, that S; is the set of vertices in S
that are adjacent to every vertex of {}UNg(z) and that x(H) > 3.
Suppose that |V(B)| = 2. Then |[Np(z)| = 1. Let b; be the vertex
in Np(z) and by = B — Np(z). Since x(H) > 3, either |S5| > 1
or |S1] > 1. If |Sy] = 1, then Sp U {b;} is a cut set of G since it
disconnects by from the rest of the graph. Since {Sp U {6,}] < |5,
this contradicts our assumption that S is a smallest cut set of H ,
so |Sgl > 2. But now Sy U {b1} is a cut set because its removal
disconnects z, and § cannot be the smallest cut set of H because
[S1U{b1}| < |S|. Therefore, |V (B)| > 2.

Subcase 6.1 Suppose that v o z. Then v must be adjacent to all
but at most one vertex of B in order to avoid a copy of Z; as shown in
Figure 8. Moreover, that vertex cannot be in Np(z) since otherwise
we have a copy of Zy as shown in Figure 9. But then v must be
adjacent to every vertex of B in order to avoid a claw centered at
one of the vertices in Ng(z}. Let w be the vertex in B that is not
adjacent to z, and let b € Np(z). Note that v must be adjacent to
every vertex of Sy since otherwise for some s € Sy we have a claw
{b,v,s,z). If there is some s € S such that 5 ~ z but s A v, we
have (s, z,b,w,v) = Z,, which contradicts our assumption that @ is
{Z2}-free. Therefore, v is adjacent to every vertex of § — {v} and so
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Figure 9: The Z; is shown by the dotted lines.

< § > must be complete and G is in family Fjs.

Subcase 6.2 Suppose that v ~ z. Then v must be adjacent to all
but at most one vertex of Ng(z) in order to avoid a copy of Z» as
shown in Figure 10. Note that v must be adjacent to all but at most

Figure 10: The Z; is shown by the dotted lines.

one vertex of B in order to avoid a copy of Zs like the one shown
in Figure 8. Moreover, v cannot be adjacent to the vertex w in
B — Npg(z) since such an adjacency would give us a claw (v,a,b, z).
This implies that v is adjacent to z and to every vertex in Np(z),
but not to w. Thus, » must be adjacent to every vertex s in S
that is adjacent to z, since otherwise for every b € Np(z), we have
(b,w, s,v) = K1 3. But this means that < § > is complete because
otherwise we have a copy of Z as shown in Figure 11. Therefore, G
is a member of family Fs.

CASE 7. Suppose that H is a member of family Fs. Note that v
must be adjacent to a. Consider the following two subcases.
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Figure 11: The Z; is shown by the dotted lines.

Subcase 7.1 Assume that v is not adjacent to any vertex ;, 1 <
i < n. Note that [N(z;})| > £ —1 > 3 or we would have a smaller
cut set than S. Then v must be adjacent to some vertex in B. Note
that v must be adjacent to all but at most one vertex of B since
otherwise we have a Z, as shown in Figure 12. If that one vertex is

Figure 12: The Zy is shown by the dotted lines.

in some Np(z;), then we have a copy of Z as shown in Figure 13.
Therefore, assume we have some vertex z € B such that v « 2, and
for all 4, z o z;. Then for every 4, and for every y; € N(x;), there is
a claw (y;,v, z,2;). Thus, v must be adjacent to every vertex in 5.

Suppose that there is some vertex u € S — {v} such that u + v.
If b € N(z:), then (b;,zi,u,v) = K;3. Therefore, (S) must be
complete and so G is a member of family F.
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Figure 13: The Z5 is shown by the dotted lines.

Subcase 7.2 Suppose that there is some ¢ such that v ~ z;. Then v
cannot be adjacent to any x;,j # %, and v cannot be adjacent to any
vertex in B — N{z;) by Theorem 4. Now we proceed in a manner
similar to that used in Case 6. If v is not adjacent to any vertex in
B, then we have a Z3 as shown in Figure 14 and if v is adjacent to a
vertex in B, we have a Z3 as shown in Figure 15. Therefore, v + z;
for any z.

Figure 14: The Z3 is shown by the dotted lines.

CASE 8. Suppose that H is a member of family Dj in Figure 4.
Note that v must be adjacent to ¢ since it i1s a member of the minimal
cut set S. Similarly, v must be adjacent to z,y, s, or t.
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Figure 15: The Zy is as shown by the dotted lines.

Subcase 8.1 Suppose that v is adjacent to x. Then v must be
adjacent to either b or y in order to avoid a claw.
~ Suppose first that v is not adjacent to y. Then v ~ b in or-
der to avoid a claw and v must be adjacent to ¢ because otherwise
(v,a,b,s,t) = Zy. But then {v,a,t,z) is a claw, which contradicts
our assumption that v is claw-free. Thus, v must be adjacent to y.
Assume that v is adjacent to y. Then v must be adjacent to ¢
since otherwise (z,y,v,a,¢) = Zy. Note that v cannot be adjacent
to s or ¢ because such an adjacency would create a claw and that v
cannot be adjacent to either b or d since such an adjacency would
create a claw. Therefore, v is a member of family E7.

Subcase 8.2 Suppose that v is adjacent to y. By symmetry, this
subcase is exactly the same as Subcase 8.1.

Subcase 8.3 Suppose that v is not adjacent to either z or y, but
is adjacent to s. Then v must be adjacent to ¢ in order to avoid a
claw. Moreover, v must either be adjacent to ¢ or be adjacent to
both b and d in order to avoid claws. Suppose first that v ~ ¢. Then
{v,¢,t,2,y) = Zy. Therefore, v o ¢, which implies that v is adjacent
to b and to d. But then (a,v,d,y,z) = Z5. Thus, v must be adjacent
to both = and y.

Subcase 8.4 Suppose that v is not adjacent to either z or y, but is
adjacent to {. By symmetry, this subcase is the same as Subcase 8.3.
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CASE 9. Suppose that H is a member of family E7 in Figure 7.
Then by reasoning similar to that found in Subcase 8.3, v cannot be
adjacent to s,t,, or y. Therefore, H cannot be a member of family

E;.
Because we have looked at all possible choices for H, this con-
cludes our proof of Theorem 9. O
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