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1 Introduction

Given a simple graph G and a family F of connected graphs, we say
that G is F-free if G contains no induced subgraph that is isomorphic
to a graph in F. The graphs considered in this paper will be graphs
that are {K, 3, Na}-free, where the graphs K 3 and N, are as shown
in Figure 1. The graph K3 is often called the claw. The graph Ny
has also been referred to as the Eiffel, denoted by E (see the survey
{2] by Faudree, Flandrin and Ryjizek).

Another common forbidden subgraph is the net, or N, and it is
simply the graph counsisting of a triangle with one pendant leaf attached
at each of its three vertices. Shepherd [4] has investigated graphs that
are {Kj 3, N}-free, and the results of our paper can be viewed as an
extension of some of his work. '

_ If v is a vertex of a graph G, and if § is a subset of the vertex set
 of G, we will use the following notation regarding neighborhoods:

N@)={zeV(Q@):vze E(@)},
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" Figure 1: The forbidden pair.

Ns(v} = {z € S : vz € E(G)}.

If v is a vertex of a claw-free graph G, then the graph induced
by the meighbors of v, denoted < N(v) >, must have at most two
components. We say that G is Ryjdéek-closed if for every vertex v,
each component of < N(v) > is complete. This term originates from
some ideas developed in a recent paper of Ryjicek [3].

The graphs that we consider in this paper are connected, Ryjacek-
closed, {K1 3, No}-free graphs. Our motivation in studying the struc-
ture of the graphs in this fairly restrictive class stemmed from our
investigation of the hamiltonian properties of a particular subset of
this class, and the results of that investigation will appear separately.

2 Preliminaries

Let T be 2 minimum cut set of the graph G, and let v be a vertex
of T. Let § =T\ {v}. Since G is connected and claw-free, v must
be a cut vertex of the graph G'\ S, and there must be exactly two
(nonempty) components of the graph G\ §\ {v} (= G\T). Call these
two components A and B. Within the component A, we will construct
“distance sets” (with respect to v) as follows: Let 4; = {z € A :
d(z,v) = i}. We construct similar sets on the B side. Since G is finite,
there must be integers n and m such that A,, By, are both nonempty,
while Any1,Bms1 ate both empty. The situation in G is depicted in
Figure 2. For notational convenience, we define A and By to be {v},
and A_; to be B;.
We now make several preliminary observations.
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(i) Each vertex in the set § must be adjacent to some vertex in A
and to some vertex in B. This follows immediately from the fact that
T is a minimum cuf, set.

(ii) There are no edges of the form ab where « € A and b € B. This
is due to the nature of the two sets 4 and B.

(iii) If a; € A; is adjacent to a; € A; then eitheri = jor fi—j] = L.
This says that there are no “jumping edges,” and this is due to the
nature of the distance sets themselves.

(iv) Bach of < 4; > and < B; > are complete. For if a; and af
were nonadjacent vertices of A;, then < {v,a1,4],6} > would be an
induced claw, where b is any vertex in B;. Thus A; induces a complete

_graph, and, similarly, so does B;.

(v} Each vertex of A; and B is adjacent to v. Also, given a vertex
a; € A;(i > 1), we see that a; must be adjacent to at least one vertex
in A;_;. Also, a; may or may not be adjacent to a vertex in Ay I a;
is adjacent to a vertex in A; 1, we will call ¢; a continuer. Otherwise

we will call a; a noncontinuer. The terms have similar meanings on
the B side.

3 The Distance Sets

¥t was noted earlier that A; and B; both induce complete subgraphs.
In this section we will consider the other distance sets in the context of
the various possibilities for the values of n and m. We assume without
loss of generality that n > m. We also note that Propositions 1,2, and
4 are true without the assumption that G is Ryjicek—closed.




Proposition 1 Ifn+m > 5 then each A; and Bj induces a complete
subgraph.

Proof:
Case 1: Suppose m = 1 (and thus n > 4).

We first claim that each of Az, Ay, ..., A, induces a complete sub-
graph. Suppose not, and let k be the least integer greater than or equal
to 3 such that < Ax > is not complete. Suppose that a; and o} are
nonadjacent vertices of A¢. If ax and a have a common neighbor in
Ag_1, 53y ax_1, then < {ag_1, Gk, €}, ap-2} > is an induced claw where
ak—3 € Na,_,(ag_1). Thus ax and o can have no common neighbors
in Ak__]_.

From a previous note we know that ag,a), must each have at least
one neighbor in Ay ;. Let 5k_1,a;c_1 € Ag_1 be neighbors of ai,a}
respectively.

Suppose that ap_j and af_; are adjacent, and let ax_5 € Ap.o
be a neighbor of a;_;- Since < {ax—1,0k,@}_;,@k-2} > is a potential
claw, the edge a;_sa}_; must be present. But then if ap_3 € Ag_3 is
a neighbor of ¢xz, and ag—4 € A4 is 2 neighbor of ax..3, we have an
induced Na: < {ag,a%,Gk—1,8%_1,%k—2,Ck—3, ax-4} > (see Figure 3).

43 a4y 4
& |
A s A

Figure 3:

Therefore it cannot be that ag.; and a}_, are adjacent. Thus
it must be that k£ = 3 (and ap,d5 are not adjacent). The vertices
a; and @) must then have distinct neighbors in A;, say a and a
respectively. But then if b is any vertex of By, we have an induced Na:
< {a3,a2,d5,01,01,v,b} >. Therefore it must be that Az, A4q,--..,An
each induce complete subgraphs.
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Now consider A;. Suppose that a3 and a) are nonadjacent vertices
in A2. If @2 is a continuer (say a3 € A; is adjacent to as), then
< {a3,02,05,a1,a1,v,b} > is a potential induced N,. Thus the edge
azah must be present. If a3 were a continuer (say to a4 € Ay, then
< {63,84,02,a5} > would be an induced claw, so a; must not be a
continuer. Since n > 4, we know that 43 must contain a continuer,
say af (see Figure 4).

If either as or a) were adjacent to &}, we would have an induced
N3 by our previous argument. So ¢} must be nonadjacent to both ay
and 5. But then < {a3,a},as,a5} > is an induced claw.

Therefore we can assume that neither a; nor o} is a continuer.
There must be a continuer in Az, 50 let one be aff, and let a3 € N 45 (ah).
If either of @ or a; were nonadjacent to the continuer a4, we would
have an induced Nz by the previous argument. Thus both a; and o)
are adjacent to aj. But then < {a§,as,a},03} > is an induced claw.
‘Thus, having reached contradictions in all cases, we can conclude that
a; must be adjacent to a5, and hence that < 4 > is complete.

This concludes the argument for this case.

Case 2: Suppose that m > 2 (and thus n > 3).

We first show that each of A, Aa,..., A, induce complete sub-
graphs. Suppose not, and let & be the least integer such that < A; >
is not complete (clearly k > 2). Let a; and a be nonadjacent ver-
tices in A;. Again, they must have distinct neighbors in Ap_q, or

else we would have an induced claw. Let ax_y, @;_1 € Ap_1 be neigh- .

bors of ag,a}, respectively. Let ax_s € Az_» be a neighbor of ag_;.
Since G is claw-free, it must also be that a;_s is a neighbor of aj,_;.
Let ap_3 € NAk—a(a’k—2) and ag..4 € NAk_4(ak._3). Then we see that




< {ak,ak,8k—1,Q%_1, k-2, Ck—3,Gk—¢} > is an induced N7, a contra-
diction. Therefore it must be that each of Aj, A3,..., A, induces a
complete subgraph. By a similar argument, we can conclude that each
of Bsg,..., By induces a complete subgraph.

This concludes Case 2, and also the proof of the proposition. «

The next three propostions concern the structure of the distance
sets in the case where n +m < 4.

Proposition 2 If n+m < 4 eand n = m, then each A; and B; induces
a complete subgraph.

Proof: Clearly the only possibilitiesare n =m = land n=m =
2. The result has been established already for n = m = 1, and so
we assume that n = m = 2. Suppose ay and ) are nonadjacent
vertices of Ay. Let a;,a] € A; be neighbors of as,al, respectively.
Let b, be a vertex of By, and let b) € B) be a neighbor of by. Then
< {as,d},a1,4},v,b1,b2} > is an induced Na, which is a contradiction.
Thus < As > must be complete, and similarly, so must < By >. ]

Proposition 3 If n = 2 end m = 1, then the vertices of Ay can be
partitioned into sets AL, AZ, ..., A} such that

(i) there exist p distinct vertices in Ay, say ai, ..., a] such that for
‘each i, N4, (z) = {a}} for each = € A;

(i) < AL > is complete for each i.

Proof: Consider a vertex as € As. Clearly it has a neighbor in A4;, say
ay. If &} (5 ai1) is also a neighbor of a3 in A, then as,4a1, and v are in
the same connected corponent of N{a}). Since G is Ryjidek-closed,
this implies that as is adjacent to v, which is a contradiction. Thus,
as has exactly one neighbor in A;.

Letting a},a},...,ajf be the continuers in A;, we can partition the
vertices in A, into the p sets A},..., AD where AL = {z € 4; : zd} €
E(G)}. _

Now for an arbitrary i, let z,y be vertices of A%. i z and y are
nonadjacent, then < {a},z,y,v} > would be an induced claw. Thus
< AL > must be complete. '
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The following lemma is a straight{forward corollary to a theorem of
Chvatal and Erdds {1}.

Lemma 1 If the independence number of a graph G is 2, the_zn G_ is
either the union of two complete grephs, or it contains e hamiltonien

path.

Proposition 4 If n = 3 and m = 1, then < A3 > is complele, anfi
< Ay > ts either a complete subgraph, two complete subgraphs, or it
contains a spanning path.

Proof: Suppose < Az > is not complete, and let a3,af € A3 be
nonadjacent. Since G is claw-free, it must be that these two ’ver-
tices have distinct neighbors in A;. Let a; € Ng,(az) and @) €
Na,(a5). Also let a1 € Na,(e2) and b € By. If azal € E(G). then
< {a3,04, ¢2,085,a1,v,b} > is an induced Nz’. a oontra.dlf:tlon. So, sup-
pose that agah € FE(G). Since G is claw-free, az and o) da no-t sha'xe
a néighbor in A4, so let @] € Ny, (a5). G being claw-freff aIso.lmphes
that aze & E(G). But then < {a3,a2,a1,a},a5,v,b} > is an induced
N3, also a contradiction. Thus < A3 > must be complete.

Now consider < As >. Suppose that the independence number
of < Ay > is greater than 2. Then there must exist three vertices
-a3,dh,a € Az that are mutually nonadjacent. As can be seen fro_m
earlier arguments, no two of these vertices can share a neighbor in
Ay, so let aj,a},af € A; be distinct neighbors of ag,db,af, respec-
tively. Suppose that a; is a continuer, and say that a3 € N, A{(az).
If a3 is adjacent to both &) and of, then < {as,az,05,a5} > is an
induced claw. Thus a3 must be nonadjacent to at least one of af
and af. Suppose, without loss, that a3 is nonadjaoefxt to a5. Then
< {as,a2,05,01,0,v,b} > is an induced Ny where b is any vertex of

B,. Thus as cannot be a continuer, and, similarly, peither can ab or
1

T2 .
As must contain at least one continuer, though, so let one be af,
I

and let af' € N4, (af’) (see Figure 5). Since af' is a continuer, it
must be adjacent to at least two of ag,ah,a] {or else the previous
contradiction would be obtained). Say that af' is adjacent to az a.nd al.
Then < {af’, a2,a5,a5'} > is an induced claw, which is a contradiction.

Therefore the independence number of < A; > is at most 2. From
the lemma, we see that < A, > is either a complete subgraph, the

union of two complete subgraphs, or it contains a spanning path. &«




We conclude this section by summarizing our findings regarding
the distance sets. In the case where n = 2,m = 1, we found that
< Az > was composed of complete subgraphs, each one having a unique
neighbor in A;. In the case where n = 3,7 = 1, we found that < Ay >
was either a clique, two cliques, or traceable, and the other distance
sets all induced complete subgraphs. In all other cases we found that
each of the distance sets induced a complete subgraph.

4 'The Cut Set Vertices

We begin our discussion of the vertices of S with an observation. As
noted earlier, each vertex of § must be adjacent to something in A and
to something in B. Note that if s € S is adjacent to a; € A;and aj €
A;(i # 7), then it must be that {i—j] = 1. Otherwise, < {s,a:,a;,b} >
would be an induced claw, where b € Np(s). Therefore we can see that
each s € § is incident with at most two of the sets 4;, Az,..., Ay (and
by a similar argument, at most two of the sets By, ... +Bm)-

Divide the vertices of S into two sets as follows: let Sy be the
vertices of § which are adjacent to v, and let Sg be the vertices of S
which are not adjacent to v.

Proposition 5 The vertices of Sy, can be partitioned into two disjoint
sets, Sy4 and Syg, such that

(i) each vertez of Sy4 is adjacent to all of A; and none of By;

(i) each vertex of S,p is adjacent to all of B, and none of A;;
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Proof: First note that if s € 5, is adjacent to ¢; € A; and b; € Bj,then
at least one of i or 7 must be 1. Otherwise, < {s,a;,v, b;} >isan
induced claw. Furthermore, if both i and j equal 1, then we have
that a;, v, b; are all in the same connected component of N (s), which
implies (since G is Ryjicek closed) that e; is adjacent to b;, which is a
contradiction. Thus it must be that s is incident with exactly one of
Ay or B;. We can therefore split the vertices of S, into two disjoint
sets: let 5,4 be those vertices of S, which are incident with Az, and
let Syp be those vertices of S, which are incident with B;.

Now, let s be an arbitrary vertex of S, 4, and suppose it is adjacent
to a1 € A;- Let af be any other vertex of 4;. Since s, ay, and a} are
all in the same connected component of N(v), and since G is Ryjézek-
closed, it must be that s is adjacent to af. We see then that s must
be adjacent to all of A, and we can see (after similar arguments for
Syp) that properties (i) and (ii) in the statement of the proposition
are safisfied.

Let s and s be vertices of S,4. If a; is an arbitrary vertex of Ag,
then we see that s, ', and v are in the same connected component of
N(a1), so it must be that s and s’ are adjacent. We conclude then that
< Sp4 > is complete, and similarly that < S, > is complete, 1

Proposition 6 Forn >3, if s € S5 is nonadjacent to all vertices of
Ay U Ay, then s must be adjacent to a verter in An.

Proof: The proposition is trivial for n = 3, and thus we consider the
case where n > 4. Suppose that s is nonadjacent to all vertices in
AyUA3U A, Let k be the least positive integer such that s is incident
with Ay, and let a; € Ny, (s). Further, let ag-1 € Ng_ (ag). If §
is the least positive integer such that 5 is incident with Bj;, then let
bj € Np.(s) andlet b;_; € N B;_1(b5) (see Figure 6). It is possible that
bji1=v.
Case 1: Suppose that a is a continuer. If z is any vertex of Ny, ., (az),
then the edge sz must be present (otherwise < {ax,ax-1,5,2} > isan
induced claw). This also implies that k + 1 < n.

If o is adjacent to any continuer in Apt1, 52¥ @gy, and if gpyg €
N4, o(ks1), then < {ak+2,qk+1,ak,ak._l,s,bj,bj_l} > is an induced
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Ng, a contradiction. So suppose that ay is adjacent only to noncontin-
uers in Agy1, let apt1 € N4, (ax), and let a} ., bea continuer in Agyi.
Consider the graph < {ak+1,ajc+1,s,ak,ak_1,bj,bj_1} >. Since this is
a potential Na, it must be that the edge saj; is present. But then
s,a},y» and ag are all in the same connected component of N{ag41),
and this implies that a; is adjacent to the continuer aj ,,, which is a
contradiction to our assumption. Therefore, we can conclude that ax
cannot be a continuer.

[2] Faudree, R., Flandrin |
survey. Discrete Math

" 3] Ryjéiek, Z., On a clos
Theory Ser. B (to ap] .

[4] Shepkerd, F. B., Ha |
Theory Ser. B 53 (1¢ ‘.

Case 2: Suppose that a; is a noncontinuer. Let aj, be a continuer in Ag,
let ag41 € Na,,,(a}), and let ag_2 € Na,_,(ax—1). If saj, € E(G}, then
Case 1 applies with d} instead of ax. So assume that saj ¢ E(G). Now,
G being claw-free implies both that aja;—; € F(G) and that sari; 4
E(G). But then the subgraph < {ak11,0%, 0K, Qk—1,k—2,5, b5} >isan
induced N3, which is a contradiction.

Having reached contradictions in both cases, we see that it is not
possible for s € Sp to be simultageously nonadjacent to all of the
vertices in Aj, Ag, and Ag. ]

In summary of the results of this section, we recall that the vertices
in S which are adjacent to v can be partitioned into two subsets, each
of which induces a complete subgraph which is incident with exactly
one of A; and B;. The vertices of S which are not adjacent to v are
fairly limited as to the distance sets in A and B with which they can
be incident.
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