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Abstract

We consider the question of the range of the number of cycles possible in a 2-factor of a
2-connected claw-free graph with sufficiently high minimum degree. (By claw-free we mean the
graph has no induced K, 3.) In particular, we show that for such a graph G of order n > 51
with §(G) > 252, ¢ contains a 2-factor with exactly k-cycles, for 1 < k < "—;25. We also show
that this result is sharp in the sense that if we if we lower §{(G), we cannot obtain the full range
of values for k.

1 Introduction

The question of determining when a graph contains a 2-factor (a 2-regular spanning subgraph) has
long been an important one in graph theory. Many results deal with hamiltonian graphs, that is,
graphs (& containing a cycle that spans the vertex set V(G). (See [4].) One special class of graphs
that has drawn considerable interest are the claw-free graphs. Such graphs contain no induced
subgraph isomorphic to the complete bipartite graph K 3.

In particular, the following was shown in [5].

Theorem 1 IfG is a 2-connected Ky 3-free graph of order n with §(G) > 222, then G is hamilto-

nien.

We can see that this result is sharp by considering the following nonhamiltonian graph G on
n = 3m vertices, Let V(G) = A; U Az U A3 such that [4;] = m and (4;)2K,, and let x;, 1 € 4;,
z; # y; for ¢ = 1,2,3 and so that (1, v9, #3)=(y1, y2, ya) =K3. Clearly, the minimum degree of G is
n—3

m—lz““é““

Recently the question of determining the number of cycles possible in a 2-factor of a given

2-connected graph satisfying certain degree conditions has been considered in [2].




The purpose of this paper is to investigate this question for 2-connected claw-free graphs. In
particular, we will extend Theorem 1 by showing that the same minimum degree condition implies
that G contains a 2-factor with exactly k-cycles for 1 < & < ”_TM.

We will let (S} denote the subgraph of G induced by S a subset of V(G). For A, B C V(G),
eq(A, B) denotes the number of edges in G with one vertex in A and the other in B. For H C G we
will sometimes write eq (A, H) as shorthand for eq{A, V(H)). The independence number of a graph
will be denoted by a(G). For a cycle C', we will denote by T the cycle under some orientation
and (6 will denote the cycle under the opposite orientation. For a vertex, a, on a cycle with some
orientation, ﬁ, we define o and a™ to be the immediate successor and predecessor respectively
of ¢ on C with respect to this orientation. Also, for a collection of vertex digjoint cycles S each
with some orientation, we define N () to be the set {at|a € (N{a) NV (S))}. Let I =Ja1, A2y eeey A
where the a;’s are consecutive vertices on a cycle. Then I{I} = k, the length of the segm—'_-e;? of the

cycle. For terms not defined here, see [3].

2 Main Result

In this section we will prove the theorem. However, first we prove the following proposition which
gives sufficient conditions for the existence of %k disjoint triangles and will lay the foundation for .

the proof of the theorem.

Proposition 1 Let G be a claw-free graph of order n, let k be an integer, and let ¢ > 0. If
n >3k +6— f(k c) where f(1,1) = f(2,0) =0 and f(k,c) = ,f'_lf% for all other values of k and ¢
and §(G) > maz{k + ¢,3} then G contains k disjoint triangles.

Proof: If 3(G) > 3, then n > 4 and, since G is claw-free, ¢ must contain at least one triangle.
Choose m disjoint triangles in G, say 11,75, ..., T, so that m is as large as possible. Since G is
claw-free and §{G) > 3, we know m > 1. Assume m < k. Let

m

a=Jvm)

i=1

and H =G — A
I A(H) > 3, say deggy a > 3 for some a € V(H), then since G is claw-free, bjby ¢ E(H)

for some 41,0y € Np(a) and {a,by, b3} forms a triangle. This contradicts the maximality of m.

Therefore, A(H) < 2.



Claim: For each z € A, [Ng(e) NV (H)| < 3.
Proof: Assume |Ng(z) N V{H)| > 4 for some z € A, Let ¢ € V(T}) and V(T}) = {z,y, z}. Let

a1, Gg, 13, G4 be distinct neighbors of z in H.

If Ng(aq) N{ag,as, as} = 0, then since z and {a1, a2, a3} do not form a claw, without loss of
generality, azaz € F(G). We apply the same argument to @ and {ay, a2, a4} and {ay, a3, a4}, and we
have ayay € E(G) and azaq € E{G). But then {ay, a3, a4} forms a triangle, which contradicts the
a; > 1

maximality of m. Therefore, Ng{a1) N {ag, as, 04} # 8. Similarly, we have dega, og,a5,00) % >

for each 4, 1 < ¢ < 4, Since A(H) < 2, we know (a1, a9, a3, ¢4)g = (a1, @z, @3, @4)¢ must contain

two independent edges. Thus, without loss of generality, we may assume ajaz, ¢zas € E(G).

Consider the subgraph induced by F' = ({ay, a2, as, aa,y, z})i. We want to show that F must
contain K3U K3 as a subgraph because the existence of such a subgraph in 7 implies that (FU{2})

contains two independent triangles which contradicts the maximality of A.

In order to show that F must contain K3 U K, we first observe that to avoid a claw centered at
, F' cannot contain 3 independent vertices. Let Sy = ({a1,a2}), 52 = ({as, a4}), and Sz = {{y, 2}).
Then there are 8 independent 3-sets of vertices in 51 U S3 U S3. Note that the addition of any edge
to 51 US2 U S3 can destroy at most two of the 8 independent triples of vertices. Thus, ' must have
at least 4 more edges than S; U S3 U S3. Without loss of generality, we can assume there are two
edges between S; and S. If these two edges share an endvertex, then F' contains K3 U K. Thus,
we may assume they are independent, By symmetry, we may further agsnme that they are ayas
and aq04. Moreovef, again to avoid K3 U K3 in F, we may assume {aiaq4, ¢ga3} 1 E(G) = (. Then
by considering the triple {a1, a4, y} we can, without loss of generality, assume F' contains the edge
ary. But, by the same argument, the triple {az, a3, y} forces the edge ayy or aszy, and therefore F
contains a triangle and an independent edge. This contradicts the maximality of A and the claim

follows. O

Since A(H) < 2 and §(G) > k + ¢, we have eg{z, 4) > k + ¢ — 2, for each & € V(H). Thus,
ec(H,A) > (k4 ¢ —2)(n — 3m). On the other hand, eg(u, H) < 3 for each u € A which implies
ec(A, H) < 3|A| = 9m. Therefore, (k+c¢—2)(n—3m) < 9m. Thus, (k+c—2)n < (3k+ 3¢+ 3)m.
Then, using the fact that we assumed m < k ~ 1, we find n < %M =3k+4+6— ﬁ%.
This contradicts the assumption and completes the proof. W




~—
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Theorem 2 Let G be a 2-connected, claw-free graph of order n > 51 with §(G) > %(n —2). Then

Jor each k with 1 <k < ”"TM, G has a 2-factor with exactly k components,

Proof: By the assumption n > 3k+24 and §(G) > ”—52— > %%32 > k+1. Therefore, by Proposition

1, G has k disjoint cycles Cy, 5, ..., Cx. Choose C1, ..., C such that Y5, [V (Cy)| is as large as
k

possible. Let D = | V/(C;) and assume D # V(G). Let I = G — D and let z € V{(H).

1=z1

Claim 1:{V(H) > 4.
Proof: Let h = |V(H)| and assume h < 3.
Since h £ 3, |D| > n—3 > 3k+21. Thus, there exists some cycle, say C;, such that |V(C;)| > 4.

Let z € V(H) and let |[Ng{z)NV(C;)| =t, say Ng(z)NC; = {ay, ..., as}. We may assume a1, ..., as

appear in consecutive order along some orientation of Cj. Let [; = a; @-ajﬂ fort < j<i—1 and
let I, = ataal. If [(f;) = 1 for some 1 < j < ¢t, then aj4q = a;’k. Let Cf = aHlaajmaj_H and
C% = Cj for all § # ¢. Then {C,...,C}} is a disjoint collection of cycles of larger total order, a
contradiction. Therefore, I(I;) > 2 for each j, 1 < j < 1. _

Since G is claw-free, this implies aj_a,j“ € E(G) for each j, 1 < j < ¢. If I(I;) = 2, then
of T = a1 Let O = majﬂarz;a;'ajm and C} = Cj for all j % i. I[ {(I;) = 3, then of TF = q; 1.
Let C! = maj+1a;+1aj"+16\a;a;ajm and C; = Cj for all j # 4. In either case, the collection

{C1, ..C}} forms a set of independent cycles of larger order, a contradiction.
¢
Therefore, I(1;) > 4 for each j, 1 < j < ¢. This implies |V(C})! :'Zl(fj) > 4t or |[Ng(z) N
j=1

V{(C;)| < 3V (Cy)| for all C; such that [V(C;)| > 4. Note that « has at most one adjacency to every
3-cycle in the collection Cy, -+, Ck.
We may assume |V {(C1)| = |[V(CY)| = ... = |[V(C)| = 3 and |V(C})| > 4 for s+1 < i < k. Then,

n— 2

< e(z,D) +degy =

3
1 k
< (h—1)+8+1 > ]V(Ci)lx(h—1)+———|D|+S
=541 4
_ n—h+s
= —F0

which implies n < 354 9k — 4. Since s < k and h < 3, we have n < 3k 4 23. This contradicts the

assumption. Consequently, we know |V{(H)| > 4. a

Claim 2: For each y € V(H) — {z}, degpy_, y > 2.

4



Proof: Assume degy_, v < 1for somey € V(H) — {z}. As in Claim 1, we count the number of
edges from y to D observing that y can have at most one adjacency to a 3-cycle and y is adjacent

to at most one out of every four vertices on cycles of length 4 or more.
We may assume Vi(C)| = lV(Cg)l =..= |V(CS)I =3 and [V(C;)| >4 for s+1 < i < k. Then

1
e(y, D) <s+1 Z V(CHi=s+= (|DJ —3s) = m|D|—|— 75 Therefore,
i=s+1

1 2
o~ < degg y+degp y <degy y+e(y, D)
1 1
< ]-'i‘degHu«my’i'Zle‘!‘gS
1 1
< ltdegy_, ?J+E(’”—4)+gk
T — 24
< l+degy . y+~ (n 4) + T3
Thus, deggy_, v > 2. O

By Claims 1 and 2, we know that for every 2 € V{(H), H — & contains a cycle, call it (.
Claim 3: For every z € H, the set N () is independent.

Proof: Assume, to the contrary, a,f a;" € E(@) for some ay,as € Np (z).If ay and ay lie in the same
cycle of D, say Cf. Then we increase the total order of D by replacing C; by Cl= ai" dazwal a’a; cai".
If @ and ay lie in different cycles of D, we may assume without loss of generality ¢; € V(Ci,i=1,2.
Then let C] = Cy, Ch = maifﬂaf‘aj@agw and for j # 1,2 let C} = Cj. Then the collection

{C1,..C}} forms a set of & disjoint cycles of larger total order, a contradiction. O

Claim 4: Since G is a claw-free graph of order n, then a(G) < G) 5

Proof: Let .S be a largest independent set in G. For each 2 € V(G) — S, we have eg(z,5) < 2
since G is claw-free. Therefore, eq(S, V(G) — 5) < 2|V(GE) — S| = 2(n— a{G)). On the other hand,

since § is independent, we know eg(S,V(G) — §) = Y degy & > 5(G)|S| = §(G)a(G).
zES
Therefore, we have 2(n — @(G)) > §(G)a(G). Solving this inequality for the independence

number and we get o(G) < W ]



By Claims 3 and 4, for each € V(H) we have that

2n < 2n <
(G)+2~ 2242

INololl = N3 () U {2} < a(G) < 5 6.

Therefore, [Np(z)| < 4 and we have degyy = > 254,

Let P be a longest path in H and let # be one of its end vertices. Then Np(z) C V(P)ora
longer path is possible. Therefore, if we choose y € Ng(z) so that wﬁy iz as long as possible, we
form a cycle C' = z Pyz with Ng(z} C V(C). This implies |V (C)| > degyy o1 > 2214 1 = =1L,

Then by the maximality of D, we know [V(C;)| > ”"311, forall 1 <4 < k.

Claim 5: The number of independent cycles, &, is 2.
Proof: Assume k > 3. Then n = [V(G)| 2 [V(C)|+ [V(Cy)| + [V{(Ca)| + [V (C3)] = 4(25HL). This

forces n < 44, a contradiction. O |

Since Cy and C each have at least 251 vertices, we know [V(H)| < n — [V(Cy)) — [V(Cy)] <

n+22
3 -

Claim 6: The subgraph H is hamiltonian connected.

Proof: If H is not hamiltonian-connected by [6],

- 14
n3 55(H)S% n+22.

V(H)| <

This forces n < 50, a contradiction. ;

In particular, H has a hamiltonian cycle, say Cp. By the maximality of D, we know |V{(Cp}| <
[V{(Cy)] for i = 1,2. Thus, [V (Co)| < in.

Since (4 is 2-connected, there exist at least two independent edges between Cy and Cy U Chy.

Claim 7: There do not exist two independent edges from Cj to Cj, for i = 1,2.
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Proof: Without loss of generality, let ¢ = 1. Assume there are two independent edges, say a,bt
and agby between Cjy and Cy (where a1, ag € Cp, by, by € Cy). Without loss of generality, we may
assume 3(51(7{52) > 2|V (Cy)|. Since {agﬁalblﬁbgag,cz} forms a set of disjoint cycles where P
is a hamiltonian @y, as-path in H, we know l(bg@ibl) > |V(Co)l+1 2> 6H)+2 > “—;8“. Then
IV(Cy)| > 20(6,C by) > 22528, Therefore,

-11 2n—16 4n — 38

3 3 3

This forces n < 38 which iz a contradiction. |

Therefore we may assume a1by, agby; € E(G) where ag, a3 € V(Cy), a1 # ag, by € V(C),
and by € V(C5). As a consequence of Claim 7 and 2-connectivity, we know there exists an edge
dydy € E(G) such that dy € V{C1) — by and dp € V{(Cy).

Let ¢ € H — {a1,a9}. (Since |V (H)| = |V(Co)| > 231 we know such an = exists.) Then by
Claim 6, Ng,uc, (¢) C {b1, bz} Therefore, degy = > 252 — 2 = 228 and hence |V(Cy)| > =3,

Claim 8: The graph H — {a4, a3} has a triangle T’ and H — V(T) is hamiltonian-connected.
Proof: Let H' = H—{ay, as} and assume §{H") < MZE)—[ Since §(H') > 6(H)-2 > 258 -2 > #=l4

and [V(H)| <3 -2= "T—G, we get —’3':313 < % (”T""s) . This forces n < 18, a contradiction.

Thus 6(H') > M%')ff—l- and [V(H")| > %2 — 2 > 3, which implies by [1] that H’ is pancyclic.
Thus ' has a triangle 7. Let H” = H — V(T}. Then [V(H")| = [V(H)| -3 > %~ 3 = 22
and §(H") > 2514 — 3 > 2228 Therefore, since n > 40, §(H") > 3|V(H")|. Hence, by [6] H" is

hamiltonian connected. ]

First, suppose da # by. We may assume l(dléuibl) < %([V(C’l)l) and l(bg@dg) < %(|V(C’2)I)
By the maximality of C| and Cy and the fact that G is claw-free, 6767,656; € E(G). Let
o= alblbl‘bj‘@dldzc—gbgb:jbgazPal, where P is a hamiltonian ajas-path in H — 1", Since "
and 7" are digjoint cycles, {(dfTIby ™) + 103+ Cady) +2 > [V(H)|. Thus WOVE 4 >
[V(H)| > 23%, which implies that |V (C1)| + [V(Cy)| = 22£14. Since [V(H)| = [V(Cy)| > 25 we

have n = [V (H)|-+ |V(Cy)|+ |V (Cy)| > 22 = n 4 3, a contradiction. Therefore, we know dy = by
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which implies that there cannot be three independent edges between the cycles C, Yy, and ;.
Since G is 2-connected, there exists an edge bhu from Csz — {bs} to Co U C}

Case 1: We consider the case where uw € Co. If w # a1 the three edges ayby, dibs, and bhu are
independent, a contradiction. Thus, 4 = a;. But now the two edges azb; and a1} between Cy and
Cy are independent. This contradicts Claim 7.

Case 2: We consider the case where u € C'y. If u # by, then the three edges aiby, ubl, and agb,
are independent, a contradiction. If uw = by, consider by and {ay,b],b5}. We know bibT ¢ E(G)
because u = by. By Claim 7, a1b, ¢ E(G). If a;6] € E(G), then the three edges asbF, b;6} and agb,
are independent, a contradiction. Thus, (b1, b7, a1,b})q is a claw, a contradiction.

Hence, in all cases we reach a contradiction, and the result is proved, |
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