(6)

THE MIN-MAX SUPERGRAPH

GARY CHARTRAND-RONALD J. GOULD-S. F. KAPOOR*

Let the degree set (the set of degrees of the vertices) of a graph G be denoted by ϑ_G in which Δ and δ represent the maximum and minimum elements respectively. If S is a finite set of positive integers with $\Delta \in S \subseteq \vartheta_G$, then there exists a graph H with degree set S containing G as an induced subgraph. In the case where $S = \{\delta, \Delta\}$, necessary and sufficient conditions are presented for the order of H to be minimum.

It is well known (see [1], Chap. 1, for example) that for any graph G with maximum degree Δ there exists a Δ -regular graph H containing G as an induced subgraph. (The graph H is called a supergraph of G.) Furthermore, Erdös and Kelly [3] have found a necessary and sufficient set of conditions which determine the minimum order of such a graph H. In this article we generalize the first of these results and extend the second.

The degree set ϑ_G of a graph G is the set of degrees of the vertices of G. If $\vartheta_G = \{a_1, a_2, ..., a_n\}$, where $a_1 < a_2 < ... < a_n$, then $\delta(G) = \delta = a_1$ is the minimum degree of G and $\Delta(G) = \Delta = a_n$ is the maximum degree of G. As mentioned above, there exists a graph H with degree set $\{\Delta\}$ containing G as an induced subgraph. We first present a generalization of this result.

Theorem 1. Let G be a graph with degree set ϑ_G and maximum degree Δ and let S be a finite set of positive integers such that $\Delta \in S \subseteq \vartheta_G$. Then there exists a graph H with degree set S such that G is an induced subgraph of H.

Proof. First, observe that if $S = \vartheta_G$, then we may take H = G. We have already noted that the result is true if $S = \{\Delta\}$, so we henceforth assume that $2 \le |S| < |\vartheta_G|$. Let $\vartheta_G = \{a_1, a_2, ..., a_n\}$ with $\delta = a_1 < a_2 < ... < a_n = \Delta$, where $n \ge 3$. Define $G_0 = G$. For $i \ge 1$, define G_i to be that graph consisting of two disjoint copies of G_{i-1} together with those edges joining corresponding vertices, say with the same label v if $\deg_{G_{i-1}} v \notin S$. For each i = 1, 2, ..., n, define

$$k_i = \min \{ m \mid m \ge i, a_m \in S \}$$

and

$$k = \max \{a_{k_i} - a_i | i = 1, 2, ..., n\}.$$

^{*} Research partially supported by a Faculty Research Fellowship from Western Michigan University.

Then $H = G_k$ has degree set S and contains G as an induced subgraph.

In the case where $S = \{\Delta\}$ Erdös and Kelly described a method for determining the minimum order of the graph H mentioned in the statement of Theorem 1. We do the same thing if $S = \{\delta, \Delta\}$. Prior to presenting a set of conditions which give the minimum order of H in this case, we find it necessary to introduce some terminology.

Let G be a graph of order p and degree set $\vartheta_G = \{a_1, a_2, ..., a_n\}$. Let the vertex set V(G) of G be expressed as $V(G) = V_1 \cup V_2 \cup ... \cup V_n$, where for $1 \le i \le n$, $|V_i| = m_i \ge 1$ such that $v \in V_i$ implies that $\deg_G v = a_i$. Let $V^* = \bigcup_{i=2}^{n-1} V_i$ and let

 $\sigma = \sum_{v \in V^*} (\Delta - \deg_G v)$ denote the regular deficiency of G. Further, let H be a graph having degree set $\{\delta(G), \Delta(G)\}$ and containing G as an induced subgraph, and let I = V(H) - V(G) be the set of vertices that need to be added to G in order to obtain H. From the s = |I| vertices in H which are not in G, let s_1 have degree δ and $s_2 = s - s_1$ have degree Δ in H. Let j represent the number of vertices in V_1 that have degree Δ in H. Then $0 \le j \le m_1$, and $j = m_1$ forces s_1 to be at least one. Let $F = \langle I \rangle$ denote the subgraph of H induced by the set I. With k = |E(F)| denoting the size of F, we observe that $0 \le k \le s(s-1)/2$.

The graph H contains (m_1-j+s_1) vertices of degree δ and $(p-m_1+j+s_2)$ vertices of degree Δ . Hence

$$\delta(m_1 - j + s_1) + \Delta(p - m_1 + j + s_2)$$
 is even. (1)

We may observe that H = G in case $V^* = \emptyset$. Otherwise, if $u \in V_1$ and $\deg_H u = \Delta$, then $s \ge \Delta - \delta$; and, if $v \in V_2$ so that $\deg_G v = a_2$ and $\deg_H v = \Delta$, then $s \ge \Delta - a_2$. Thus,

$$s = s_1 + s_2 \geqslant \begin{cases} \Delta - a_2 & \text{if } j = 0\\ \Delta - \delta & \text{if } j \geqslant 1. \end{cases}$$
 (2)

We may count the number e of edges in H between the sets V(G) and I in two ways. The set V_1 has j vertices of degree Δ in H and the vertices in V^* result in the regular deficiency σ . Then $e = \sigma + j(\Delta - \delta)$. Moreover the graph F has size k, and the set I contains s_1 vertices of degree δ and s_2 vertices of degree Δ in H. So $e = \delta s_1 + \Delta s_2 - 2k$. Thus

$$\delta s_1 + \Delta s_2 - 2k = \sigma + j(\Delta - \delta). \tag{3}$$

We also observe that these e edges induce a bipartite graph on the set $V(G) \cup I$. It is possible to describe this more precisely, which we now do. Let $\mathcal{J}: f_1, f_2, ..., f_s$ denote the sequence of degrees of the vertices of F, where $\sum_{i=1}^{s} f_i = 2k$. For each permutation π on $\{1, 2, ..., s\}$, consider the sequence $\mathcal{G}_1: b_1, b_2, ..., b_s$, where

$$b_i = \begin{cases} \Delta - f_{\pi(i)} & \text{if } 1 \leq i \leq s_2 \\ \delta - f_{\pi(i)} & \text{if } s_2 < i \leq s_1 + s_2 \end{cases}$$

is nonnegative. Also consider the sequence \mathcal{S}_2 whose terms are $(\Delta - \deg_G v)$, where $v \in V^*$ if j = 0, and $1 \le j \le m_1$ implies that $v \in V^* \cup V_1(j)$, where $V_1(j)$ denotes a j-element subset of V_1 . Then \mathcal{S}_2 has $n = p - (m_1 + m_n) + j$ terms. Let us write this sequence as \mathcal{S}_2 : c_1 , c_2 , ..., c_n .

The pair of sequences $\mathcal{G}_1: b_1, b_2, ..., b_s$ and $\mathcal{G}_2: c_1, c_2, ..., c_n$ is called bigraphical (see [2]) if there exists a bipartite graph B with partite sets $U_1 = \{u_1, u_2, ..., u_s\}$ and $U_2 = \{w_1, w_2, ..., w_n\}$ such that $\deg_B u_i = b_i$, $1 \le i \le s$, and $\deg_B w_j = c_j$, $1 \le j \le n$. Necessary and sufficient conditions were obtained in [2] for a pair of sequences of nonnegative integers to be bigraphical. We state one such condition for later use.

Theorem 2. Let \mathcal{G}_1 : b_1 , b_2 , ..., b_n and \mathcal{G}_2 : c_1 , c_2 , ..., c_n be a pair of sequences of nonnegative integers with

$$b_1 \geqslant b_2 \geqslant \dots \geqslant b_s,$$

$$c_1 \geqslant c_2 \geqslant \dots \geqslant c_n,$$

and

$$\sum_{i=1}^{s} b_i = \sum_{j=1}^{n} c_j.$$

Then the pair of sequences $(\mathcal{G}_1; \mathcal{G}_2)$ is bigraphical if and only if the pair of sequences $(\mathcal{G}'_1; \mathcal{G}'_2)$ is bigraphical where

$$\mathcal{S}'_1: b_1-1, b_2-1, ..., b_{c_1}-1, b_{c_1+1}, ..., b_s$$

and .

$$\mathcal{G}'_2: c_2, c_3, ..., c_n$$

We can now state the following condition:

there exists a graphical sequence
$$\mathcal{J}$$
 for which some pair of sequences $(\mathcal{S}_1; \mathcal{S}_2)$ is bigraphical. (4)

We have now shown that the conditions (1)—(4) are necessary for a graph H of minimum order p+s (where $s=s_1+s_2$) to exist. These conditions also prove to be sufficient. In order to see this let G be a given graph with degree set $\vartheta_G = \{a_1, a_2, \ldots, a_n\}$, where $\delta = a_1 < a_2 < \ldots < a_n = \Delta$ and $n \ge 2$, and let $s = s_1 + s_2$ (where s_1, s_2 are nonnegative integers) be the least positive integer for which there exist integers j and k, $0 \le j \le m_1$ and $0 \le k \le s(s-1)/2$ such that (1)—(4) are satisfied. By (4) there exists a graphical sequence \mathcal{J} : f_1, f_2, \ldots, f_s . Let F be a graph having degree sequence \mathcal{J} where, then, the size of F is k. Also by (4) some pair of sequences $(\mathcal{S}_1; \mathcal{S}_2)$ is bigraphical, so there exists a bipartite graph B with partite sets $U_1 = \{u_1, u_2, \ldots, u_s\}$ and $U_2 = \{w_1, w_2, \ldots, w_n\}$ such that $\deg_B u_i = b_i$, $1 \le i \le s$, and

 $\deg_B w_i = c_i$, $1 \le j \le n$. We now define a graph H by $V(H) = U_1 \cup V(G)$, where $U_1 = V(F)$, $U_2 = V^* \cup V_1(j)$ and $E(H) = E(B) \cup E(F) \cup E(G)$. Clearly G is an induced subgraph of H and $\vartheta_H = \{\delta, \Delta\}$. Thus, the following result has been verified.

Theorem 3. Let G be a graph with degree set $\vartheta_G = \{a_1, a_2, ..., a_n\}$, where $\delta = a_1 < a_2 < ... < a_n = \Delta$ and $n \ge 2$. Let H be a graph with degree set $\vartheta_H = \{\delta, \Delta\}$ containing G as an induced subgraph. A necessary and sufficient condition that p + s be the least possible order for H is that $s = s_1 + s_2$ is the least integer satisfying:

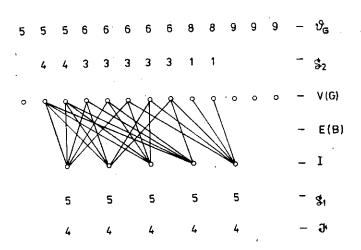
- (1) $\delta(m_1-j+s_1) + \Delta(p-m_1+j+s_2)$ is even,
- (2) $s = s_1 + s_2 \geqslant \begin{cases} \Delta a_2 & \text{if } j = 0 \\ \Delta \delta & \text{if } j \geqslant 1, \end{cases}$
- (3) $\delta s_1 + \Delta s_2 2k = \sigma + j(\Delta \delta)$, and
- (4) there exists a graphical sequence \mathcal{J} for which some pair of sequences $(\mathcal{G}_1; \mathcal{G}_2)$ is bigraphical.

We illustrate the procedure by an example. Let G be a graph with degree sequence

Here $\delta = 5$, $\Delta = 9$, $\sigma = 17$, $m_1 = 3$, p = 13 and $a_2 = 6$. By (1), $5(3 - j + s_1) + 9(13 - 3 + j + s_2)$ is even, and this implies that s_1 and s_2 have opposite parity and s is odd. Condition (2) implies that $s_1 + s_2 \ge 3$ if j = 0; and j = 1, 2 or 3 implies that $s_1 + s_2 \ge 5$, since $s = s_1 + s_2$ is odd and at least 4. Also, (3) states that $5s_1 + 9s_2 - 2k = 17 + 4j$.

Consider $s = s_1 + s_2 = 3$. Then j must be zero, and $0 \le k \le {3 \choose 2} = 3$. (i) If $s_1 = 0$ and $s_2 = 3$, then k = 5. (ii) If $s_1 = 1$ and $s_2 = 2$, then k = 3 and $F \cong K_3$. This implies that $\mathscr{I}: 2, 2, 2; \mathscr{I}_1: 7, 7, 3;$ and $\mathscr{I}_2: 3, 3, 3, 3, 3, 1, 1$. Here the conditions (1), (2) and (3) hold. Moreover the sequence \mathscr{I} is graphical. But a repeated application of Theorem 2 shows that the pair of sequences $(\mathscr{I}_1; \mathscr{I}_2)$ is not bigraphical. So (4) fails to hold. (iii) If $s_1 = 2$ and $s_2 = 1$, then k = 1 and $F \cong K_1 \cup K_2$. Hence $\mathscr{I}: 1, 1, 0; \mathscr{I}: 9, 4, 4$ or $\mathscr{I}_1: 8, 5, 4$; and $\mathscr{I}_2: 3, 3, 3, 3, 1, 1$. Once again we use Theorem 2 to observe that $(\mathscr{I}_1; \mathscr{I}_2)$ is not bigraphical. (iv) If $s_1 = 3$ and $s_2 = 0$, then k < 0. Thus, $s \geqslant 5$.

We consider $s_1 = 0$, $s_2 = 5$, j = 2. Then k = 10 and $F \cong K_5$. Now \mathcal{J} : 4, 4, 4, 4, 4; \mathcal{J}_1 : 5, 5, 5, 5; and \mathcal{J}_2 : 4, 4, 3, 3, 3, 3, 3, 1, 1. The pair $(\mathcal{J}_1; \mathcal{J}_2)$ is easily seen to be bigraphical (by Theorem 2). In the figure below we have shown the essential sequences and the graph B. (E(G)) and E(F) are not shown.) Clearly $\partial_H = \{5, 9\}$



REFERENCES

- [1] BEHZAD, M.—CHARTRAND, G.—LESNIAK-FOSTER, L.: Graphs and Digraphs. Prindle, Weber and Schmidt, Boston 1979.
- [2] CHARTRAND, G.—GOULD, R. J.—KAPOOR, S. F.: Bigraphical sequences, submitted for publication.
- [3] ERDÖS, P.—KELLY, P.: The minimal regular graph containing a given graph. A Seminar on Graph Theory (F. Harary Ed.) Holt, Rinehart and Winston, New York 1967, 65—69.

Received June 14, 1978

Gary Chartrand
San José State University
Ronald J. Gould
Western Michigan University
S. F. Kapoor
Western Michigan University

минимаксный надграф

Гары Чартрэнд-Роналд Дж. Гулд-Ц. Ф. Капур

Резюме

Пусть ϑ_G обозначает множество всех степеней вершин графа G, тах $\vartheta_G = \Delta$, тіп $\vartheta_G = \delta$. Если S — множество такое, что $\Delta \in S \subseteq \vartheta_G$, то существует граф H с множеством $\vartheta_H = S$, для которого G является порожденным подграфом. В случае $S = \{\delta, \Delta\}$ находится необходимое и достаточное условие для того, чтобы число вершин графа H было минимальным.