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Abstract

In this paper we consider the foundations and development of cne of the
most beautiful subareas of graph theory, classical extremal theory, sometimes
called Toran type exiremal theory. We concentrate on results dealing with
complete graphs {cliques). Particular results for exiremal numbers and exam-
ples of extremal graphs are presented, along with supersaturation results on
the number of copies of a complete graph contained in a given graph. These
results are sharpest for triangles. We also briefly consider ramsey perturbation
for cliques. Finally, we present a brief averview of the general theory of the
structure of extremal graphs.

1 Introduction

Extremal graph theory, in its mest general form, concerns any problem which at-
tempts to determine the relation between graph invariants {such as order, size or
- minjmum degree) and a graph properly (like being hamiltonian, containing a perfect
matching or containing a particular subgraph G1). Typically, given a graph property
P, an invariant ¢ and a class of graphs H, one tries to determine the least value m
such that every graph G in H with i(G) > m has property P.

We shall consider the question generally credited with starting extremal theory
and to the beginnings of the research that sprang from this guestion. This study is
rich in counting techniques and estimations. We shall use elementary results about
convex functions to obtain some bounds. Facts about this can be found in [31]. We
also assume & fundamental knowledge of graph theory and unless otherwise stated,
foliow the notation and terminology of {31]. We include proofs, where possible, for
completeness and to help the reader get a better understanding for the types of
techniques commonly used.

We shall limit our investigation to the particular type of extremal problem whose
mitiation is generally credited to Turdn [46]. As is often the case, Turdn was not
the first te ask a question of this type, but his work did provide the real impetus in
this area, In this problem, we ask the following: Given a graph (, determine the
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maximum number of edges ex(n; @) in a graph of order n that does not contain (7
as a subgraph. A graph E of order n with ex{n; () edges and not containing &7 as
a subgraph is called an eatremal graph for this problem, The complete solution of
any such extremal problem ordinarily requires two things. First, we must produce
an extremal graph on n vertices and ex{n; &) edges that does not contain 7 as a
subgraph. Second, we must show that any graph on n vertices and with at laast
ex(n; &) + 1 edges must contain a copy of G.

The investigation of this extremal problem naturally leads us to the study of the
structure of extremal graphs. A rather beautiful theory has been developed that
essentially tells us that the exact structure of the forbidden graphs themselves is not
really as important as their chromatic number,

2 Complete Subgraphs

Historically, the first real result in extremal graph theory seems to be due to Mantel
in 1907, Mantel [37] posed as an exercise, determining the maximum mumber of edges
in a graph without triangles, then aleng with several others [38], obtained a sclution
to the exercise. We present this result here, as it has a remarkably simple proof.

Theorem 1 If G has order n and contains no triangles, then |[E(G)] < [E;j

Proof: Suppose G is as described and namber the vertices of & from 1 to n. Assign
vertex ¢ a weight of w; > 0 such that 1%, w; = 1. Qur goal is to maximize

5= E witn;

{jEE(G)

(where the sum is taken over all edges in ). Suppose vertices u and v are not
adjacent in (. Let the neighbors of u have total weight z and let the neighbors of v
have total weight y, where we assume without loss of generality that z > y.

Since (w, + €)z + (wy, — €)y 2 wuT + wyy we do not decrease the value of S if we
shift some weight from the vertex v to the vertex u. It follows that S is maximal if all
the weight is concentrated on some complete subgraph of (3, in fact, on one edge. But
then § < ;1‘ (applying standard convexity). On the other hand, taking all w; = n~!

we see that § > n™?|E|. But then these two inequalities imply that |E| < %2. (i

b

We now furn to Turdn’s probler: What is the maximum number of edges ¢ in
a graph of order n that does not contain the complete graph K, p > 3?7 We begin
by producing the extremal graph for the Turdn problem, as this graph is easy to
describe. For the forbidden graph K .; (with chromatic number p 4+ 1), we begin
with the complete p-partite graph Koo nay.omp where n = Yo n;. It is easy to show that
among all such graphs, the one with the maximum number of edges is that graph
with partite sets as nearly equal as possible {convexity again). In fact, among all
graphs on n vertices with chromatic number p, it has the maximum number of edges.
Thus, if n = kp+r, 0 < r < p, then p —» of the partite sets contain k vertices and
the remaining r of the partite sets contain k 4 1 vertices. We denote this graph as
Top, and call it the Turdn graph. We further note .that



sl = 3) - o2

We are now ready to state Turdn’s theorem [46].

Theorem 2 Among the graphs of order n which do nol coniain K, there exists
exactly one with the mazimum number of edges, namely Tnp 1.

We will sketch two proofls to Turdn’s theorem, showing two common and useful
technigues in extremal theory. The first technique is called chopping and resembles
Turan’s original proof. The strategy is to chop off a useful subgraph and work around
this structure to complete the proof, carefully avoiding the chopped graph. For con-
venience and to maintain a notation common in extremal theory, we denote by G™ a
graph of order n.

Turan’s Chopping Proof: We proceed by induction on n, the order of the extremal
graph under construction. The anchor is trivial so assume the result holds for orders
less than n and suppose the extremal graph G* 15 K,—free. Since & is extremal, it
follows that H = K, ; is a subgraph of G™ and define ¢, ¢2, ¢z as follows:

¢z = no. of edges between H and V —H <{(n—-p+ 1(p—2)
g = |E(V — H)| < |E(Topr1p1)|

{the bound in the third expression follows from the inductive assumption ).
It is clear that |E{G™)| = gq: + g2 + g3, and by summing the bounds given on ¢y,
gz and g3 we see that
(G| < BT,

1t remains to show that if equality holds, then G* =T, , ;. Clearly, gz = (n—p+
[}{p—2). This determines a partition of V{G™) into p — 1 classes, defined according
to their p — 2 adjacencies in H. These classes are clearly independent, so G™ iz a
complete (p— 1) partite graph defined by these classes, that is, G =T}, , ;. [

The second proof technique, known as symmetrization, has become a powerful
tool in extremal theory. The process of symmetrization proceeds as follows: Given
nonadjacent vertices v and u, we delete all the edges incident to the vertex v and
make 1 adjacent to all vertices in V(v). The vertex u is then said to be symmetric to
v, First, it is clear that no K, is formed during this process, since only the vertices of
N{v) have new adjacencies and u and v are not adjacent. Thus, if a K, now exists,
it must have existed prior to symmetrization. Second, if deg u < deg v, then we
have increased the number of edges in the graph without producing the forbidden
K,. Clearly, under certain conditions, symmetrization can be useful in extremal
problems.



We now sketch a second proof of Turdn’s theorem, using symmetrization, due to

Zylov [48].

Sketch of Zykov’s Symmetrization Proof: We assume the anchor and inductive
steps have been performed and consider the extremal graph G which is K,-free. Let
v have maximum degree in G™ and symmetrize all of V — N(») to v. Let 5; denote
these vertices along with v, Clearly, 5 is an independent sef of vertices. Further,
since v had maximum degree, our new graph has at least as many edges as G*. Now,
repeat this process on G™ — 5, forming the set S3. Continue the procedure, forming
the sets S3,..., 54 As we noted earlier, since G™ was K,-Iree, this new graph formed
by symmetrization iz also Kp-free. (That is, d < p—1.) Thus, any K,-free graph can
be transformed into a d-partite (d < p — 1) graph. Further, to maximize the number
of edges in such a graph, standard convexity arguments {as noted before) imply that
the graph is actually T}, 4. O

We now state an extension of Turdn’s theorem due to Erdés [12] which can be
used to provide yet another proof of Turén’s theorem.

Theorem 3 Let G* be a Ky-free graph with degree sequence dy > dy > ... > d,.
Then there esists a (p— 1) chmmatzc graph 0™ which is K,-free with degrees s; >
S 2 ... 2 8p and such that s; > d; for every 1.

We continue our investigation of complete subgraphs with a theorem from Dirac
[4] that shows that we actually get more than & K, once we have more than the
extremal number of edges. To this end, we say that a graph H is seturated (in
particular, we say a graph H is G-satureted) if H does not contain (7 and if the
addition of any edge to X results in a graph that does contain . If H contains more
than ex(n, ) we say that H is supersaturaied. By an {n,¢)—graph G we mean that
G has order n and size q.

Theorem 4 Ifn > r+1, then cvery (n, ex(n, K, )+ 1)—graph G contains a K, —e.

Proof: We proceed by induction on n, the order of G. For n =r +1, it is clear that
having one more than the extremal number of edges forces G = K,4; — ¢, and so we
have the anchor step,

Now, we assume the result holds on all such graphs of order less than n and
consider an (n,ez(n; K,) + 1) graph G. Let z have minimum degree §(¢7). Then it
is easily seen that §(&) < 6(T,,-), and so |E{( — z)| > ez(n — 1; K,) + 1. Hence, by

induction we see that G — @ contains K,,; — e, and the result holds, O

For completeness, we now state the following corollary to Turdn's theorem due to
Zarankiewicz [47).

Corollary 5 If G* is K,-free, then

6(6'")5(1— ! )n:r_2n.

-1 r—1




With effort, one can improve upon the above corollary (see [2]); however, we shall
simply state this improvement. Here, x{(G™) is the chromatic number of G™.

Theorem 6 If x(G") > r and G" s K. -free, then

(3r — 7)
(3 — 4)

§(G™) <

3 Counting Triangles

We continue our investigation of complete subgraphs by concentrating on triangles.
Turdn’s theorem tells us when we can be sure one triangle exists, but our goal is to
establish bounds on the number of triangles that exist in general. In first attacking
this problem, we will find it useful to change our setting and sum the number of
triangles that must be contained in a graph and its complement. Let &.{G) equal
the number of copies of K, contained in the graph . Independent work of several
people, including Goodman [30], Moon and Moser [39] and Lovész [35] all lead to the

following result.

Theorem 7 Gliven an (n, ¢)—graph G with (n,q) complement G,

(g) —(n—2)q +§ (d.eg yi)
(1) - mmes £ (05

Proof: Consider the degree sequence of G. There are 3.1y (deg ”‘) pairs of adjacent
edges of G and 3%, ('9_1_;99 "‘) pairs of adjacent edges in G. The sum of these two

numbers can be counted in another way as well. Each of the triangles in (¥ and G
contains three pairs of adjacent edges, and each of the remaining

k3(G) + ka(G)

I1

1= (3) - ki©) - £@)
triples of vertices contains exactly one such pair. Hence,
Zn; (deg ”‘) +3 (” -1 ;deg ”") = 3ks(G) + 3ka(G) + L.
i- =1
Solving for our desired sum yields,

o= (5 ()5 (15 ())

i=1



But note that

*ofn—1—degu; *o(n—1—degv;)(n — 2 — deg vi)
> ) - %

2 s 2

B(057) -t mes (157))

Now, substituting and rearranging terms completes the resuit, O

=1

Corollary 8 The graphs G and G contain a fotal of af least ﬂ'—”:}%ﬂ triangles.

We note that this bound is attained i, and only if, G is 2 re,glﬂa,r In particular,
we musl have n = 26 4 1 and § must be even.

Yet another refinement of Corollary 8 due to Goodman [30] (see also Sauvé [42])
allows us to count the minimal number of triangles in a graph of order n and its
complement. In this case we obtain:

{
2(3) ifn =2l

%k(k )k 4 1) =4k f 1
%k(k + 1)tk — 1) ifn — 4k - 3.

Lorden [34] was able to show the following:

Theorem 9 Let G = G™ and supposc that G does not contain a triangle, then

o (9)- (1)

Clapharn [8] further specialized the problem of triangles in a graph and its com-
plement.

Theorem 10 Suppose G is self complementary (that is, isomorphic to its comple-
ment}), then ka(() is at least

%(k— 1)(2k—1) ifn =4k

or
g(k L)@+ 1) =4k 41,

and this inequalily is best possible.



Recently, Frdos [17] conjeciured that if the edges of a K, are 2-colored, then the
number of edge disjoint monochromatic triangles in a graph of sufficiently large order
nis at least 2. Jacobson [33] conjectured that if the edges of a K, are 2-colored, then
there are at least n?/20 edge disjoint monochromatic triangles in one of the colors.
Finally, Erdés and Gyarfas [20] conjecture that if 7 contains no triangles, then & will
contain at least ‘11—2 edge disjoint triangles.

Returning to the general problem of finding bounds on the number of triangles
present in a graph, Moon and Moser [39] obtained the following bound.

Thearem 11 An (n,q)—greph contains at leasi £ (4g —n?} triangles.

Proof: Suppose that wv € E. Then there are at least deg u + deg v — n vertices
adjacent to both v and v. Thus, we sec that

1
k(@)= - 3 (degu+degv—mn).
uve R
But since each deg v term appears deg u times in this sum, we have that
1
ka(G) = 2 ). deg® u —ng.
3 wEV

So by the Caunchy inequality,

ks(G) > % (—n—)j - nq) = 3%(% —n').

The next result is due to Rademacher (sec [24]) and extends Mantel’s Theorem.

Theorem 12 For every even n, a graph on n vertices with "72 + 1 edges contains at
least § iriangles. Furthermore, this result s best possible.

The graph K, n/2 + € shows that Rademacher’s Theorem is best possible, as it
contains exactly & triangles, each containing the edge e.

Our next result was originally conjectured by Nordhaus and Stewart [40]. The
result is due fo Bollobds [3].

Theorem 13 If G is a graph on n vertices and ”72 < |B(G) < % edges then G
contains al-least (4| E(G)| — n?) triangles.

The best lower bound for the number of triangles was proved by Fisher [29] who
gave an asymptotically sharp bound on the number of triangles ¢. That bound is off
from the optimal one only by a lower order term (in most cases}.

Theorem 14 For a graph on n vertices and q edges with 1‘; < g < %2 the number of
triangles 1 in G is

> 9gn — 2n® — 2(n? — SQ)S/Z.
- 27



Comparing these theorems over the range of possible values for ¢ we see that
Rademacher’s Theorem is most accurate for ¢ = Z- 4 | edges; the bounds of Moon

and Moser and of Bollobas are equal when g = ‘%2; finally, Moon and Moser’s Theoremn

vields the exact number of triangles when g = (';)
We complete this part of the discussion with a result due to Erdds {16]. We begin
with a sequence of lemmas.

Lemma 1 Every (n,ex(n—1, K3)+2)—graph G which contains an odd cycle, contains
a lriangle.

Proof. Let (7 be as described and let C': uy, ug, ..., ugsy: be the vertices of a shortest
odd cycle in ¢. We can assume that 3 < 28+ 1 < n. Now < ty,us,... a1 >
can have no other edges, for otherwise a shorter odd cycle would be formed. Let
Ui,V .. ,Un_zk—1 De the other vertices of G. Any v; (1 < ¢ < n—2k—1) can be
adjacent to af most two u; (1 £ 7 <2k + 1), for otherwise ar odd cycle shorter than
" would be formed. Finally, Turdn’s Theorem implies < vy,... , ¥y 31 > can have.
al most ex(n — 2k — 1, K3) edges. Thus, the number of edges in ¢ is at most

2k 4+142(n 2k~ 1) +ex(n~2k—1,K;) <ex(n—1,K3) +1,
contradicting our assumptions, [

Lemma 2 There exists o constant ¢ > 0 such that every (n,ex(n, K5) + 1) graph G
contains at least {eyn| iriangles having o common edge {(u,v).

Proof. Let T = {{uy, vy, w;}{1 < £ < r} be a maximal system of disioint triangles in
¢. Thus, in ( — T the remaining n — 3r vertices contain no triangles and therefore
have at most ex{n — 3r, K3) edges.
Denote by G(7) the graph obtained from & by deleting the first ¢ — 1 triangles of
T'. Further, let deg; u;, deg; v; and deg; w; be the degrees of w;, v; and w; in G{7).
We now show that for some i (I < i < r) we must have

deg; v + degi v; + degi wi > n(l 4+ 9¢) — 34, (1)

for if this failed to hoeld for any ¢, then the number of edges in G would be at most

r

Z{n{l + 9¢y) — 31} + ex(n — 3r, K3) < ex(n, Ky)

i=1
by a simple calculation for sufficiently small ¢;. But this contradicts the fact &
contains at least ex(n, K3} + 1 edges. Thus, (1) holds for say ¢ = 75. Then a simple
calculation shows that there are at least 3|cyn| vertices of G{ig) which are adjacent to
more than one of the vertices ug,, vi,, Wi,. Therefore, there are at least {eyn| vertices
adjacent to the same pair, which completes our proof. O

When k triangles share a commen edge we call such & graph a k-book (or a book
with k pages) and denote it B;. Note that Edwards ([10] unpublished but often cited)
showed that a graph of order n with ex(n, Ka) + 1 edges contains a Bye



Lemma 3 Let & > 0 be a fived number. Consider any (n,q)-graph G with ¢ >
ex(n, K3) — 3(1 — &), n > ng(8), which conteins ¢ triangle. Then G contains an
edge (1,v) and r = [egn] +1 (g3 = ca(8)) vertices w; (§=1,2,... ,7) so that all the
triangles (u,v,wy) (1 =1,2,...,7) are in G.

Proof. By assumption, & contains a triangle (u,v,w). Assume first that
deg u+ deg v + deg w > n{l + 9¢;) + 9. {(2)

Then the result follows from Lemma 2.
If (2} fails to hold, then G—u—v—w has n—3 vertices and at least ¢—n(1+9¢;)—9
edges. But if ¢z < 1%1 then for n > ng,

¢ —n{l+9¢s) — 9 > exln, K3) — 3(1 — &) —n(1+9c5) = 9 > ex(n — 3, Ks).

But then by Lemma 2, G — u— v — w conlains the desired configuration of triangies,
which completes the proof. O

We are finally ready to present our goal, & theorem due to Erdos [16].

Theorem 15 There exists a constant ¢ > 0 such thal; for n sufficiently large and
t < ein/2, if a graph G on n vertices contains ot least | 2| 4+t edges, then G contains
at least £| 2] iriangles.

Proof Suppose ( is as above and ¢ < e, 2. We first assume that after the omission of
any r = [e155 | edges, the graph still contains a triangle. (Note: ¢y = c3(6), for § = 1
in the last lemma.} For sufficiently small ¢1, 32 < %+ thus it will be permissible to
apply Lemma 3 during the omission of these edges.

By Lemma 3 {or Lemma 2) there exists an edge ¢; contained in [ean| 41 triangles
of G. Again by Lemma 3 in H; = (G — ey, there exists an edge e; confained in at
least {can] + 1 triangles of H;. Suppose we have already chosen the edges e1,... e,
each of which is contained in at least |cam| + 1 triangles. By our earlier assumption

H, =G — e — ... — ¢ contains at least one triangle. But then by Lemma 3 there
is an edge e,4y in H, which is contained in at least |can| + 1 triangles of H,. These
triangles incident on the edges e;,...,e,4y are clearly distinct, thus (7 contains at
least \
n n
(T‘ + 1)({6371_] -+ 1) o 61—2— > tg
triangles, which completes the proof 1n this case.
Therefore, we may assume that there are s < r < § edges er,e3,... ¢, so that
the graph H = ( —e; — es — ... — e, contains no triangles and we may assume s is

the smallest integer with this property. By the fact that s < r < %, H has
exin, Kz3)+t— s> ex(n, Ks) — % »er(n—1,K)+1
edges. Thus, by Lemma 1, H must contain only even cycles.

By Theorem 2 , s > t. Suppose s = {. Then H has ex(n, K3} edges and by Turdn’s
Theorem, H = T,4. Clearly, the addition of any edge creates at least |5} distinct



triangles. A simple argument shows that the addition of every further edge introduces
at least |£] triangles and that these triangles are distinct. Thus, f contains at least
t| %] triangles and our result is shown in this case as well.

Finally assume s = ¢ +w, 0 < w < & (since s < n/4). We also assame n is even,
say n = 2m. Now since H contains only even cycles, it is a subgraph of a bipartite

greph B whose vertices are say oq,...,0m—y and B1,... , Brru (since H has more
than ex(2m, K3) — £ edges, we have 0 < v < (m/2)!/2).

Clearly, every one of the edges e(,... ,e; join two of the ¢'s or two of the @’s, for
otherwise for some ¢;, the graph G — ey — ... —e;y — e — ... — €, would still have

only even cycles and hence no triangles, which confradicts the minimum property of
3.

By our assumption, /f is a subgraph of B. Assume f is obtained from B by the
omission of = edges. Then we clearly have

s=z+u'+i (orw=z+ud),

and & is obtained from H by adding s edges e;,...,e, which are all of the form
{o ) or (B, B,). Let & = {8, f:,) and let us estimate the number of triangles
{Bis, Piy, ) I B. Clearly, at most z of the edges {8, a;), (i, ;) are not in B
thus B + e; contains at least m — u — & triangles (if e; connects two a's, then B3 + ¢;
contains at least m + w — & triangles). For different e;’s these triangles are clearly
different; thus F = H 4+ e; 4 ... + e, contains at leasti

(m—u—a)s=(m—u—a)lz+u’+) = im=1(n/2)

triangles. The above follows by simple computation from s = w? + 1z +1¢ < m/2. The
above equation completes the proof in the n = 2m case. For n = 2m -+ 1 the proof is
almost identical and hence we omit it here. This completes our proof. O

This result has been improved by Lovédsz and Simonovits (see [4]) who showed
that the theorem holds for ¢; = 1.

Returning to the notion of books mentioned earlier, define

3
f(n,q) = min max {> deg v; : v1,va,v3 induces a triangle in G}
i=1

where the maximurm is taken over all {riangles in G and the minimum is taken over all
graphs of order n and size ¢. Turan’s Theorem tells us that f(n,¢) = 0if ¢ < n?/4.
Clearly, f{r,q) > 0 when ¢ > n*/4. Bollobés and Erdds (see [11]) raised the problem
of determining f{n, g) for ¢ > n?/4.

As mentioned earlier, Fdwards [10} and [11] proved that f(n,q) = 6” forg > %

For the situation that —;— < g < %, a construction in [23] shows tha.t fln,q) <
4\/3¢ — 2n+ 5. G. Fan [27] proved that f(r,q) > 2. In particular he showed that
F(n,ex{n, K3) +1)) > 2=, which improves upon a result of Erdos and Laskar [23] .
When ¢ > .26n?, Fan obtained a slightly stronger result as well.

For generalized books, Faudree [28] showed that if @ is a graph on n vertices with

n > ﬂkf—u and ¢ > |E(Ty )|, then G contains a complete graph K} such that the



sum of the degrecs of the vertices is at least % Tlus result is sharp in an asymptotic
sense In that the sum of the degrees of the vertices of a K} is not larger in general,

and if the number of edges In & is at most
|E(Tuk)| — en

(for an appropriate €), then the conclusion fails to hold.

We conclude this section with a new result concerning triangles that share a vertex.
A graph on 2k + 1 vertices consisting of k triangles which intersect in exactly one
comnmon vertex is called a k-fan and is denoted by Fi. We wish to determine ex(rn, Fy)
for every fixed k. This result was recently provided in [18].

Theorem 16 For every k > 1, and for every n > 50k*, if a graph & on n vertices
has more then

n? Kk ik is odd,
I*?j + { k= %k if k is even 3)

edges, then (7 contains a copy of a k-fan. Furihermore, the number of edges is best
possible.

To prove the lower bound for ex(n, F}), consider the following graph G, . For odd
k (where n > 4k — 1) (.1 is constructed by taking 7, 5, the complete equi-bipartite
graph and embedding two vertex disjoint copies of K in one side.

For even k (where now n > 4k — 3) G, is constructed by taking 7., and embed-
ding a graph with 2k — 1 vertices, £* — (3/2}k edges with maximum degree k — 1 in
one side. :

Obviously, ex(n, Fy) = (:) for 1 < n < 2k, and it is easy to check that ex{2k +
1, £}) = 2k* — 1 (if k = 2), which is smaller than (3) for odd k and larger than 3 for
even k (k > 4).

However, in [18] it 1s conjectured that (3) gives ex(n, Fi) for all n > 4k (rather
than n > 50%%).

One final note about Theorem 16. If ¥() is the edge independence number of
& and A(G) is the maximum degree in &, define fiv,A) = max{|E(GF)| : v(G) <
v, A(G) < A}, Chvétal and Hanson [7] proved that for every v > t and A > 1,

flwv, Ay =vA+ {%J l.—rh—zf]»ﬁJ <vA 4 {4)

Theorem 16 uses the following special case proved by Abbott, Hanson and Sauer 1]

k2 — 3k if kis even,

f(kwl,k—l):{kz_i if k is odd. ®)

The extremal graphs are exactly those we embedded into T}, ; to obtain the extremal
Iiyfree graph Gp .



4 Arbitrary Cliques

We now turn to the problem of larger cliques. It is a simple observation that for s < p

()

What can we say in general about the number of cliques of order s contained in an
arbitrary G"?

We begin with a result of Erdos and Hanani [13} that estimates the maximal
number of complete subgraphs of order r contained in a graph of order n and size
g. This problem is quite different in nature than those we have been considering,
especially in view of the fact that the maximum does not depend on n.

Theorem 17 Let v and g be natural numbers, r > 3. Let g = (;) +i,0<t<s.
Then,

max{h(G) [ 5@ =0 = () +( L)

r—1

Proof: Let G be obtained from K, by joining a new vertex to f of the vertices. Then
(7 has size ¢ and k(&) = (:) 4 (ril). Thus, the maximum is at least as large as
claimed.

To see the reverse inequality, we proceed by induction ¢. Note that for ¢ < {;)

the result is trivial. Assume now that ¢ > (;) (sa s > r) and the result holds for all

smaller values of g. Let (7 be a graph of size ¢. Without loss of generality we may
suppose that ¢ has no isolated vertices. Now suppose that G has a vertex a with
deg ¢ = d < s. Then there are at most (:1) Kls containing @. If ¢ < ¢ then by
applying the induction hypothesis to G — & we see that

k(G) < (rfl) + k(G- 2) < (Tfl) + () * (#:T) B () * (rjl)'

Similarly, if ¢t < d < s we have

o[£ ) (7 (759 (1)

Thus, we may suppose that every graph G has minimum degree at least s. There-
fore the order n and size q of (7 satisly

n>s+1
and 1
q > §S(S+1)'

But then from ¢ < (”42'1) we see that G = K,y,,t = s and so

b= (1) =)+ (2

Returning to our question on supersaturated graphs, the next result is from [36].



Theorem 18 Ift is defined by |E(G)| = (1 — L)n®, then G™ contains af least
1 n)”
pJ At

Note that the complete ¢-partite graph K(yim (t sets of m vertices) shows that
this result is sharp.

Our next result, again due to Lovdsz and Simonovits [36], deals with the stability
of the extremal graph T, ,. Roughly speaking this result says that il the size of G*
exceeds the extremal number by ¢, then either the structure of G" is very regular and
similar to T, ,—1 or else the structure is unusual and so many copies of K, are present.

copies of K,.

Theorem 19 For every ¢ > 0, there ewists § > 0 and ¢ > 0 such thal, if { is defined
byg= [B(G") = J(1- 1%, if d = [t], and if g = [E(Tag) -+ for some k € [0, 07,
then either G* contains at least

()Y -

copies of K., or it can be oblained from T, 4 by changing at most 'k edges.

Finally we turn to a general bound provided by Bollobds [3, 4]. For2 <p<r < n,
let k(kp = z) = min{k(G) | k(G) 2 2}. We wish to estimate k(&7 > z). First
note that since & (G™) = |E(G™)|, then &, (k7 > z) is our standard extremal problem.
We state here a slightly weaker form of the result, but one more appropriate to our
investigation.

Theorem 20 Let ¥{z) = ¢(p,r,z,n) be the mazimal conver function defined in
0<z< ( ) such that

w(@)p (;)) 2(%)’@ s—1,2,..

b (k) 2 2) 2 ¢(2).

Then

Turning to the investigation of the set of complete graphs contained in = graph, .
we ask the following: At least how many edge disjoint Kz are centained in every G*
of size ¢7 The bound we give here is rough, but does extend Turan’s Theorem. This
result was shown by Frdos, Goodman and Pésa [19] for r = 3 and by Bollobds [3] for
r > 4.

Theorem 21 Let r > 3. Every G™ can be covered with at most |E(Ty,.1)| edge
disjoint K]s and edges. If r > 3, then T, ,_y is the only graph that cannot be covered

with fewer edge disjoint K's and edges. For r = 3 the extremal graphs are Ky, K
and T0, (n=1,2,..).



Recall that G is K, -saturated if ¢ does not contain K, but the addition of any
edges to (7 results in a graph that does contain K,. We can extend this definition by
saying G is strongly K, saturated if k. (G) < &.{G*) whenever G* is obtained from &
by the addition of an edge.

Turan’s Theorem tells us the maximal size of a K,-saturated graph. Erdos, Hajnal
and Moon [21] determined the minimal size of a strongly K, -saturated graph of order
n.

Theorem 22 The minimal size of @ strongly K, -saturated (v > 3) graph of order n
is

(r—2)(nwﬂr‘+2)+(r;2).

The K. -saturated graph G* = K, 5+ {n—r + 2)K; is the only strongly K. -saturated
graph of erder n and minimal size.

Finally, a complete generalization of Theorem 16 on k-fans is not known. However,
we can say a little. The following result was conjectured by Busolini [6] {see [4}).

Theorem 23 Let r 2 3. If n is sufficiently large, then every G" of size at least
| E{Trr1)] + 2 contains @ Ky + 2K,y (that is, two complete graphs of order v with
ezactly one vertex in common).

The following extension takes on a different form yet again.

Theorem 24 Leir > 3 and k = 1 be naturael numbers. If n is sufficiently large then
every G™ of size at least

|E(Tnr-1)] + R

contains k complete graphs of order r, say Hy, ..., Hy such that US| H; is connected
and any two Hs have at most one vertez in common,

We conclude this section with a powerful result due to Hajnal and Szemerédi [32}.
This result is usually thought of in terms of graph coloring. Essentially it states that
if the maximum degree A of the graph is not too large, then we can A 4 1 color the
graph and obtain color classes as balanced as possible. Another way of stating this
is:

Theorem 25 If G is a graph of order n with A(G) < {, then G C T 4.

This result was originally conjectured by Erdos. Clearly, for our purposes, this
says that G must contain s/, ,;, where n = s+ 1)+



5 Ties to Ramsey Theory

When one considers the structure of the Turdn graph and its overall importance to
our standard extremal question, a natural variation comes to mind. This variation,
called Ramsey perturbation, brings Ramsey Theory into play. For example, Erdos
f13] showed the following:

Theorem 26 If G* (n = 3k) coniains no { independent vertices, then (G contuins at
least d(g) triangles.

One critical feature of the Turdn graph T),,, is that it contains large independent
sets. Conditions like those imposed in Theorem 26 take this property away. Here we
congider what happens under this type exclusion,

We denote by ex{n, H, ) the maximum number of edges in a graph G™ containing
no H and at most f(n) independent vertices. OQur interest again centers on forbidding
cliques of order p+1 and when T, , is the only extremal graph. Clearly, if f (n) = [ﬁ ,
we are back to Turdn’s Theorem. On the other hand, if f{r) is a constant or f{n)
tends to infinity very slowly, then Ramsey’s Theorem implies the set of possible
forbidden subgraphs will be empty, that is, in avoiding large independent sets, we
will force whatever graph we wish to exclude to actually be present. This raises
several interesting questions.

Can we determine whether ex(n, K;, f) is significantly smaller than ez(n, K,)
when f(n) = [;%] —cn?

This question was answered affirmatively by Frdds and 56s [25].

Theorem 27 For every ¢ > 0, there exists ¢ > 0 such that
ex{n, Ky, f) < ex(n, K,) - ¢'n®,

If we vary the problem by allowing f(n} = o{n) the question becomes much harder.
In fact, there is a difference between the odd and even cases, Again Frdds and Sés ||
handled the general odd case.

Theorem 28 There is a constant ¢ > 0 sueh that if g(n) = ey/nlogn and g(n) <
f(n) = o(n), then

ex{n, K1) ex{n, Karq1,9)
ex(n, Korpa, f)

ex(n, K1) + o{r?)
1 n

The even case is harder. It was originally shown for K4 by Szemeredi [45] and the
lower bound was established by Botlobas and Erdds [5]. The result is from [22]

Theorem 29

IA A IA

ex{n, Ko, o(n)) = ! (Sk -5

i 2 2
=3 Skﬁ2)n + o)



6 On the Structure of Extremal Graphs

In this section we begin an investigation of the structure of extremal graphs. After
determining the extremal values of various forbidden graphs, it is natural to try to
gain further information about the extremal graphs themselves. It s not surprising
that a greal deal can be said and that this information opens still other avenues of
investigation. It should be noted that there is a fundamental difference between ex-
tremal problems in which one of the forbidden graphs is bipartite (called a degenerute
eriremal problem), and one where none of the graphs is bipartite, The reasons for
this will becamme more apparent as we progress. For now, simply note that in the
degenerate case ex{n, H) = o(n*), while in the nondegenerate case,

n?

ex(n, H) > [4 ]

The foundation for this section is primarily the work of Erdds and Stone [26].
Our goal is to show that for a class of graphs H, the extremal number cz(n; H)
depends only loosely on the graphs in [7. That is, the exact structure of the forbidden
subgraphs is not the critical issue, but rather the dominant feature is the minimum
chromatic number of a graph in the class H. In what follows we use the notation
Ky to mean the complete s-partite graph with  vertices in each partite set. We
begin with two beautiful results from Erdos and Stone [26].

Theorem 30 Let ¢ > 0 and k,t > 1 be given. Then, for n sufficiently large, every
graph of order n and with § > (1 — 1 + €)n contains K1y

Proof. (By induction on #). For k = 1, the statement claims that é > en and,
hence, (7 has at least £n® edges, That G contains a Ky, follows from Corollary 5 and
Theorem 10.2.5.

Now let £ > 2 and s = |2i|. If n is sufficiently large, then by our induction
assumption, we can find a Ky, in G Tel ¥ = V(@) — Kqy(e) and let X be those
vertices of ¥ that are adjacent to at least ¢ verlices in each of the partite sets of the
Kx)(s)- Then the number of missing edges between ¥ — X and Ky(s) 1s at least

(F1=1XD(s ~ 8 2 (¥ = |XD( = e)s = (n — ks = [X[}{1 = €)s.

Also, the number of edges missing from any vertex in Ky is at most (1 — ¢jn.
Thus, the number of edges missing from the vertices in Ky, 15 2t most

1
ks(E —-en = (1 — ke)an.
Thus, the preceding two inequalities imply that
in—ks — | X1 —€)s 2 (1 — ke)sn,

and solving we see that



Since £ > 2 and ¢ > {, we see that |X| grows large as n grows large. Then, il

X| > (;)k(tul)

we can select ¢ vertices that will form the final partite sel we desire. O

Theorem 31 Let G be a graph of order n with at least (1 7% + e)“?2 edges. Then for
n sufficiently large, G contains a Ky,

Proof. Remove a vertex of degree less than {1 —1/k + £}|V(G)] il any exist. Now,
in the graph thal remains, repeat this process and continue to repeat this process
as often as possible. Suppose that al some point in this process we are unable to
continue; that is, suppose we are left with a graph X in which all vertices have degree
af least ,
€
(15 DV
Let [V(H)| = N; then if N is sufficiently large, the result will follow from our last
theorem. Then, all that remains is for us to show that VN cannot be "too small.” That
is, we wish to show that & is bounded below by a function that grows as n grows,
In the construction of H, the number of edges we removed is at most

S0 = ((3) () ez

(- GDerira-m

The graph  has at most (‘;") edges, and, thus,

(1%%)(;‘) < IE(G)IS(I—%Jr%)((g) . (g))ﬂanH (g’)
6)<G-5) () +0-m

Hence, we see that N grows large if n grows large.

Finally, to see that the process of removing vertices of small degree must stop,
suppose that it does not stop and examine the sum on the number of edges removed
(as we did above). In this case we would have at most (1 — ¢ + %)“—2 edges in G, a

2
contradiction. Hence, the process must stop and the result is proved . O

The next result has been the goal of our work in this section. Tt tells us that the
forbidden subgraph’s structure is only somewhat responsible for the extremal number.
That is, the exact structure of the graph is not as important as the chromatic number.



The significance of the next resutt has lead to the following definition: Given a family
of graphs I, the subchromatic number is defined to be

V() = min{x(G): G € F} -1

The following resull of Erdés and Simonovits [24] is an easy consequence of the
Erdds - Stone Theorems.

Theorem 32 If F s a fumily of graphs with W(I") = p, then
ex(n, F) = (l — ﬁ) (g) + o(n?).

Proof. Since each (¢ € F is not p-colorable, we see that G is not a subgraph of T, ;.
Hence,

ex(n, F) > |E(To,)| = (1 _ i) ”; +0(n).

On the other hand, there is some (3 € F with x(Go) = p+ 1 and say |V (G} = m.
Now the Erdos - Stone Theorem asserts that

1Y {n
ex(n, Kipi1ym)) = (1 - ;) (2) + o).
Since (g is a subgraph of K(,11)(m), we have that

exn, F) < exln, Kprnem) < (1 - i + 0(1)) (’2‘)

The fellowing is an immediate corollary.

Corollary 33

R ex(n; &) i 1
W= 3 = 3 (l (G — 1)‘

The structure of extremal graphs is fairly stable, in the sense that graphs that
are nearly extremal (that is, do not contain the forbidden graph or graphs but have
nearly as many edges as the extremal graphs) have a structure that is close to that of
extremal graphs. That is, we need not make a great many changes in the edge set of
a nearly exiremal graph to obtain an extremal graph. This idea is expressed in our
next result, the combined efforts of Erdés [14] [15] and Simonovits [44].

Theorem 34 (The First Stability Theorem) Let I be a family of forbidden graphs
with subchromatic number p. For every ¢ > 0, there ezxists a § > 0 and en n, such
that of G™ is F'-free and if, for n > n,,

|E(G™)| > ex{n; F) — én?,

then G can be obtained from Ty, by changing at most en® edges.



The name "first stability theorem” clearly implies that there are others. These
results are beyond the scope of this paper, but the interested reader is advised to sce
[43] and [4].

Qur next theorem can he proven using the first stability theorem and is due to
the combined work of Erdds and Simonovits [14] [15] and [44].

For our next result we need the following idea. Consider a partition of the vertex
seb of G as say S1,...,5, and the p-partite graph K, _ . corresponding to this
partition of V(G"), where 5; = 15;|. An edge vw is called an extra edge if it is not in
sp but is in G (similarly, an edge is missing if it is in &, msp DU DOE in G7).
For a given p, the partition Si,...,5, is eptimael if the number of missing edges is
minimum. Finally, for a given vertex v, let §(v) denote the number of extra cdges at
v.

Theorem 35 (The Asymplotic Structure Theorem) Let F be a family of forbidden
subgraphs with W(F} = p. If ™ is any exiremal graph for F, then it can be oblained
from Ty, by deleting and adding at most o(n?) edges. Furthermore, if F is a finite
femily, then

8(S5™)

n

1
=1——4o0(l)
. (1)

Sketch of Proof. The first part of the theorem follows from Theorem 32 and the
First Stability Theorem,

For the second part, consider an optimal partition By, Ra,..., R, of V(5™) and
assume F; has minimum order. Then, |R;| < % and by the First Stahility Theorem

5 o) =

vER

If  denctes the maximum order of a graph in F, take r vertices vq,... ,v, with
1 b(;) minimum. Clearly for some ¢ > 0, |B| > cn. Thus,

34w < (g 3 )

vER;

Now apply symmetrization in a slightly modified form. For an arbitrary vertex v
in 5", delete all incident edges and join @ to all vertices adjacent to each of vy,... ,v,.
The resulting graph S* contains no member of F. Further, | E(S7)| < |E(S5™)|. Hence,

dogv 2 | (iey N(w3)| 2 | Uimy Byl — 3 b(w) > 1= = = o{n)
=1 P

and the result follows. O

We next present an easy but useful result on the behavior of ex(n; F').

Theorem 36 For every family F, ©=58E) i decreasing as n — oo .

2



Proof. For a fixed extremal graph H™, take all (7:) subgraphs of order n, say
Gi,... ,Gy. Bach edge of H™ isin ("72) of the (s and, thus,

(7= e < Siwaor < (71w,

i<t

But this implies that

We finish our study of the structure of extremal graphs by trying to determine
when the Turdn graph is the extremal graph for a family of graphs /. We will see that
T, p is fundamental to extremal graphs. Once again this result is due to Simonovits
[44].

Theorem 37 A family I has T, as an exiremal graph (for n sufficiently large) if,
and only if, some G € F kas an edge ¢ such that p = (G —e) = Y{F). Purthermore,
if Tnp is extremal for F' for infinitely many values of n, then it is the only cxiremal
graph (again, provided n is sufficiently large).
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