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Abstract

Abstract: A graph G is said to be k-linked if G has order
at, least 2k and for any ordered set {vy,..., vg,u, .., wi} of 2k
vertices, G contains vertex disjoint paths Py, Pa, ..., Py such that
P; connects v; and w; for i = 1,2,..., k. Many have studied
the question of the minimum connectivity necessary to imply a
graph is k-linked. Here we consider adding additional conditions,
such as forbidden subgraphs, which reduce the connectivity level
necessary for the graph to be k-linked. We also consider powers
of graphs, as any such edge density condition is also natural to
consider when dealing with E-linked graphs.

1 Introduction

One generalization of the idea of connectivity in graphs is the following:
- A graph G is said to be k-linked if G has order at least 2k and for any

1Supported by O.M.R. Grant N00014-91-J-1085.
2Supported by O.N.R. Grant N00014-91-J-1085.
*Supported by N.S.F. Grant DMS-9400530.




ordered set of 2k vertices {vy,..., Uk, wy,..., wi}, G contains vertex
disjoint paths Py, Py, ..., Py such that P; connects v; and w; for 1 =
1,2,...,k. For k = 1 this reduces to the standard definition of a
connected graph. Given vertices v;, w; ({ = 1,2,...,k), the collection
of vertex disjoint paths Py, P, ..., F; is called a k-linkage. Further,
given two vertices u, v and paths Py, P, ..., P joining v and v, we say
these paths are internally disjoint provided V(F;) 0 V(F;) = {v, v},
for i # j.

Larman and Mani [6] as well as Jung {5} considered the problem of
the existence of 2 smallest integer f(k) such that every f(k)-connected
graph is k-linked. Clearly, f(1) = 1 while Jung [5] proved that f{2) =
6. There are 5—connected planar graphs which are not 2—linked. For
example, in the graph of Figure 1, the pairs z,y and a,b have no 2-
linkage. It s easy to see that in this graph any = —y path must intersect
any @ — b path. Thomassen [8] characterized graphs that are not 2-
linked. However, the problem of determining f(k) for £ > 3 appears
to be difficuit and remains open. The graph Ksi..; — kK3 shows that
for £ > 3, f(k) > 3k — 2. Recently, Bollobis and Thomason [1] have
shown that if k(G) > 22k, then G is k—linked, hence f(k) < 22k.

a

Figure 1: Planar, 5-connected, but not 2-linked graph.

It is reasonable to expect that under certain conditions one could’
determine the connectivity necessary for a graph to be k—linked. OIl.e.f-
approach which has been useful in other path or cycle problems B
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Figure 2: A 4-connected Kj 3-free but not 2-linked graph, X.

The following notation will be useful. Given a path P containing
vertices = and y, we denote by P{z,y] the subpath of P from z to v,
including both = and y. We term Pfz,y] the z — y segment of the
path P. Similarily, P(z,y) is the subpath of P from z to y which does.
not include the end vertices = or y. When paths P and @ intersect,
they may have one vertex in common or many consecutive vertices in
common. We will consider the entire subpath of consecutive vertices
in common to both paths as one intersection of the paths. Note that
distinct intersections may share vertices.

All graphs in this paper aresimple, without loops ot multiple edges.
For terms not defined here, see [2].

2 Forbidden Subgraphs

With the use of forbidden subgiaphs, we are sometimes able to reduce:
the connectivity needed for a graph to be 2—linked and at times estab-
lish a level of connectivity sufficient to show a graph is k-linked when
k > 3. We begin with a result on the 2—linked case.




Theorem 1 If G is a 5-connected Ky 3—frec graph of order n > 5,
then G is 2—linked.

Proof: Suppose G is not 2-linked and consider two pairs of vertices,
z,y and u, v where linkage fails. Since there exists at least five inter-
nally disjoint z — y paths in G, we begin with such a path system, say
¥, :

Since 2—linkage fails for the pairs z, y and v, v, it must be the case
that every path from u to v intersects every path from z to y. In
particular then, the following lemma must hold.

Lemma 1 Suppose ¥ is an internally disjoint = — y path system and
Q is a u — v path which does not contain z or y. Also suppose that

over all such u — v paths, Q has the fewest path intersections with ¥,
then

i will intersect each path in ¥ only at internal vertices,
pa

(ii) Q determines an ordering, say Py, Py, ..., Ps of these paths,
and

(iii) given this ordering, there will be a segment of Q from F; to
Figy for i=1,2,3,4. Thus, Q will never reintersect a path of ¥
after leaving that path.

Proof. Given the z — y path system ¥, clearly Q must intersect each
of the five paths or a 2-linkage would result, a contradiction to our .=
assumption. By our conditions, this intersection is only possible at
internal vertices of the path. Hence, {i) holds.

Clearly, upon following Q from u to v there is a first z — y path
encountered, call it £;. On continuing to follow Q eventually 2 new
path (call it ) in ¥ is intersected. We continue in this manner until -
the ordering of the five paths of ¥ is determined. Hence, (ii} holds. -

Clearly there is 2 segment of Q from u to P; {maybe oaly u itself) .
and a segment of Q from P; to P,. Now suppose there is no segment -
of Q from F; to P4y for some i > 3. Then upon leaving the path Fi,
the path Q must either proceed to Piyy (or if Piyy does not exist, to
v} or the path Q must reintersect an earlier path. In the first case if
Q proceeds to Py, without intersecting P4, a contradiction to our
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* order of intersection results; while if @ proceeds on to v, 2 2-linkage
 would result using Piy1, again a contradiction. In the second case,

if Q reintersects an earlier path, say P; with segment (2%, 2%] and if
P;{z", 2% is the segment of P; corresponding to the first intersection

of @ with P;, then replace @ with

Q" = Qlx, z', Pj[zl, 22]1 Q(zz, vl].

The path Q* has fewer intersections in ¥ than Q, no matter where zt

ot 2? lie on P;, a contradiction to our choice of Q. Thus, (iii) holds

and hence, Lemma 1 is proved. O

Lemma 2 If G is not 2-linked, then all u — v paths must inlersect
the paths of ¥ (in this case Pi,..., Fs ) in this order (ignoring repeated
intersections of the same path).

Proof. If this were not the case, then some v —v path, say Q" would,
without loss of generality, intersect F; prior to intersecting P;, for
j<i BRecall,Qisau—v path with fewest intersections. Suppose
{u!, u?] is the first intersection of Q and F; and that [z!, z%] is the first
intersection of Q* and P;. But then, by Lemma 1 (iii), following the
segments Q*(x,z'], Pi(z!,4*),Q[u? v] we produce a v — v path that
avoids Bj, creating a 2-linkage, 2 contradiction. Hence, Lemma 2 is
proved. O . '

Finally, given this ordering of paths Py,..., Ps,if path P; has initial
vertex u;;, we note that < z,u;1,ta1, Us1 >= K3 unless one of the
edges ©y1Uag, ¥11Us1, OF U3 UsL is present in G. Suppose that upyus;
is in G. Further suppose-that {2, z% is the intersection of Q with P
and 7%, 2% is the intersection of @ with P3. Then

Q[ﬂ,xi],P1[=11u11),umﬂahPa(usx,zz),Q(Zz, v}

produces a u — v path that avoids P, since by Lemma 1 (jii) @ never
reintersects P;. A similar argument applies if the edges ¥jjusy or
us us; exist in G. Thus, in all cases we are able to complete the
linkage, proving the theorem. O

Example 1: The graph of Figure 3 is K s-free, 4-connected, but not
two linked. By repeating the basic interior pattern we can coanstruct an
infinite family with these properties. Thus, Theorem 1 is best possible
in terms of the connectivity condition.




Figure 3: Kj s-free, 4-connected, but not 2-linked graph.

In order to see that this graph is K| s-free, simply note that the
neighborhood of each vertex is 2K,. In order to see that this graph
is not 2-linked, note that it is planar and if we consider the pairs z,y
and u,v, then any z — y path would completely surround either u or
v. Finally, to see that this graph is 4 connected, note that the vertices
a,b,c,d and e play a fundamental role in preventing small cut sets. O

We now extend Theorem 1 for values of k greater than two.

Theorem 2 IfG is 4(k— 1)+ 1-connected and K, 3-free (k > 2), then
G is k-linked. .

Proof: We proceed by induction on k. For k = 2 Theorem 1 provides

the base result. Now assume a (k — 1}-linkage exists in G forany k—1 .

pairs of vertices and suppose that for the pairs (vy, u1),-.. J(Vk—1,%k-1)5
(z,y) no k-linkege exists.

Now by the induction hypothesis, the pairs {v;, 1), ..., (Vk—1, Ug-1)
can be linked, so suppose B, ..., Pi_ is such 2 linkage. Then it must

bé the case that any z — y path somehow intersects this system. How-
ever, we know that there exist 4k —3 internally disjoint paths fromz to
y. Now among all (k — 1)-linkages joining v; with u;,i=1,2,...,k—1, =
select one with the smallest number of intersections with the z—y path

system.

Since G is 4(k - 1)4 |

paths from z to y, Lher
five of these z — y path:
this were not the case ¢
(k — 1) paths in the lic
these k pairs, contradic

Now order these fiw
using the K 3 centered
we can build a path syst
the z — y paths, contrac
is k-linked and the resu

An argument simila

lowing easy generalizati .

Theorem 3 If G is K

(2t ~ 2 (k ~ 1} + 1, the

The next lemma wil

Lemma 3 IfG¥s at-c

u, v are pairs with no {
internally disjoint path.
must have length at lea

Proof: Suppose not, sz |

has at most £ — 1 verti
removing all the vertice -

there is still 2 u — v pat

F;. Thus, a 2-lickege w

proving the lemma. O

We next turn our at
is straightforward, so w |

Theorem 4 A4 5-conn |

Further, a 4-connected

Example: Note that

is 2-finked, again ad it .
graph of Figure 4 is cle



Since G is 4(k — 1} + 1 connected, there are at least 4k —3 (k 2 2)
paths {rom z Lo y, there must exist some v; — u; path that intersects
five of these = — y paths first (in the sense of shortest path length). If
this were not the case there would exist an z — y path that misses all
(k — 1) paths in the linkage, and we could extend to a k-linkage for
these k pairs, contradicting our assumption.

Now order these five paths as was done in Lemma 1. Then again
using the Ky 3 centered at T and the resultant edge that must bein G,
we can build a path system with a smaller number of intersections with
the = —y paths, contradicting our assumption on the system. Thus, G
is k-linked and the result is proved. O

An argument similar to that of the last theorem provides the fol-
Jowing easy generalization.

2-linked graph.

Theorem 3 If G is Ky -free (t 2 3) and has connectivity at least
(2t —2)(k— 1} + 1, then G is k-linked.

simply note that the
o see that this graph:
sonsider the pairs z,y
- surround either % or
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ting small cut sets. O

The next lemma will be useful in several results.

Lemma 3 IfG-¥s a t-connected graph that is not 2-linked and z,y and
u, v are pairs with no linkage, then for any z —y path system ¥ of t
internally disjoint paths, each such path that does not contain v or v
must have length at leastt — 1.

-eater than two.

Proof: Suppose not, say the path P; in ¥ does not contain % or v but
has at most £ — 1 vertices (and hence length less than ¢ — 1). Then,
removing all the vertices of P; from G leaves a connected graph. Hence,
there is still 2 v— v path in G — V(F;), which must miss the z —y path
P;. Thus, 2 2-linkage would exist, a contradiction to our assumptions,
proving the lemma. O

We next turn our attention to forbidden paths. The following result
is straightforward, so we omit it’s proof.
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Theorem 4 A 5-connected Py-free graph of order n > 8 is 2-linked.
Further, a 4-connected Ps-free graph of order n > 9 is also 2-linked.

Example: Note that Theorem 4 says a 4-connected Fs-free graph
is 2-linked, again ar improvement on the general value of f(2). The
graph of Figure 4 is clearly 3connected and Ps-free. This graph is not




2-linked as the pairs a,b and z,y can not be linked. Clearly, any path
joining either pair and missing the other pair requires use of the edge
uv.

Figure 4: A 3-connected Ps-free, but not 2-linked graph.

We now turn to a result whose proof is similar in technique to those
we have seen earlier, but uses a larger set of forbidden subgraphs. Let
the graph Z; be defined as a triangle with a path of length ¢ attached
to one of its vertices. '

Theorem 5 If G is a 5-connected {Kj 4, Z3}-free graph, then G &5
2-linked.

Proof. Suppose that G is not 2-linked and that z,y and u,v aretwo -
pairs of vertices with no 2-linkage. Let ¥ be an z — y path system
with each path as short as possible, say P; : ,% 1, .. -, Ui j, ¥ Where

1 < i<5and j; > 1. Also assume the order of the paths is determined

by the order of intersection with a shortest « — v path Q.

" If u and v are not vertices in ¥, then by Lemma 3 each path in ¥
contains at least 3 internal vertices. Since G is K (free, then some
edge of the form u) suzy or uqrus,) is in G or a 2-linkage can be .
found (this may take repeated applications of the K; 4—free property)-
Without loss of generality suppose that u; juz; is an edge of G. But
then < T,up 1, Uz,1, te1, Y42 %43 > Z3. However, the addition of any"
edge to this graph either produces a 2-linkage or shortens the overall
sum of the path lengths in ¥, a contradiction in either case. Thus, G-
must be 2-linked. '
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linked. Clearly, any path A similar agrument applies if « and/or v are in ¥. d

+ requires use of the edge Note that the graph X of Figure 2 satisfies the hypothesis of the

last result except with connectivity 4, however it is not 2-linked. The
graph B (commonly called the bull) is a triangle with one edge off two
distinct vertices of the triangle.

)

Theorem 6 If G is a 4-connected F = {K\ 3, B}-free graph, then G
is 8-linked or G conlains an induced X.

Proof. Suppose that G does not contain X as an induced sub-
graph. Also suppose G is 4connected, F-free and that G is not 2-
linked. Say that z,y and u,v are two pairs of vertices in G with no
2-linkage. Since G is 4-connected, we know that there exists a system
of at least four internally disjoint = — y paths. Over all such systems,
suppose that ¥ is one with the least total path length sum, that is, ¥
has the smallest possible sum of the path lengths in the system.

Note that z and y are not adjacent, for if they were then the graph
G — {z,y} would still be 2-connected and a 2-linkage would exist,
contradicting our assumptions. Similatly, v and v are not adjacent.
Thus, each path in ¥ has at least one internal vertex. If v and- v
are not in ¥, then by Lemma 3 each path of ¥ contains at least two
internal vertices.

Let ¥ consist of the paths F; 1 2,41, %2, -+ Wign ¥ where 1 <1 <
4 and j; > 2 for each i. Further, assume that the ordering Py, Py, P, Py
is determined by the order of intersection with the shortest v —v path
Q (as was done earlier).

By repeatedly considering potential induced Kj3's centered at z
and using the vertices ;3 for i = 1,2,3,4 and the fact that any edge
of the form u; %, Where t > i+1 would allow a 2-linkage to exist, we
see that ey = Uy, 1U2,1, €2 = Uzt and €3 = U311y are all in E(G).

We now consider two cases based upon whether v and v are in ¥
or not.
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Case 1. Suppose that at least one of v and v are not in ¥.

Without loss of generality we suppose that u is not in ¥. Then
by Lemma 3 all paths of ¥ (except possibly P,) contain at least two
internal vertices. First note that < T, ug s, ty,1, %22, 412 >= B unless
one of the edges uz 1112 OF ¥y, 1tz2 is in . Without loss of generality
suppose that g (%12 is in E(G). Then < wgy, T, w21, %11, %22 >= B



(Both the above arguments use the fact that

unless up 122 1s in £(G)-
all other potential edges allow a 2-linkage to occur or shorten the sum
of the path lengths in ¥, each 2 contradiction to our assumptions.)
Finally, < u21,%,uz2;2, 41,2 > K3 unless ugou2p2 is an edge of G.
Again all other potential edges shorten the path sum of W.

Now by repeating the above arguments we can force the edges
y values of t > 1 as

Up UL 41y YL U241 and ¥gs41t1041 for as man
exist on both P, and Fs.

If the first intersection of the v — v path @ with Py is at uy3,m and
Q leaves P; at uz,, we consider two cases.

If s < m, then the two paths Qlu, ul,m],ul‘mug'm_l,Pl(uz'm._l,uz,,],
Q(uz,.,v] and Pyfz,ts,6-1); U2,5-1%1,0 Py(t1 st 1)y ULm—1, Y2,m,
Py(ts,m, y] form a 2-linkage, contradicting our assumptions.

If s > m a similar construction again shows 2 2-linkage is present
in . Thus in either situation a contradiction is reached, ending this

case.
Case 2. Suppose that both u and v are in ¥.

Then we know by the ordering of the paths in ¥ that ison B
and v is on Py. If P; and P, each have two or more internal vertices
an argument similar to the last case will lead to a contradiction. Since
each path must have at least one internal vertex, from Lemma 3 we
may assume that the only internal vertex in P; is w and that the only
internal vertex in Py is v. Further, v and v are each adjacent to z and
y as they are the only. internal vertices of the paths. Now, u=1ug1is
adjacent to uzy and v = uq1 is adjacent to u4,. Thus, we know we
have the structure of Figure 5.

Consider < ,%, ¥z, t2,v >= B. The only edge that does nof
lead to an immediate contradiction is uup2, thus it must be in G-
By symmetry, vuaz is an edge of G. Now < u,z,4, 422 >2 Kia
unless yuy s is an edge of G (again all other possibilities lead to 2
contradiction). A similar argument shows yug 2 is also an edge. Finally,
< T,u,Up2,Y, 32 >= B unless 12432 is an edge of G.

The only other possible edges are uaju22 and upgs. I both
these edges are present, ¥, 1, Y2, v and =, ¥ag, u22,Y form a 2-linkage- -
Without loss of generality then suppose uz;u3; is an edge of G. -

Since G is 4-connected and n > 9, there exists a vertex w rot in
V(¥). Further, if there exist intecnally disjoint paths from w to Z and
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' Figure 5: The situation in G.

y or to u and v that do not intersect a1, uaz, 31 or us2, 2 2-linkage
clearly exists.

Thus, we may assume that some w not in V (¥} is adjacent to one
of the internal vertices of P, or Ps.

Subcase 1: Suppose w is adjacent to ug;.

Now < ugy, Uzs, ¥a3, v, w > B. The edges vuyy, vugs, and wv each
create a 2-linkage. Thus, either wuz; or wuge must be in G.

Subcase 1a. Suppose wuys is an edge of G.

Now < 0, tag, tg2, 7, ¥ >= B. The edges wz, wy and zy are easily
seen to create 2-linkages. The edges Tugy and yuy; each shorten paths
in ¥, contradicting our assumptions. Thus, 2 contradiction is reached
in this case.

Subcase 1b. Suppose wugzg is an edge of G.

Now < w,up, ¥m,z,y > B. Again wz,wy or zy create 2-
linkages, while Tus; or yuy; shorten paths in ¥. Thus, this case also
leads to a contradiction.

Since neither wuy, nor wuss can be edges of G, a contradiction is
reached and Case 1 is complete. By symmetry, wua; also is not an
edge of G.

Subcase 2: Suppose wug; is an edge of G.

Then < uz1, Uaz, Y1, 0, ¥ >= B. The edge wy creates a 2-linkage,
while if we consider wua;, an argument similar to that given in Subcase
1a leads to a contradiction. The edges yua; or yuy; each shorten paths

in ¥ Thus, wu,; must be an edge of G and we are back in Case 1.




By symmetry, wigs is also not an edge of G. Hence, v has no
adjacencies to internal vertices of P, or F3 which means that our as-
sumption that usjus; was an edge of G cannot hold. By symmetry,
31422 is also not an edge of G. But now, < V(¥) > X, and our
result is complete. That is, in all cases, either G is 2-linked or X is an
induced subgraph of G. O

3 Powers of Graphs

We now turn our attention to another natural approach to the k-linked
problem. Since dense graphs would seem more likely to be k-linked,
it is reasonable to consider powers of graphs. The kth power G* of a
connected graph G is that graph with V(G¥*) = V(G) and uv € E(G"
if, and only if, 1 < distg(u,v) < k.

Theorem 7 IfG is a connected graph of order at least 2k, then G*¥~1
ts k-linked.

Proof. We proceed by induction on the order of G- If [V(G}| = 2k,
then as G is connected, G?*~! is complete and hence is easily seen to
be k-linked. We now assume that for all connected graphs of order
n—1 > 2k that G**~1 is k-linked. Let G be a connected graph of
order n > 2k and let S = {vy,...,v2;} be an ordered collection of 2k
distinct vertices in V(G). Select a vertex v that is not 2 cut vertex of
G and consider H = G—{v}.

If v ¢ S, then by the induction hypothesis, 2k—1 is k-linked, hence
a k-linkage exists in G271 as well.

Ifv € S, then without loss of generality suppose that v = va, where
vop is to be linked to vop.;. Now select a vertex © ¢ § — {Uzk_;_,vzk}
such that distg(x, v) < 2k—1. Since |S—{vap—1, var}| = 2k—2, n > 2k
and G is connected, such a vertex must exist. Again let H = G — {v}-
Now by the induction hypothesis, the graph H?¥~! is k-linked. Thus,
the set §* = § — {v2z_1}+{¢} has a linkage. But then the path joining
vop_y 2nd v in H**~1 can be modified to a vy to vy path by using
the edge from = to vy that must exist in G*k—=1_ This produces 2
linkage for S in G**~1 and completes the proof. O

Example. The last result is sharp since the graph P22 is not k-
linked when m > 2k — 1. This is easy to see since an end vertex of P
only has degree 2k — 2 in P22, O
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Lemma 4 is a direct consequence of Menger’s Theorem (7], while
Lemma 6 is due to Hobbs [4].

Lemma 4 If G is a k-connected graph and S, and 53 are disjoint
subsets of V(G) with |Sy| = |S2| = k, then there exist k vertex disjoint
paths Py, ..., Px such that P; is a w; —v; path with u; € 5y end v; € 53,
i=1,2,....k

Lemma 5 If G is a graph with connectivity at leas! 2k and G conlains
a complete subgraph on 2k vertices, then G is k-linked.

Proof. Consider an ordered set A = {vy,...,var} of distinct vertices
in G. Denote the vertices of some complete subgraph of order 2k as B.
Suppose that [ANB{ =¢, where 0 <t <2k, and let T = AN B.
Since the graph G' = G — T' is 2k — ¢t connected, by Lemma 4 there
exist 2k — ¢ vertex disjoint paths in G’ from theset A —T to B —T.

If t = 2k, then A C V(K3) and the linkages are trivial to find.
Thus, we suppose 0 < ¢ < 2k. Say vertices vy,..., v, are in AN B and
Upis---, Y2k ate in A — B. Further, let V(B) = {by,..., b2k} where
vi=b; ,i=1,...,t. By Lemma 4, there exist 2k — ¢ vertex disjoint
paths in G — T from the set A-T to B—-T.

We now show that any pair of vertices in A can be linked. If two
vertices in T are to be linked, simply use the edge between them. If a
vertexv; in A—T is to be linked with a vertex v, in T, follow the path
from v; to b; in B — T followed by the edge from b; to vn,. Finally,
if two vertices of A — T' are to be linked, follow their corresponding
paths to B — T and the appropriate edge joining the endvertices of
these paths in B — T. Thus, in all cases the linkages can be formed; G
is k-linked and the lemma proved. O

‘Lemma 6 {{]. If G is m-connected with order at least km, then G
is km-connected.

Theorem 8 IfG is an s-connected graph of order at least st4-2, where
5> 3 and st > 4k, then G* is k-linked.

Proof. Assume first that s > 4. Consider an ordered set of distinct
vertices S = {vy,...,Vk, 01, .., w} in V(G), where the pair (v;, w;) is
to be linked. If distg(v;,w;) <t, for each i with 1L < i < k, then in G*
the vertices v; and w; are adjacent, and we clearly have 3 k-linkage.




Hence, at least one of the pairs must be at distance more than ¢.
Say the pair (v;,w;) is at distance greater than ¢ in G. Since G is
s-connected there exist at least s internally disjoint v; — w; paths and
each of these paths must have length at least ¢ — 1.

Now consider the vertices on these s paths which are at distance at
most |2k/s| = |(4k/s)/2| from v;. Then in G¥, these vertices, along
with v are all adjacent. Since £ > 4k/s, we see that s[zfj + 1> 2k,
hence Gt contains a K. Thus, by Lemma 5, G* is k-linked. O
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