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Potentially G-graphical degree sequences

) Ronald J. Gould!
Emory Univeristy

Michael S. Jacobson? and Jend Lehel®
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Abstract

In this paper we consider a variation of the classical Turin-type
extremal problems. Let § be an n<lement graphical sequerce,

and o(5) be the sum of the terms in §. Let & be a gragh. The
- problem is to determine the smallest m such that any n-term

graphical sequence § having ¢(5) 2 m has a realization

containing G. Denote this value m by o(G, r). We present
several results for this parameter for various graphs G. In

particular, we show G(Ky, n) =dn —4 for n 2.9.

1 Infroduction.

There are several famous results, Havel and Hakimi {6, 5] and Erdds
and Gallai {3], which give necessary and sufficient coaditions for a
sequence S =(dy.d9, ... d,) to be the degree sequence of 2
simple graph G. Unfortunately, knowing that a sequence has 2
realization gives no information about the properties that such a graph
might have. In this paper, we explore this question of properties of
graphs with a given degree sequence which is related to work
originally introduced by A. R. Rao [7].

1Suppocted by QNR. Grant N0O0O014-91-J-108S.
Z3upported by O.NR. Grant N00014-91-J-1098.

30n leave from Computer and Automation Research Institute of the Hungarian
Academy of Sciences.




For convenicnce, we cmploy the following.lérminology. ifs =
(d1. d3, . . .. d,) is a sequence of non-negative integers then it is called
graphical if there is a (simple) graph of order n, whose degrecs are
precisely the terms in S, If G is such a graph then G is said to
realize § or be a realization of S. A graphical sequence § is
potentially G-graphical if there is a realization of § containing G,
while S is forcibly G-graphical if €very realization of S contains
G. Throughout the. paper subgraph means non-induced subgraph.
For any undefined terms, refer to [1].

One of the classical extremal problems is to determine the minimum’
even integer m such that every n-term: graphical sequence § with
(S} > m is forcibly G-graphical; this m is denoted ex(G, n).
Here we consider the following variant: determine the minimum even
integer m such that every a-term graphical sequence S with oS)>m
is potentially G-graphical. We denote this minimum m by (G, n).

This problem was considered by Erdss, Jacobson and Lehel {4]
where they showed the following: :

Theorem A. Forn> 6, (K3, i) =2n.
They also gave a construction that gave a lower bound for
o(K, n), which also would be a bound for o(G, n) for any graph

G of order k.
Theorem B. o(K}, n) > (l;-2) @n—-k+ 1 +2.

This result can easily be seen, by noting that H =K o + Ky _ k42

gives a uniquely realizable degree sequence and H clearly does not
contain Ky. Also note, this degree sequence only contains k —2
vertices of degree at Jeast k— 1, but a K} would require k vertices of
degree at least k— 1. -
In Section 2, we show that Theorem B achieves the correct value for

the case k=4 and n> 9. In Section 3 we also find o(G, n) for
vatious other graphs G,

2 G(K47 n)

We begin with a useful result which extends a theorem of §. B. Rao [8].

-

Lemma 1. Let / be 2
degree  sequence S = (¢
G c H, and x € V(G
degy(x), then there exi
V(H) and degy-(v)) = d; st
(DH-(xy)=H —(x,}
(2) the subgraph of H” i
subgraph G’ isomorphic

Proof.. Suppose the seq
vertices vi; and y are as ¢
také H = H' and clearly (
there exist non-empty se
— Nyg(x). Since degy(y
Now choose any subset C
realization H' of § by int¢
at x with endvertices in A
x with endvertices in C,
centered at y with endver
centered at y with endverti

It is easy to see that thi
are met. [

Corollary (Rao [7]). IfS
H containing Kj, then t
K} with the & vertices havi
_ Note, in fact, Lemma 1
G ¢ H, then there is a
the vertices of G have the

Proposition 2. IfS is a
28 then ecither there is
(4,4,4,4,4,4,4,0).

Before proceeding with
there is no realization of §
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Lemtma 1. Lct /f be a graph having V(H) = {v,....v,} and
degree sequence S =(dj. ... d,) where degy (vy) = d;. I
GcH,ad xe V(G) y e V(HNV(G) with degg(y) >
degy(x). then there exists a realization H' of § with V(H') =
V(H) and deggy- (vy) = d; such that

(W H-{x,y}=H - (x.y)

(2) the subgraph of B’ induced by (V(G)\(x}) U {y} has 2

subgraph G’ isomorphic to G.

Proof. Suppose the sequence S, the graphs H and G, and the
vertices v,-j and y are as above. If Ng(x) € Ng (y) then simply

take H = H’ and clearly (1) and (2) above hold. Hence, assume
there exist non-empty sets A = Ng(x) — Ng(y) and B = Ng(y)
_ Ng(x). Since deggy(y) > degy(x), it follows that IB1> AL
Now choose any subset C < B having ICl = l41. Now form 2 new
realization H' of § by interchanging the edges of the star centered
at x with endvertices in 4 with the non-edges of the star centered at
x with endvertices in C, and interchanging the edges of the star
centered at y with endvertices in C with the non-edges of the star
centered at y with endvertices in A.

It is easy to see that this is a realization H of § and (1) and (2)
aremet. OO

Corollary (Rao [7]). If S is a graphical sequence with a realization
H containing K, then there is a realization H' of § containing
K with the k vertices having the k largest degrees.

Note, in fact, Lemma 1 shows that if H is a realization of § with
G;H. then there is a realization H’ of § with G ¢ H’ so that
the vertices of G have the largest degrees of S.

Proposition 2. If§ is an 8-term graphical sequence with o(S) >
28 then cither there is a realization of § containing K4 or § =
(4.4,4,4,4,4,4,0). :

Before proceeding with the proof of this proposition, we note that
there is no realization of § = (4, 4, 4, 4, 4, 4, 4, 0) containing a K4.
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Consider the complementary sequence S = (3,'3. 3,3.3,3.3,7).
Clearly in any realization of S, there is a dominating vertex and a
2-regular subgraph on the remaining 7 vertices. There is no
independent sct of 4 vertices in this 2-regular subgraph and thus no

realization of S can contain 4 independent vertices. Therefore, no
realization of § can contain a Ky.

Proof of Proposition 2. Let S = (dy.dy ...dg) be a graphical
sequence with ¢(S) > 28. Assume di>dy>_ .. > dg; it must be

the case that 4 <d; < 7. Applying the Havel-Hakimi characterization
of realizable sequences it follows that §* = (d—1, d3—1, ...

dgie1-1, d&ﬁ.g, - - .. dg) is realizable and 6(5") » 14. By Theorem:

A, 0(K3, 7) = 14, thus there is 2 realization of §* containing K.
Furthermore, by Lemma 2, there is a realization having K3 on the
largest three degrees of S, If these three highest degrees are
obtained from § by subtracting 1, then we simply reinsert the vertex
of degree dy, producing a realization of S containing K4. This
implies we may assume 4 < dy; £ 6. In addition, the general form for
S must be one of the following three types.

Case 1: § =(6, dy, dj,a,a,a,a,a) where 3 <a < 6. Ifa=35
or 6 then §=1(6. 6,6, 6,6, 6,6 6)or(6,6,5,5,5, 5, 59. lfa=4
then S'is one of (6, 6, 6,4,4,4,4,4), (6,5,5,4,4, 4, 4), (6, 6,4, 4, 4,
4,4,4)(6,4,4,4,4,4,4,4). If a =3 then § must be one of 6, 6.5,
3,3,3,3,3),(6,5.4.3,3,3,3,3), (6, 6,3, 3,3, 3. 3, 3). Each of these
sequences are potentially K4-graphical,

Case 2: § =(5,dy,d3.a.4a,a,a,dg) where 3 <a< 5. Ifa=
S.thea §=(,5,5,5,5,5,5,dg) where dg = 1, 3, or 5. Ifa = 4,

there are seven possible sequences: (5,5, 4,4, 4, 4, 4, 4), (5, 5,4, 4, 4,

4,4,2),(5,5,4,4,4,4,4,0),(5,4,4,4,4,4,4,3), (5. 4.4, 4, 4,4, 4, 1,
(5.5.5,4,4,4,4,3),and (5,5, 5. 4,4,4,4, 1). If a =3, there are four
possible sequences (5, 5,5, 3, 3,3, 3,3),(5,5.4, 3, 3. 3.3.2), (5.5, 5,

3.3,3,3, ) and (5, 4, 4, 3, 3, 3, 3, 3). Each of these sequences are
potentially K4-graphical.

Case 3: §= (4,4,4,4,4,

(4,4), 4,.2), (.33, 1. G
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Proposition 3. If§ is an n-
o(S) < 4n — 6 with smallest
two 2's, then there ¢xists a 1e

Proof. Assume o{S) =«
induction on n and k (upward
For n = 8, there exist exs
check that each has an appt
k> ﬁ-——l—, the result is vact
2
3 vertices having degree less
We now assume the n ¢
term graphic sequence with

most two 2’s.  As noted,

implies (vacuously) a rea

dowvnward on &k we may as

that for every k> kg if S
exists a realization of S ¢
assume kg > 1.

Now let S* be an (n+1)-
at least 2 containing at mo
Note that o(S*) > 3n + 1
that either ail terms are ¢

greater thao 3.

If a1l terms equal 3 (at
containing Ky is easily o
a 3-regular graph on n—
has a term strictly greater!
Subcase A. Suppose 5* ¢




cnce S

=(3.3,3,3,3,3,3,7.
ire is a dominating vertex and a2
ning 7 vertices. There is no
s 2-regular subgraph and thus no
pendent vertices. Therefore, no

=(d1,dy ...dg) be a graphical
ed)>dy>...>dg; it must be
the Havel-Hakimi characterization
ws that §* = (dy-1, d3-1, . . _
ble and o(S”) > 14. By Theorem
realization of §° containing K.
§ a realization having K3 on the
these three highest degrees are
hen we simply reinsert the vertex
ition of §' containing K4. This

In addition, the general form for
» types.

,a) where 3 <a<6. Ifa=5
0r{6,6,5,5,5,5,55). Ifa=4
%(6,5,5,4,4,4,4), (6,6, 4, 4, 4,
:3 then S must be one of (6, 6, S,

%6.3,3,3,3, 3, 3). Each of these
:al,

2,dg) where 3 <a< 5. Ifa =
where dg=1,3,0r5. Ifa=4,
3,5.4,4,4,4,4,4), (5.5, 4, 4, 4,
4,4,4,4,3),(5,4,4,4,4,4, 4, D,
4,4,4,1). If a =3, there are four
+3).(5,5.4,3,3,3,3,2), (5.5, 5,
+ 3). Each of these sequences are

ST

Case 3: § = (4,4,4,4,4,4, dq,dg) with (d7,dg) being onc of
“, 4), 4. 2), 3, 3), 3. 1), (2, 2) or (4, 0). The sequence in all cases
except the last pair yield a realization containing Kq.

With all cases exhausted, the result follows. O

Proposition 3. If§ is an n-term graphical sequence (r.z 2 8) having
o(S) < 4n — 6 with smallest term at least 2 and containing at most
two ZTS-, then there exists a realization of S containing a K4.

Proof. Assume o(5) =4n —4 -2k (k 2 1). We proceed by

induction on n and k{upward on n and downward on & for cach n). t
For n = 8, there exist exactly 15 such s?qucnccs and it is easy g

check that each has an appropriate realization. Also, for any # an

is vacuous, since o(S) < 3n — 3 implies at least

3 vertices having degree less than three.
We now assume the n case holds forall k and let Sbeann + 1
term graphic sequence with smallest term at ieast 2 and containing at

(n+1)-1
2

most two 2’s. As noted, if &> , then o(§) = 4n — 2k

izati ini , inductin
implies (vacuously) a realization containing K4. Thus g

-.n=1
downward on k we may assume there exists a ko(l Sky = -—5——] S0

that for every k > kg if § is as above and o(§) = 4n — 4 — 2k there
exists a realization of § containing K4. If kg = 1 we are done, 50
assume kg > 1.

Now 12 S* be an (n+1)-term graphic sequence with smallcst tcxlm
at least 2 containing at most two 2's and having ¢(§%) = 4'f ?.gco—r)
Note that o(S*) > 31 + 3 (using the bound on kp) whxct} unp ies
that either all terms are equal to 3 or at least one term  is strictly

reater than 3. o
g'If all terms equal 3 (and n + 1 is thus even) then 2 realization
containing K is easily obtained by considering K4 H whc:;a stf
a 3-regular graph on n— 4 vertices, Thus we may assume that
has a term strictly greater than 3.

Subcase A. Suppose S* contains a term equal to 2.
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By Lemma 1 there exists a realization G of $* with degree 2

- vertex (call it x) adjacent to a vertex of degree stricily greater than 3,

(call it y) and a vertex z of degree at least 3. Then G —x produces

a graphic n-term sequences §* with o(§)=4(n~1) - 2(kg — 1)

with " having smallest term at least 2 and at most two 2's. Thus, by

the ‘induction hypothesis S* has a realization coataining K4 and by
inserting x we can obtain a realization of S* with a Ky.

Subcase B. Suppose that $* does not contain term equal to 2 and
S* is not the sequence of all 3's.

Ciearly 3 must be a temm of §*, and by Lemma 1 there exists a

realization G and a vertex x of degree 3 with x adjacent to a vertex
y of degree strictly greater than 3. Now G — x produces an n-term
graphic sequence S* with smallest term at least 2 and at most two
terms equal to 2. Further,
O(S8) =4n-2(f-1) - 6
=4n—4 - 2(kg-1)-2(1) =4n—-4—2 kg.

Thus we are finished with this case by induction and this
completes the proof. OO

Theorem 4. If n> 9, then O(K4, n) =4n—4.

Proof. Suppose n > 9, Theorem B shows that 6(K4, n) > 4n — 4.
We now show that any n-term graphical sequence § having o(S) >
4n— 4 has a realization containing 2 K4. We will proceed by
induction and begin wtih the case n = 9. LetS =(dy,..., dg) be a
9-term graphical sequence having dy >dy > . .. 2> dg with o(S) >
- 32. Let G be a realization of S. If the smallest term in S isdg =0,
lor2and xe V(G) with degg(x) = dg, then G -x yields an
8-term sequence S$* with o(5*) > 28. By Proposition 2, $* has a
realization containing a K4, because $* = (4,4, 4,4, 4, 4, 4, 0).
Assume that dg > 3; furthermore, it follows that dy > 4. By
Lemma 1, there is a realization G of S with vertex x having
degg(x) >3 and x is adjacent to a vertex y with dega(y) = 4. It
follows that the 8-term graphical sequence §* obtained from G —x
either has o(§%) > 28 or o(S*) < 26. In the first case, since S§'*
cannot contain 0, $* has a realization containing a K4 by
Proposition 2. This results ina realization of § with a K4 after the

-
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3 o(G,n)

- In this section we look at a few very special cases for this number,

Tuming to matchings, our first result coincides with the cxtm-mz:ll
tesult for matchings obtained by Chvital and Hanson [1].:hcncc it is
immediate,

Theorem 5. Forp > 2, 6(pKa, 1) =(p —1) @n—2) + 2.
We now tum our atteation to cycles. The first interesting case is Cy.

Theorem 6. Forn>4,




_13a—1if nisodd
G(C4.ﬂ) —{3.»;—2 if niseven.

Proof. To sce that G(Cqyn)>3n—1 or 30 — 2, consider the
uniquely realizable degree sequence obtained from K + pKo (n =
2p + )or Ky + @KU Ky (1 = 2p + 2). We now show the
upper bound.

For n =4, if a graph has size q 2.5, then cleardy it contains a Cy.
For n = 5, we have that q 2 7. There are exactly 4 graphs of order 5
and size 7 and each coatains 2 C4. Thus, we now assume the result is
true for all values up to n and consider a sequence S of 1 + 1 terms.

If § contains 2 term equal to 1, then remove it and adjust the new
sequence S”. By induction §° must contain a C4. We also note that
there must be at least 2 vertices of degree at least 3 in our sequence (as
n—1+2(n - 1) is too small).

Then, by Theorem A there is a realization of § containing a K3,
which by Lemma 1, can be obtained in a realization using the two
vertices of highest degree (recall each is at least 3).

Say this K3 has vertices wy, wo and w3. Further suppose the two
vertices of highest degree in the graph are w1 and wo.~Thus, wy and
w9 have at least one more adjacency in the graph. Say wq is
adjacent to x and w+ is adjacent to hA

If x=y we are done as a Cy is formed. If x % ¥ we consider two
cases.

Case 1. Suppose x and y have a common adjacency, say z.

Then we see that the edges zw) and xw3 are not in G ora Cy

would exist. But then the edge interchange which removes Wiwsg

and xz and inserts the independent edges zwj and xw3 produces a
realization containing a Cy.
Case 2. Suppose x and y have no common adjacencies off K.

Since both x and y have adjacencies off Ka, suppose that x is
adjacent to xj and y is adjacent to yy and X3 #¥1. Further
suppose that xy and y; are not adjacent. Then, the interchange that
removes the independent edges xxy and yy; and inserts the
independent edges xy and X3y1 produces a realization of §
containing a Cy. If xyand yj are adjacent, then again it is easy to

sce that the edges wixp 2
alrcady exist. But again the
xxy and inserts wyxy an
containing a Cy4.

In all cases a C4 was pt
therefore the result is proved.

Cleady, o(C4, n) <o{Ky4
see where in the range from
lies.
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coIn all Eascs a C4 was produced in some realization of § and
therefore the result is proved. [}

Cleardy, o{C4, 1) £ 0(K4 — ¢, n) < 5(K4, n). It would be nice to
see where in the range from 3n — 2 to 4a — 4, the value o(Ky —e, 1)
{ies.

4 Canclusion

This extension of the classical extrémal problem seems like a natural
question but presently sufficient techniques have not been dcvclopf:d.
We feel that the complete graph case is the most tractable so we give
the following.

Conjecture: For n sufficiently large

oKy, 1) = (k—2) Qr—k+1) +2.

As a weakening of this, it would be nice to see that for n sufficiently
large, this number is linear in n, explifying the difference between

this value and ex(Kg, n).
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In a given graph G, a
of colors is a defining se
exists a unique extension
of the vertices of G. A d
is called a minimum def
<ardinality is denoted by
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each given m and for all
Among our resuits are

(1) d(Cm x K3, x) = [:
(2) m<d(Cm x Kyq,x

() d(Cm x Ks,x) =2
2m < d(Cm x Ks,:

1 Introduction

\ k-coloring of a graph G |
the vertices of G such that |




