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Let G be a connected graph, where k& >2. S. Smith conjectured that every two
longest cycles of G have at least k vertices in common. In this note, we show that
every two longest cycles meet in at least ck*° vertices, where ¢ ~0.2615. © 1998

Academic Press

In this note, we provide a lower bound on the number of vertices in the
intersection of any two longest cycles in a k-connected graph (k> 2). This
work is inspired by the following conjecture due to Scott Smith; see [2, 6].

Conjecture 1. In a k-connected graph, two longest cycles meet in at
least k vertices.

According to Grotchel [ 6], the conjecture has been verified up to k= 10.
Theorem 1.2(a) of [6] showed the conjecture is true up to k =6. Further,
Grotchel and Nemhauser [ 7] studied the properties of two longest cycles
meeting in exactly 2 vertices in 2-connected graphs and Grotchel [ 6] studied
the properties of two longest cycles meeting in k vertices for k=3, 4, 5. For
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general k, S. Burr and T. Zamfirescu (private communication) mentioned
the following result.

THEOREM 1 (Burr and Zamfirescu). If G is a k-connected graph with
k=2, then every pair of different longest cycles meet in at least \//;—1
vertices.

The purpose of this paper is to improve the above result for large k as
follows.

THEOREM 2. If G is a k-connected graph, then any two different longest
cycles meet in at least ck®”® vertices, where ¢ =1/( /256 +3)%°x~0.2615.

The proof of Theorem 2 will be deferred until we present several lemmas.
We will generally follow the notation of Bondy and Murty [3]. All graphs
considered in this paper are simple graphs. For convenience we will use the
notation G< K, , to signify a bipartite graph in which one part has m
vertices and the other part has n vertices. Let X be a path or a cycle on a
graph. We will usually give an orientation to X. In this case, for any pair
of vertices u and ve V(X), we will use the notation X[u, v] to signify the
segment of X from u to v along the orientation (if such a segment exists).
The same segment with reversed orientation will be denoted by X[uv, u].

LemMa 1 (Hylton-Cavallius [8]). Let G= K, , be a bipartite graph.
Then G contains K, , as a subgraph if

eG)=(s—D""(n—t+1)n' "+ (t—-1)n

For the purpose of this paper, we will only need the following special
case of Lemma 1:

COROLLARY 1. Let GEK, ,. Then G contains K; ,s7 if
e(G) = /256 (n—2) n*>+2n.

The following classical Ramsey-type result is due to Erdés and Szekeres.

Lemma 2 (Erdés and Szekeres [5]). Every sequence of n>+1 real
numbers contains a monotone subsequence of length n+ 1.
The following result slightly generalizes Lemma 2.

LEMMA 3. Let X be a set of n permutations of a sequence of S of
22"+ 1 elements. Then there is a subsequence (a, b, c) of S on which each
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permutation g € X' is monotonic (that is, either a(a) <o(b) <a(c) or a(a) >

a(b)>a(c)).

Proof. We proceed by induction on n. The lemma is true for n=1 by
Lemma 2. Suppose it is true for n — 1, where n>2. Let 6 € 2. By Lemma 2,
there is a subsequence S’ of S of 22" + 1 elements on which ¢ is monotonic.
By induction, there is a subsequence (a, b, ¢) of S’ on which each permutation
in X — {0} is monotonic. ||

The following classical result due to Dirac will be also be used in the
proof.

LEMMA 4 (Dirac [4]). Let G be a 2-connected graph of minimum degree
0 on n vertices, where n = 3. Then G contains either a cycle of length at least
20 or a Hamiltonian cycle.

The Proof of Theorem 2. We will prove Theorem 2 by contradiction.
Let G be a k-connected graph which contains two longest cycles C and D
such that |V(C)n V(D)| <ck®®, where ¢=1/(/256+3)*>. Let V(C)n
V(D)=A={a,,a,,..,a,} where m<ck’ Let X,,X,,..,X, be the
segments of C— A (some of them may be empty) and let Y, Y5, ..., ¥,, be
the segments of D — A4 (some of them may be empty).

Since |A| < ck*®, G is not Hamiltonian. By Lemma 4, we have |V(G)| > 2k

and |V(C)| =|V(D)| = 2k. Thus,
X, uX,u---ulX,|=Y,uY,u. - UX,| =k

Since G is k-connected, G — A is (k —m)-connected and thus contains k —m
pairwise vertex-disjoint paths P,, P,, ..., P, _,, from X; uX, U --- UX,, to
YyuY,u .- UY,.Let 2={P, Ps, ..., P, _,}.

CrLamvm 1. There do not exist two paths P; and P; both of whose initial
vertices are in the same segment of C— A and both of whose end vertices are
in the same segment of D — A.

Proof. To the contrary, without loss of generality, we may assume that
P,=P,[u,,v,] and P,= P,[u,, v,] are two paths with u, and u, in X,
and v, and v, in Y,. Furthermore, we assume that C[u,,u,] =X, and
D[vy,v,] € Y,. Note that G contains two cycles

C*=Cluy, uy] Pi[uy,v,] D[vy, v,] }32[02, us]
and

D* = C[v,, vy] pl[vla u] Cluy, uy] Pylu,, vy]
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Then,
[V(CH)| + [V(D*)] = [V(O)| + V(D) +2(1V(Py)] — 1) + 2(] V(P5)| — 1)
> |V(O) + V(D)

a contradiction. |

We now construct an auxiliary graph H with vertex set { X, X, ..., X,,,,
Y,, Y,,.., Y,} and for each path P, €2 from X, to Y, we insert an edge
e, joining X; and Y, in H. By Claim 1, H contains no multiple edges. Thus,
H is a simple bipartite graph where each partite set has m vertices.

Note that H has at most m?> edges. Thus, k—m<m? which implies

that m > \/1;— 1. Theorem 1 is proved at this stage. The strategy for the
remainder of the proof of Theorem 2 is a refinement if this idea.

Since H<K,, ,, and H contains at least k —m > (/256 + 2) m*? edges,
by Corollary 1, H contains K; ,s; as a subgraph. Relabelling the segments
if necessary, we assume the vertices X, X5, X3, Y,, Y>, ..., Y55, induce a
K; 557 and let P; ;[u, ;, v, ,] denote the path from X, to Y, for 1 <i<3
and 1 <;<257 in 2.

We orient both cycles C and D. Beginning with vertex «,, the orientation
of C gives a linear order of V(C), that is, for any pair of vertices x; and
x, € V(C), we define x, <x, if x, € C[a,, x,]. Furthermore, if S and T are
two disjoint segments of C—{a,}, we define S< T if S lies between @, and
T along the orientation of C. We define analogous notation with respect to
the cycle D.

With the above definition, we lose no generality by assuming that
X, <X,<X;and Y, <Y, < .- <Y,5;. Along the orientation of C, the
257 vertices u; 1, U, 5, ..., U; »57 give a permutation o; of 1, 2, ..., 257 = 22 4+1
for each i=1,2,3. By Lemma 4, there are three integers a, b, ¢ from
{1,2,..,257} on which each permutation ¢, is monotonic, that is, either
o;(a)>a;(b)>0a,(c) or g,(a)<ac,(b)<a;(c) for each i=1,2, 3. Without
loss of generality, we may assume that a =1, b =2, ¢ = 3. By the Pigeonhole
Principle, we may assume that o,(1)>0c,(2) >0,(3) for i=1, 2. Thus, we
have

i, jo

Uy <up, <up 3 (1)

and

Uy | Uy, <Up 3 (2)

and either

Uz | <uz, <Usz 3 (3)
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or
Us 3 <uUz , <Uj ;. (4)

Recall that the end vertex of the path P, ;is v, ; for each path P, ;. We
may assume that v, ; <v, |, otherwise we reverse the roles of X; and X,.

CLAM 2. There are i and j with 1 <i< j<3 such that either

vy ;< Vs ; and vy, ; <Uy ; (5)
or

Uy < Uy and vy ;< Uy (6)

Note that the existence of a large K, ,, in the auxiliary graph H would
not be enough to provide statements of (5) and (6). This is the reason we
need the fact that H contains a K; ,5; in our proof.

Proof. Since v, | <v, ;, Claim 2 follows if either v, , <v, , orv, 3 <v, 3.
We assume that v, , <v, ; and v, 3 <, ;. Clearly, Claim 2 follows in this
case also. ||

By reversing the orientation of D if necessary, without loss of generality,
we assume that v, | <v, ; and v, , <v, ,. Then, G contains two cycles C*
and D* listed below:

Cc* =Pluy , vy, ] Dlvy 1,05 4] ‘_Pz,l[vz,u U 1]« C[”z,b Ul,z]
XPluy 5,01 2] D[V} 5, 055] ‘_Pz,z[vz,za Uy 2] Clvs 5, u;p 1]
and
D* = ‘_p[vl,u up 1] C[ul,lau2,l] Py [us 1,054] <_D‘_[UZ,13 ;2]
‘_F[Ul,zs “1,2] C[”l,z, ”2,2] Pz,z[uz,za Uz,z] D[Uz,m 171,1]~

However,

(V(CH+ VD*)| =1VO+ VD) +2 ) (NP )l —1)

I<i, j<2

> [V(C) + V(D)

which contradicts the assumption that both C and D are longest cycles
of G. |
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Applications

We shall now state an application of Theorem 2 to vertex-transitive
graphs. Babai [1] proved that every connected vertex-transitive graph
with at least four vertices contains a cycle of length greater than (3n)Y2
Following the (nice and simple) proof of Babai [ 1], we can conclude:

ProrosiTioN 1. If G is a vertex-transitive graph of order n such that
every two different longest cycles meet in at least f(k) vertices, then G
contains a cycle of length greater than ( f(k)n)"2.

Combining the above result and Theorem 2, we obtain the following:
THEOREM 3. If G is a k-connected vertex-transitive graph of order n, then
G contains a cycle of length greater than ck*'"°n'?, where ¢ ~0.2615.

Mader [9] and Watkins [ 10] proved that the connectivity of a connected
vertex-transitive d-regular graph is at least 3(d + 1). Note that vertex transitive
graphs are regular, hence we can conclude:

THEOREM 4. If G is a connected vertex-transitive graph of degree d, then
G contains a cycle of length at least cd*'°n'?, where ¢ ~0.2615.

Although the folklore belief of many is that all but a finite number of
connected vertex-transitive graphs are Hamiltonian, it seems that the lower
bounds on the circumference given above are the best known at present for
large d.
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