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Abstract

The girth of & graph with a hamiltonian cycle and ¢ chords will be
investigated. Tn particular, for any integer £ > 0 let g(¢) dencte the
smallest number such that any hamiltonian graph G with n vertices
and n4t edges will have girth at most g{t}n-+-c, where ¢ is  constant
independent of n. Tt will ba shown that there exist constants c1 and
¢z such that (e1{legt))/t < g(t) € (e2{logt)/t). For small values of
t, {1 <t < 8), g{t) will be determined precisely.
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1 INTRODUCTION

The girth g(G) of a graph G is the order of the smallest cycle of the graph.
In general, the girth of a graph will decrease as edges are added. More
specifically, as chords are added to a hamiltonian cycle in a graph, the girth
of the graph will be forced to decrease. We will investigate the relationship
between the girth of a hamiltonian graph and the number of chords of
the hamiltonian cycle. More specifically, the following function g will be
investigated.

Definition 1 For any positive integer i, let g(t) denote the smallest number
such that any hamiltonian groph G with n vertices and n+t edges will have
girth g(G) < g(t)n -+ ¢, where ¢ is a constant (independent of n).

In section 2 the following theorem, which gives asymptotically sharp
upper and lower bounds for the function g, will be proved.

Theorem 1 For any positive integer t > 1, there exist positive constants
¢1 and cs such that

(e1{logt))/t < g(t) < (ca(logt))/t.

A hamiltonian graph G with n vertices and n+t edges will have g(G) <
g(t)n + ¢ for some constant e. If £ is a constant then, it is possible that
the girth g(G) is still a positive fraction of n (9(G) > c1{(log#)n)/t for
some constant cr), and it is always true that g(G) < (cz(log t)n)/t for some
constant ¢;. However, if ¢ > logn, then g(G) = o(n), as the following
corollary indicates.

Corollary 1 If G is ¢ hamiltonian graph with n vertices and n + logn
edges, then g(G) < c((loglogn)n)/logn for some constont c. In generdl,
this bound cannot be improved except for the constant c.

There are several other interesting special cases of the upper bound in
Theorem 1; the cases when t = n®* for (0 < @ < 1), t = en for some
(0 < €< 1), and when ¢ = e{logn)n are examples of this. The following is
a corollary of the proof of Thecrem 1.

Corollary 2 (i) If G is a hamiltonian graph with n vertices and n + n®
edges for some 0 < o < 1, then g(G) < e(logn)n'—= for some constant c.
(i) If G is a hamiltonian graph with n vertices and n + en edges for
0 <e <1, then g(G) < c(logn) for same constant c.
(ii) If G is o hamiltonian graph with n vertices and n + e(logn)n edges
Jor 0 <e <1, then g(G) < c for some constant c.



In section 3 precise values of g(¢) will be determined for 1 < £ < 8.
Specifically, the following theorem will be proved.

Theorem 2 For 1 < t < 8, the values of g(t) are g(1) = g(2) = 1/2,
9(3) = g(4) = 1/3, g(5) = 3/10, and g(6) = g(7) = g(8) = 1/4.

2 GENERAL BOUNDS

A result of Erdés and Sachs on the existence of regular graphs of given
minimum girth will be needed in the proof of Theorem 1. In [2] the following
was proved, but the form stated here cotnes from [1], page 57.

Theorem 3 [2] Given a positive integer v > 3, there ezists an r-regular
graph of girth at least v with ot most

(Z=3) -0 = =) <

T

vertices.

Let Hy . denote an r-regular graph of order m and girth at least r as-
sured by Theorem 3. Thus m < r”. Before we begin the proof of Theorem 1,
some additional notation will be introduced. By C = (%, 21, ", Tn—1, %o)
we will mean a cycle of length n containing the vertices {zg, 21, -+, 2n—1}in
the order indicated. For 4 < 7, the interval of vertices on € strictly between
z; and z; will be denoted by (2;, 2441, +,2;). When the endvertices z;
and #; are included in the interval, it will be dencted by [z;, 141, -+, 25
A chord R of € is just an edge x;z; between 2 non-consecutive vertices
z; and z; in C. Any such chord R determines 2 cycles related to C,
namely Cy = (@, ®j, 241, +,2;) and Cy = (@, 35,251, -, 23). Col-
lectively these two cycles use each of the edges of € precisely once, so the
sum of their lengths is precisely n 4+ 2. Two chords B == z;z; and S = zpa,
are intersecting chords if ¢ < k < j < £, and if not, then they are parallel
chords. If R and S are parallel chords of C, then there are 3 cycles associ-
ated with these chords. One cycle contains the chord R, one contains both
R and S, and the other contains the chord S, and collectively the chords
use each edge of the cycle precisely once. Thus, the sum of the lengths of
the 3 cycles is n + 4. There is a corresponding collection of ¢ycles for larger
numbers of parallel chords. Also, there is an analogous collection of cycles
for intersecting chords. For example, if R, 5, and T are three pair-wise in-
tersecting chords of €, then there are 6 cycles determined by these chords



and 3 of these cycles share no edges on the cycle C. Each of the 3 cycles
contain precisely 2 of the chords and collectively they use each edge on the
cycle precigely once, and so the sum of the lengths of these 3 cycles is n+6.

Prooft (of Theorem 1) We verify the lower bound for g(¢) by describing
an example of a graph G of appropriate order, size, and girth. In fact,
it is sufficient to show for # large enough and n sufficiently large, there is
a hamiltonian graph & with n vertices and n + ¢ edges that has g(G) >
¢((log t)n)/t for some constant c.

Denote the vertices of I, ., by {yo, %1, ¥m—1}. Consider a cycle C =
(zo,21, ,Tn_1, %o, of order n that is divisible by 2mr (Le. n = 2mrk for
some integer k). Partition the vertices of ' into 2m intervals of consecutive
vertices of C, each of length rk. For each integer ¢, (0 <i < 2m — 1), let
I = [@irg, m(ip1)rk). For each of the intervals Ip; = [®2irk, T(2i41)rk ), mark
the 7 Vertices Taik, T(airi13h: " s Z((2i41)r—1)k 10 this interval. Therefore,
rm of the 2rnrk vertices are marked. For each of the r edges incident to
the vertex y; € H, ,, identify one of the r marked vertices in the interval
Ly = (@oprk, Tagryrs). Now, if yiy; is an edge in H, ., then place an
edge between the two marked vertices (one from Iy; and one from Is;) of
C identified with the edge y;y;. Denote by G,, the graph obtained from ¢
by adding the rm/2 edges. Let ¢ = rm/2. Note that A(G,) = 3.

The graph G, has n vertices and n +# edges. Any cycle in G, that uses
any of the vertices of one of the odd intervals Iy;;; will use all of the vertices
of Ipi+1 and thus will contain at least rk vertices. If a cycle of G, containg
no vertices from any of the cdd intervals Ip; 1y, then the cycle must contain
at least r chords of G, since H,. ., has girth at least r. Therefore, the cycle
must contain at least rk vertices from the intervals of length %k associated
with the marked vertices. This implies that g(G,) > rk = n/2m. Since
2t/r =m < ¢7, we have t < r"T1/2, and so r > ¢'logt for some constant
¢'. Hence, g(Gyn) > n/2m = rn/4t > e(log t)n/t for some constant c. As a
consequence g(t) > c(logt}/t for some constant c.

Next, the upper bound for g(t) will be verified. Let G be a hamiltonian
graph with n vertices and n +¢ edges. We will show that there is a constant
¢ such that g(G) < c(logi)n/t. Assume that this is not true.

Let € be a hamiltonian cycle of G. Select an appropriate and small p
(3 < p < logt) and partition the vertices of C into |{/p| intervals, each
of length approximately pn/t. By assumption, there are no chords in any
of these intervals, for otherwise there would be too small a cycie. Collapse
each of the intervals to one vertex to obtain the multigraph H induced by
the chords of €. Therefore, H has |t/p] vertices and ¢ edges, and so the
average degree in I is at least 2p. Thus, there is a subgraph L of H that
has minimum degree at least & > p.



The minimum degree condition on L will place an upper bound on the
girth of L. Given a vertex v € V(L), the number of vertices a distance
precisely k from v will be a least (§ — 1)* if k < g(L)/2 —~ 1. This implies
that (§ — 1)9(E)/2=1 < |V(L)]. In our case this gives the inequality

(p— 1B < 4fp,

from which it follows that g(L) < ¢'logt for some constant ¢/. As a con-
sequence of this we have that g(H) < ¢'logt. Since g(G) < (pn/t)g(H),
it follows that g(G) < e(logt)n/t for some constant ¢. This completes the
proof of the upper bound on g(t) and of Theorem 1. |

3 SMALL ORDER CASES

The structure of the examples and the techniques of the proofs to determine
the values of g(t) for small values of ¢ are similar to those used in the general
case. Before giving the prool of Theorem 2, we will describe a set of 8
families of examples {Hy, Ha, -+ Hy} that will be used to verify the upper
bounds for g(¢). Each example H; will be obtained by adding i chords to a

cycle C = (@g, &1, -, %p1, o). These graphs are pictured in Figure 1.
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For Hy, assume that n = 4m and add the 2 chords zo®a., and @, .y,
It is straightforward in this case to see that g(Hy) = 2m +1 = n/2 + 1.
The graph II; is obtained from H, by deleting the chord z,,Zsy, and also



For Hj, assume that n = 6m and add the 3 chords 20Z3m, TmTam,
and By, Ts5,. The endvertices of these cyeles partition the vertices of €,
into 6 intervals each with m = n/6 vertices. Any cycle of Hy must use
all of the vertices in at least 2 of these intervals, and so it follows that
g(Hz) =2m+2=n/3+2.

For Hy, assume that n = 12m and add the 4 chords #oZ4m, TmZom,
23 T A0 TemZ19em. The endvertices of these cycles partition the vertices
of Cy, into § intervals with 4 of the intervals having m = n/12 vertices and
the other 4 having m = n/6 vertices. Any cycle of H; must use all of the
vertices in at least 2 of the intervals with n/6 vertices, one of the intervals
with n/6 vertices and 2 with n /12 vertices, or 4 of the intervals with n/12
vertices. Therefore, g(I;) =4m +2=n/3+ 2.

For Hy, assume that n = 10m and add the 5 chords @p2am, Lom®sm,
LomBrm, BemTom, aNd TgmTy,. The endvertices of these cycles partition
the vertices of Cy, into 10 intervals each with m = n/10 vertices. It is not
difficult to check that any cycle of Hy must use all of the vertices in at least
3 of these intervals, and so it follows that g(Hs) = 3m + 1= 3n/10 + 1.

In the graph Hg, which has 4 construction that is similar to the construc-
tion for Hj, assume that n = 12/n and add the 6 chords zo@am, TamTsm,
TamTrms LemPom, T8mTB1lm, and T10,%m. The endvertices of these cycles
partition the vertices of C, into 12 intervals each with m = n/12 vertices.
It is not difficult to check that any cycle of Hg must use all of the vertices in
at least 3 of these intervals, and so it follows that g(Hs) = 3m+1=n/4+1,

The graph Hy is a subgraph of Hy, 80 we will first describe the graph Hy.
Assume that n = 16m and add the 8 chords 1,,Z5m, Tam®rm, TemLiom,
Tom¥13m: L11mT15ms T14mTom, a:O:ESm,a.nd TamT12m,. The endvertices of
these cycles partition the vertices of ¢, into 16 intervals each with m =
n/16 vertices. It can be checked that any cycle of Hg must use all of the
vertices in ab least 4 of these intervals, and so it follows that g(Hg) =
dm +1=mn/4- 1. The graph Hy is obtained from Hg by deleting any one
of the 8 chords, say Zgm=14m, and g(Hr) =n/4+ 1.

Proof: (of Theorem 2} The lower bounds for g(1), g(2),-- -, g(8) follow di-
rectly from the examples Hy, Ha, -+, Hg. To complete the proof it is suff-
cient to verify the appropriate upper bounds for g(1), g(3),g(5) and g(6).
Let C = (%0, 21, -, &p-1,%g) be a cycle of length n, and for ¢ = 1,3, 5 and
6, let G; be a graph obtained from C by adding ¢ chords, Except for a few
special situations, the nature of the proofs for each of the special cases will
be the same. A set of cycles will be described that will collectively use each
edge of the cycle C' precisely once. This permits the sum of the lengths of
the set of cycles to be calculated, and the average length of the cycles gives
an upper bound on the girth of the graph.

Claim: g(1)=1/2




Clearly ¢(G1) < n/2+ 1, since any chord of C' determines 2 cycles that
share precisely 2 vertices and collectively each of the edges of €' once, and
g0 one of the cycles has at most (n+ 2)/2 = n/2+ 1 vertices. This implies
g(Gh) <n/2+ 1and g(2) < (1) < 1/2.

Claim: g(3) =1/3

If 2 of the chords in (3 are parallel, then these 2 chords determine
three cycles such that the sum of the number of vertices in the 3 cycles is
n+4. Therefore, one of the cycles contains at most (n+4}/3 vertices, which
implies g(Gs) < (n+4)/3. If no pair of the chords of Gg are parallel, then
they are intersecting. These 3 chords imply the existence of 3 cycles such
that the sum of the number of vertices in the 3 cycles is n + 6. Hence, one
of the cycles contains at most (n + 6)/3 vertices, and so g(Gs) < n/3+ 2
and g(4) < g(3) £ 1/3.

Claim: g(5) = 3/10

We will assume there is no constant ¢ such that g(Gs) < 3n/10+¢, and
show that this leads to a contradiction. By the same arguments used in the
previous case, if there are 3 parallel chords in s, then there are 4 cycles
such that the sum of their lengths is n + 4 and g(Gs) < (n +4)/4. Also, if
there are 4 intersecting chords, then g(G;) < (r + 8)/4. Therefore, we will
assume that Gy does not contain either 3 parallel or 4 intersecting chords.

Each chord R of Gy determines 2 cycles, which we will denote by C;
and Cy. The chord also partitions the remaining 4 chords into 3 categories:
those that intersect the chord R, those associated with the cycle €, and
those agsociated with C. If there is a chord associated with each of C;
and Ca, then there are 3 parallel chords, a contradiction. Hence, we can
assume that the other 4 chords of C either intersect R or are associated
with one of the cycles, say Ci. If g{C2) < n/4 + e for some constant c,
then we are done. Thus, we can assume g(Ci) < 3n/4. If there are 3
chords associated with (i, then since g(3) = 1/3, there is a cycle in G
with at most (3n/4)/3 + ¢ < n/4+ ¢ < 3n/10+ ¢ for some constant ¢, a
contradiction. Hence there are at most 2 chords in €, and so there must
be at least 2 chords intersecting B. From this point on, we will assume that
each chord of 4 has at least 2 intersecting chords.

We will next show that G5 does not contain 2 pairs of intersecting chords
that are parallel. Assume that Ry, Rs, R, R4 are 4 such chords. Thus, there
exists & vertices vi,vq,--+,vs on C, appearing in the order on the cycle
indicated by the their index, such that Ry = vivg, R = vatq, Ry = vpvr,
and Ry = wvgvg. There is another chord B = wu us of Gy. Since each
chord of (5 must intersect at least 2 intersecting chords, the chord R must
intersect each of the chords Ry, Rs, Kz, [y, and so we can assume that
4y € (vs,v3), and that us € (ve,v7). There are 4 cycles in Gy that share
no edges on the cycle C, namely the cycles Gy = (vg,v5 -+, ¥4,Va, V1),




02 = (U51U7 "',Ug,’U(j,"',’U{,), Cs = ('H;l,ug,"',TJ?,‘U5,"',U4,U2,"',U1)
and Cs = (u1,us,- -, Ve, Vs, <, V1,v3, +, %1 ). The sum of the number of
vertices in these 4 cycles is {n + 10), so there is a cycle of length at most
(n +10)/4. This implies that g(Gg) < {n + 10)/4, a contradiction.

We will also show that Gy does not contain 3 intersecting chords. As-
gume that By = uiuy, Ry = vvg, and Ry = wywa are 3 guch chords with
the order of these vertices on the cycle being wuy, v1, w1, %2, ¥a,ws. There
is a fourth chord, which we will denote by B = mizy. With no loss of
generality, we can assume that z1 € (ug,v1). Since Gy does not contain
4 intersecting chords, we can assume with no loss of generality that either
w2 € (vi,w1) or 23 € {wy,us). We will consider these two situations in
Case 1 and Case 2 that follow.

Case 1: Suppose z3 € (v1,u1).

We will denote the fifth chord by § = y;ye. Since each chord, in particu-
lar R, must intersect at least 2 other chords, we have that 31 € (z1,22). By
symmetry, we can assume i € (21, v ). Using the fact that each chord must
intersect at least 2 chords, symmetry, and the forbidden structures such as
4 intersecting chords, there are 3 possibilities for yo; either ys € (va,we),
¥a € {wo,u1), Or y» € (w1,uz). We will consider these subcases indepen-
dently.

Subcase 1.1: Suppose ya € (va, wa).

The sum of the number of vertices in the 4 cycles C1 = (uy, 9, -,
Wiy W, o), O3 = (Y1, Y2, 7, vs, 01, ,yl)'n Cs = (u1,un, -+, V2, V1,
E PR P 7u1), and 04 - (yl:y'lg' Py, Wiy, B, Tyt }yl) is n+10.
Therefore, one of the cycles C;, Ch, Cs or Cy has at most {(n+10)/4 vertices.
Subcase 1.2: Suppose y2 € (wa,u1).

For future reference denote this graph by Hy. Each of the following 10
cycles uses 3 of the 10 intervals of the cycle C: Cy = (y1, 42, , U1, %1,

":yl)} CQ = (331,.’7)2,"',’ih,"',yl,"', 5\'31), 03 = ('111,'1)2,"',’!1)2,'101,“',
3721"'17)1)) O4:(w]aw21"'3921"'7u1’u21"'}w1)a CS:(mlsta"':wla
Wa, o, Y2 Y1,H281), Cg = (1,2, -, Way e oy 42, 91,0, 01), O = (un,
u21'"1w17"'7x2:$1:"':ul)3 CB = (?.Ul,’LUg,"',Ug,"',’h‘,z,"’,w1), Og =
(w1, w2, v, Ve, 01+, YisYe, v sta), and Cio = (ug,u2,  +,v2,01 T2,
%1, %1). The sum of the lengths of these cycles is 3n + 20, and so one

of the cycles has at most {3n + 20}/10 = 3n/10 + 2 vertices.
Subcase 1.3: Suppose ys € (wy,us).

For future reference denote this graph by HY. Each of the following 10
cycles uses 3 of the 10 intervals of the cycle oF 6’1 (1, @y v U1y, Y1y

'aml) 02—(391:7;’27" s Ua, v, 51’1) (u17u2: trylg, e, Wa,
"!ul)? Cy = (yi:y2: cry U, UL,y B, 1?}1), Cﬁ (mlgm% v, U, W,
"Julb"'1$1)7 Oﬁ = ('Ul,’L’z,"', ’LUg,wl,-'-,fL'z,--',’U‘l), C’T = (ul,m,

Syl wl:wil"':ul)y 08 = (531,332,"‘,W1,"',y2,y1"‘,331), 09 =



('U]_,'U,g,' vy, UL, B2, T, ul)a and CIO - (vlﬂyﬁa"'p'u"Z)wl o Ye,
y1,+,v1). The sum of the lengths of these cycles is 3n + 20, and so one
of the cycles has at reost (3n 4 20)/10 = 3n/10 + 2 vertices.

Case 2: Suppose za € (1w, tg).

‘We will again denote the fifth chord-by S = y1y2. Using the symmetry
of the graph, the fact that each chord must intersect at least two other
chords, and to avoid Case 1 for any triple of intersecting chords, we can
assume without loss of generality that 41 € (v1,w1) and ya € (wo,uL).
In this case consider the 4 cycles Cy — (@1,2n, U, %1, ,21), Ca =
(y1>y2:"')w2’w]7" ' :yl)a Cy = (UI_,UZ,"‘,TUE,wlg' Tty T2, T ','Ul), and
Cy = (Ug,Ug, V2, V1, Y1, Y2, -+, U1 ). The sum of the lengths of these
4 cycles is (n + 10)/4, and so g{Gs) < (n +10)/4 in this case. This gives a
contradiction that verifies that G's does not contain 3 intersecting chords.

Select 2 parallel chords, which we will denote by Ri = ujug and Ry =
vivg With wi,us,vs,v; being the order of these vertices on the cycle C.
There must be 2 chords that intersect R;, which we will denote by 5 =
z1zo and S3 = yryo. If the two chords Sy and Sy intersect, then there
will be 3 intersecting chords, a contradiction. Hence, we can assurme that
S, and S; are also parallel. At least one of 5; or S must intersect Rs.
With no loss of generality we can assume that =1 € {u1, 1), ¥ € (Z1,u2),
7o € (va,v1), and that either yo € (v2,z2) Or y2 € (ug,ve). There is an
additional chord in G5, which we will denote by T = 21 22.

We will first consider the case when yp € (ve, z2). However to avoid the
existence of 3 parallel chords, T' must intersect at least one of 7y and R
and at least one of $7 and Sz, This will imply the existence of 3 intersecting
chords, a contradiction. In other words, it is straightforward to check that
the chord T implies the exigtence of either 3 parallel chords or 3 intersecting
chords.

In the case when ys € (ug, 1), observe that the chord T' must in-
tersect both the chord Ry and the chord 5, since each chord must in-
tersect at least 2 chords. Thus, with no loss of generality, we can as-
sume that 21 € (ug,y2) and 29 € (ve,2y). Now, the 10 cycles Cy =
(Ul,lbg,' “,yl,"',lﬁ'l,"',ul), Gﬂ = (:Ul,yQ,"‘,Zl,"',u2,"',yl}y 03 =

(ZI?EE,"WUZ:"')y% "':z1)7 C4 = (Ulvv%"')zﬂ?"':372}"', 'UI), Cy =
(.’171,532,"",‘0]_,'",ul,"',SII}), Cﬁ = (u11u21 '",21,22,“‘,.’132,5131,'",Ul),
Cr = (y1,52 V2,01, U1, U2, -+, 41), O = (21,22, 82,81, - -+, Y1, Y2,

'-;Zl), Oy = (1)2,?)1"',Ul,uz,'",21,22,"',U2), Cip = (%,931”',3}1,
Yo, -+, Ve, Vs, - -+, Ty) collectively use each of the edges of C' precisely 3 times

and each of the chords 4 times. Hence, thus sum of their lengths is 3n + 20,
and one of the 10 cycles has length at most (3n+ 20)/10 = 3n/10+ 2. This
gives a contradiction which completes the verification that g{8) = 3/10.
TFor future reference denote this graph by Hy.

later]
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Claim:g(6) = 1/4

We will assume there is no constant ¢ such that g{(Gg) < n/4 + ¢, and
show that this leads to a contradiction. The arguments for Gy are identical
to those for (5 and will borrow heavily from the observations of that case.
In particular, the arguments used in proving g(5) = 3/10 also imply that
G does not contain 3 parallel chords or 4 intersecting chords and that
each chord of Gy must intersect at least 3 chords. The deletion of a chord
from G gives a graph G5. In all of the cases considered in proving that
g(5) = 3/10, it was shown that g(Gs) < n/4+c for some constant e, except
for the three graphs H}, Hy, and Hj (see Figure 2). Hence we can assume
that G5 is one of the graphs H} (1 < 4 < 3) with an additional chord
ER. The chord R must be positioned in each of the graphs H such that
there does not exists 3 parallel chords, 4 intersecting chords, and such that
each chord intersects at least 3 chords. In a straightforward way it can
be checked that this is impossible. This contradiction completes the proof
that g(6} = 1/4 and also the proof of Theorem 2. O

Actually more was proved than was indicated in the statement of The-
orem 2. The range of values for the constant ¢ used in the definition of g(#)
is very restricted. If we define g*(t) to be the least upper bound of the girth
9{G) of any hamiltonian graph @ with n vertices and n + ¢ edges, then the
proof of Theorem 2 implies that g*(1) = ¢g*(2) = n/2 + 1, g*(3) = ¢*(4) =
n/3+2,3n/10+1 < g*(5) < 3n/10+ 2, and n/d+ 1 < ¢g*(i) < nf4+ 5/2
for i = 6,7 and 8.

It is very likely with some tedious case analysis that g(9) and g(10)
can be determined and probably g(9) = g(10) = 1/5. The foliowing ex-
ample implies that (9} > ¢(10} > 1/5. Let Hjs be the graph obtained
from the cycle €' = (y, 21, -, ®p_1,%0) With n = 20m by adding the 10
chords L0Z10m )y T2mPoms LAm T8 TomT15m, TTmL1lm, LomT13m) L12mT16m.
T14mT18m s B17mTim, L10mTsm- Any cycle of G must contain all of the ver-
tices in at least 4 of the intervals of the C' determined by the 10 chords,
and so glH) =4dm +1=n/5+1.
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