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Abstract

The k-spectrum s,{G) of a graph G is the set of all positive integers that occur as the size of an
induced k-vertex subgraph of G. In this paper we determine the minimum order and size of
a graph G with 5,(G) = {0, 1, ...,(%)} and consider the more general question of describing those
sets S < {0,1,...,(%)} such that S = 5,(G) for some graph G.

1. Introduction

In [2] it was shown that for every positive integer k there is an integer N(k)
such that every connected graph of order at least N(k) contains either a complete
graph of order k or an induced tree of order k. On the other hand, by Ramsey’s
theorem every graph of sufficiently large order contains either a complete graph
of order k or an independent set of k vertices. It follows, then, that every
connected graph of sufficiently large order contains either an induced subgraph of
order k and size (§) or two induced subgraphs of order k, one of size 0 and one of
size k — 1. In this paper we consider the set of sizes of all induced subgraphs of a
fixed order k in a graph G. In particular, we define the k-spectrum s,(G) of a graph
G by

si(G) = { j1 G contains an induced subgraph of order k and size j }.
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Thus 5,(G) < {0,1, ...,(%)}. Furthermore, from the remarks above we can say that if
G is a connected graph of sufficiently larger order then either (%)e s,(G) or
0,k — 1 € 5,(G). In Section 2 we establish two extremal results regarding graphs G for
which 5,(G) = {0,1,...,(%)}. In Section 3 we consider the more general problem of
describing those sets S < {0,1,...,(%)} such that S = s,(G) for some graph G.

2. Extremal results

If 5,(G) = {0, 1,...,(%5)} we will say that the graph G has a complete k-spectrum. In
Theorem 1 we determine the minimum order among all graphs with complete
k-spectra.

Theorem 1. The minimum number of vertices in a graph with a complete k-spectrum is
2k — 1.

Proof, If G is any graph with a complete k-spectrum then 0, (%) € 5,(G). Thus G con-
tains K, and K, as induced subgraphs. Since these subgraphs can have at most one
vertex in common it follows that G has order at least 2k — 1.

We complete the proof of describing a graph G(k) of order 2k — 1 that has
a complete k-spectrum. Let V(G(k)) = {w,,Wa, ..., Wi, X|,X2,...,X4—1}, Where
{wy, Wy, ..., wi}) is a complete subgraph of G(k) and ({x;,x2,...,X;_}) is an
empty subgraph of G(k). Furthermore, x;w; € E(G(k)) if and only if j > i. Then G(k)
has order 2k — 1 and clearly 0,(%) € s;(G(k)). In order to verify that G(k) has a com-
plete k-spectrum, let ¢ be any integer satisfying 0 <t < (4). We show that G(k)
contains an induced k-vertex subgraph of size t. Let £ be the largest integer for which
($)<tandletr =1t~ (%). Note that 0 < r < ¢ — 1. Then

<{W1,W2, s Wes Xp s X415 Xp 425 ---’xk—1}>

has order k and size (§)+r=1t [

The graph with a complete k-spectrum constructed in Theorem 1 has size

k k
<2>+(k—1)+(k—2)+---+1=2<2).

It is reasonable to ask if there is a graph with a complete k-spectrum and size less than
2(%). In Theorem 2 we determine the minimum size of a graph with a complete
k-spectrum. We will write H < G to mean that H is an induced subgraph of G.

Theorem 2. For k sufficiently large, the minimum number of edges in a graph with
a complete k-spectrum is

<§> + klog k — O(k log log k).
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Proof. We begin by constructing a graph S(k) that has a complete k-spectrum and

size
(’;) + k[ logk 1+ (“"g'q) — @k,

Let  V(S(k)) = {Wi,Wa,...oWi, X\, X2, s X 1ogk s Y15 V25 ---» Yk)» Where  degy; =0
(1 < i< k). Furthermore, {{wy,w,,...,w;}> and {{x;, X2, ..., X1ozx 7} ar€ complete
subgraphs of S(k). Finally, x;w; € E(S(k)) if and only if j > 2'~'. Then S(k) has size

(’2()+(r10§k1)+k|‘logk‘|_(20+2l + - +2|'logk‘|*l)

= (’;) + k[ logk ]+ (“og k 1) @k ),

We show, by induction on k, that S(k) has a complete k-spectrum. Certainly S(2)
has a complete 2-spectrum. Assume, for some k > 3, that S(k — 1) has a complete
(k — 1)-spectrum, and consider S(k). Since S(k — 1)<S(k) it follows that S(k) contains
induced (k — 1)-vertex subgraphs having sizes 0,1,...,(*3') and containing at most
k — 1 of the isolated vertices of S(k). Thus S(k) contains induced k-vertex subgraphs of
sizes 0,1,...,(*31). It remains to show that S(k) contains k-vertex subgraphs of size
(%) —ifor 0 < i< k~— 2. Since K, < S(k) we may assume i > 1.

For fixed i satisfying 1 < i<k — 2, let

i= b12° + b221 + -+ brlogkarlogk-l‘l

be the binary expansion of i, let J = {j|b; =1} and let m = max{j|jeJ}. Then
| <[logk <k Let V()= {x;ljeJ} v {w,ws...owi_s;}. Then [E(V(i))| =
(%) — i provided k — |J| = 2" 'L If{J|=1then k —|J|=k —1=2""1 If, on the
other hand, |J| > 2 then

k>i+2>20+21+...+2U|‘2+2m—1+2
=27 12T 42227 )

We complete the proof by showing that for k sufficiently large, every graph with
a complete k-spectrum has at least (%) + k log k — 2k log log k edges. Let G be such
a graph with S < V(G) such that |S| = k and {8 is complete.

Assume first that there exists §’ # S such that [S'| = k and |E({S'))| = (4) — k and
|S"— S| =¢ >logk. Then

|E(G)| = <1;> + (;) +fk—-¢)—k

The function f(£)= (%) + ¢k —¢* + k —[ klogk ] is nonnegative at £ =[log k ],
and it is an increasing function of £ for log k < # < k — 1. Therefore,

|E(G)| = (’;) + klog k — 2k,
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for k sufficiently large. Thus we may assume that if S #S and |S'|=k and
[E({S'>)| = (%) — k then |S' — S| < log k.

Let S, be the vertex set of an induced k-vertex subgraph of G of size (¥) — 1. Then
1S, —S|<logk Let v;eS, —S. Since |E(S,D)|=(%)—1 it follows that
degs,sv1 = (k — 1) — 1 = k — 2. Thus v, is adjacent to at least k — 2 — (logk — 1) =
k — (log k + 1) vertices of S. Let S, be the vertex set of an induced k-vertex subgraph
of G of size (%) — (log k + 2). Since every induced k-vertex subgraph of (S u {v,})
contains at least (%) — (logk + 1) edges, it follows that |S; —S —{v;}|>1.
Furthermore, since logk + 2 < k for k sufficiently large, |S, — S| < logk. Let
v,€8,—S—{v,}. Since |E(KS;))=(4)—(logk+2), it follows that
deg s, vy = (k — 1) — (log k + 2) = k — (log k + 3). Thus v, is adjacent to at least
k —(logk + 3)— (log k — 1) = k — (2 log k + 2) vertices of S. In general, suppose that
for some ¢ < | log(k/log k) | we have selected distinct vertices v,,v;,...,0,—; ¢ S such
that for 1 < i< ¢ — 1, the vertex v; is adjacent to at least k — (2°" ! logk +2' — i)
vertices of S. Observe that for i < / we have

27 logk + 21 — i < k/2 + k/log k < k,

for k sufficiently large. Every induced k-vertex subgraph of (S U {v;,v;,...,0,-})
contains at least

k - . £ —1
<2)—(;(2"‘logk+2'—i)+< ) ))

edges, i.e., at least

(;)—((2"‘—l)logk+2’——/—l)

edges. Let S, be the vertex set of an induced k-vertex subgraph of G of size

<§)—((2“‘ —logk +2/—¢)

Then |S, — S — {v;,v3,...,0,1}| = 1. Let v,€S, — S — {v1,0;,....,0,-1}. Then
degcs,, v, = (k — 1) — (27 - D logk + 2/ — ¢).
Furthermore, |S, — S| < log k and so v, is adjacent to at least
k—(@2 '—1)logk+2/—¢+1)—(logk — 1)
=k—@2'logk +2—¢)

vertices of S. Thus there exist distinct vertices vy,v;,....0,¢ S, where
¢ =| log(k/log k) |, such that v, is adjacent to at least k — (2'~ ! log k + 2° — i) vertices
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of Sfori=1,2,....Z. Therefore,

k

¢
) + ) (k=27 logk — 21+ i)

[E(G)| =

)
>(§>+i(k-2logk
2

—

—

k

5 + klog(k/log k) — (2 log k)(k/log k — 1)

k
><2)+klogk—2kloglogk. O

In [3] Erdés and Spencer defined the size spectrum s(G) of a graph G by
s(G) = {j| G has an induced subgraph of size j}.

Thus s(G) = {J}*" 5,(G). They showed that if M,, is the largest cardinality among the
size spectra of graphs of order n, then M, < (3) — O(n log log n). It follows from the
construction of the graph S(k) in Theorem 2 (by considering n = log (k + k) that
M,=(5)—nlogn.

Corollary 1. Let M, be the largest cardinality among the size spectra of graphs of
order n. Then

<;) —nlogn< M, < <;) — O(nlog log n).

3. Properties of k-spectra of graphs

For a fixed integer k, every graph of sufficiently large order n has at least one of
0 and (%) in its k-spectrum. This follows, of course, by choosing n to be at least as large
as the diagonal Ramsey number r(k,k). We will say that a set S of integers is
k-realizable if there is an integer N, such that for every n > N, there is a graph G of
order n for which s,(G) = §. Thus two necessary conditions for S to be k-realizable are
that S < {0,1,...,(%)} and that either 0 or (%) is in S. As a corollary of our next result
we determine a necessary condition for a set S < {0,1,...,(%)} containing both 0 and
(%) to be k-realizable.

For disjoint graphs G and H, let Gu H denote the graph with vertex set
V(G) v V(H) and edge set E(G) v E(H). By adding all edges to G U H between the
vertices of G and those of H we obtain the graph G + H.
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Theorem 3. Let I, denote the set of all integers that are in the k-spectrum of every graph
G of order n = r(k2* + 1,k2* 4 1) for which 0,(%) € 5,(G). Then

k k
I, = ( ﬂ Sk(Az(k))> N ( ﬂ Sk(A/(k)))
¢=0 =0

where

Apk) = (Ki + K;) U Ky,

Proof. We first observe that 4,(k) is an induced subgraph of (K,-, + K,) u K, _,, for
every n > 2k. Furthermore, s,(4,(k)) = s;(K,—x + K,) U K, _,). Similarly, 4,(k) is

an induced subgraph of (K, u K,) + K,_, for every n> 2k and si(A4,(k)) =

sil(Kn—x U K;) + Ky —). Since 0,(5) € s,(4,(k)) and 0, (%) € s(A,(k)) for 0 < £ < k, it
follows that if xel,, ie., if x is in the k-spectrum of every graph of order
n > r(k2¥ + 1,k2* + 1) that has 0 and (%) in its k-spectrum, then

k k
xe ( N Sk(Al(k))) N ( N Sk(Al(k)))'
¢=0 ¢

=0

K
x & ( N Sk(Al(k))> N ( N Sk(A/(k)))
¢ ¢=0

=0

We complete the proof by showing that if G is a graph of order
n > r(k2* + 1,k2* + 1) such that 0, (%) € 5,(G) then G contains either A,(k) or A,(k) as
an induced subgraph for some £ satisfying 0 < £ < k. Thus, either

sk(A.(k)) S su(G) or s(4,(k)) < su(G),

which implies

k k
< m Sk(A((k))> N ( ﬂ Sk(A/(k))> c L.

£=0 £=0
Since n = r(k2* + 1,k2* + 1), G contains either a complete graph of order k2* 4 1 or
an independent (k2* + 1)-set of vertices. Suppose first that G contains a complete
graph of order k2* + 1. Thus G contains disjoint sets 4 and B such that (4> = K,
and (B) = K,. Let §,,5,, ..., S« denote the distinct subsets of B and, for 1 < i < 2%,
let T; = {ve A|Ng(v) =S;}. Then UfLIT,- = A and, since |A| = k2%, it follows that
|T;| 2 k for some j. But then

A (k)<{T; U B),

where ¢ = |S;|. The case in which G contains an independent (k2* + 1)-set of vertices
follows from a symmetric argument.
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Corollary 2. If S is k-realizable and 0,(%) € S, then I, < S.

It 1s worth noting that s,(A4,(k)) and sk(m, are straightforward to calculate.
Thus, I, can be determined for small k.

By definition, {0,(4)} < I,. It is easy to check that for some values of k (k = 5, for
example), I, = {0,(%)}. In such a case, Corollary 2 gives no new information. The case
k = 5 follows from our next result.

Propositon 1. If k is an integer for which (k — 1) + k* is prime, then I, = {0,(%)}.

Proof. We first note that s (4, (k) ={(5)—(5): 1<b<k} and s (A k) =

{(5): 1 < a < k} for every positive integer k. Thus s,(A4,(k)) N s (A, (k)) — {0,(5)} #0
for some k if and only if there are integers 1 < a < k and 1 < b < k for which

k a b
= , 1
(2)-()-G) g
Setting n =2k — 1, x = 2a — 1 and y = 2b — 1, Eq. (1) becomes

n? 41 =x?+y% (2

Since every odd prime divisor of n* + 1 is of the form 4q + 1 (see [4, Theorem 3.1], for
example), it follows that the prime decomposition of n? + 1 is

t .
n+1=22]] pt, 3)
i=1
where p; = 1 (mod 4). It follows from Eq. (3) that Eq. (2) has precisely 4 [T:_ (¢ + 1)
ordered pairs (x, y) of integer solutions. Thus Eq. (2) has only the eight trivial solutions
(x,yy=(xn, £1)and (£ 1, +n) if and only if n?> + 1 = 2°p,. However,

n? 4+ 1=2(k — 1)? + k?),

where (k — 1)* + k? is odd. Thus Eq. (2) has only the eight trivial solutions if and only
if (k—1)> + k% is prime Therefore, if (k — 1) + k? is prime, then a = 3(x + 1) = 1
and b = %(y +1)= (n + 1) = k are the only integers 1 < a < b < k satisfying Eq. (1)
and, consequently, I, = s,(A4,(k)) N si( Ak(k) {0,5)}. O

From Proposition 1 we see that I, = {0,(%)} for k = 2,3,5,8,.... However, it is
unknown whether (k — 1)? + k? is prime for infinitely many k and, consequently, we
do not know if I, = {0,(4)} for infinitely many k. But it is worth noting that
Proposmon 1 does not give a necessary condition for I, = {0,(%)}. For example,

= {0,21} even though 6® + 7% = 85, which is not prime.

If I, # {0,(%)}, then Corollary 2 gives a nontrivial necessary condition for a set
S = {0,1,...,(5)} containing 0 and (%) to be k-realizable. As our next result shows,
there are infinitely many k for which this happens.
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Proposition 2. For infinitely many k, I, # {0,(})}.

Proof. Let k be an integer such that (§) = 2(4), for some a > 3. We first show that
(3) € Ix. Note that |[E(Ky -, U K,)| = (3), and |E(Ky_, + Ko)| = (5) — (5) = (5).
Let 0 < £ < k be fixed. If a < ¢, then

Ki o+ K. <(Ki + K;) U K-y = Aslk),

and

Ki o U K,<(Ky U K)) + Ky~ = A,(K).

Thus (35) € si(A(k) N s¢(A,(k)). If, on the other hand, a >/, that is, k —a < k — ¢,
then

Ki o U Ko<Ki_p U Ky <(Ky + K;) U Ki— g = A,lk),

and

Ki-a+ Ki<Ki-;+ K <(Ky U K,) + Ky o = Aylk)

implying that (%)e€ s (4,(k)) N sk(m. Hence, by Theorem 3, (5)e/,. Since
0 < (%) < (%), it follows that I, # {0,(%)]} for every value of k satisfying (%) = 2(3).

We conclude the proof by showing that this last equation, or, equivalently,
2a* — 2a — k* + k = 0 has infinitely many positive integer solutions (k, a). Solving
this equation for a, we see that a is a positive integer if (k — 1)> + k? is a perfect square.

Consider the Pell-equation x* — 2y? = 1, which has infinitely many positive integer
solutions (x,y). (See [4], for example.) For any such solution x >y >0, set
k=2y(x —y). Since 2y*>+1=x? we have k—1=y?—(x —y)>. Therefore,
k=12 4+ k%= —(x— )+ 4y%(x — y)* = (y* + (x — y)?)?, and the proof is
complete. (I

4. k-realizable sets for k < 5

It is an open problem to characterize k-realizable sets for general k. For k < 4,
however, the k-realizable sets have been characterized. The case k < 2 is trivial. For
k = 3, the results are summarized in Table 1. As can be seen, there are only four
‘missing’ sets, namely {1}, {2}, {1,2} and {0, 3} for k = 3. The first three of these fail to
be 3-realizable since Ramsey’s theorem says that a 3-realizable set contains either 0
or 3. Interestingly, each of these sets is the 3-spectrum of at least one graph G. In
particular, s3(Ps) = {2}, s3(K; u K;) = {1} and s3(P,) = {1,2}. Finally, it follows
from the ‘Gap Theorem’, whose proof can be found in [1], that {0, 3} is the 3-spectrum
of no graph.
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Table 1

3-realizable sets S Graphs G with s3(G) = §

{0} K, (unique)

3! K, (unique)

{01} tK, u(n—2t)K, (unique)
10,2} K,, . (unique)

11,3} K, u K,-, (unique)

12,3} K, —tK, (unique)

{0,1,2} P,

{0,1.3} K,oK,uK, r+s+t=n
{0,2,3} K,oK,UK,, r+s+t=n
{1,2,3} P,

10,1,2,3} See Theorem |

Gap Theorem. If S = {a, <a, < - <a,} is the k-spectrum of some graph then
a;+1 — a; < k — 2 except when a;=a, =0 or a;y, = a, = (%). In these latter cases,
ai+1—a,‘<k—l.

For the case k = 4, some preliminary results are helpful in our analysis. Since
(%) = 2(3), the proof of Proposition 2 gives that 3€I,. Thus, if G is a graph of
sufficiently large order with 0, 6 € s,(G) then 3 € 5,(G). This result can be strengthened
to include all graphs with 0,6 € 5,(G).

Theorem 4. If G is a graph for which 0,6 € 5,(G) then 3 € 5,(G).

Proof. Let G be a graph for which 0,6 € 5,(G). Since 6 € 5,(G), it follows that G has
a triangle. If G is not connected then G contains K3 U K, as an induced subgraph and
3 € 54(G). Thus we may assume that G is connected. Furthermore, we may assume
that the distance between any pair of vertices of G is 1 or 2; for otherwise, G contains
P, as an induced subgraph and 3 € 5,(G).

Let {v(,v;,v3,04} be a set of 4 independent vertices of G. Then for each pair v;, v;
(i #j) there is a vertex x € V(G) — {v;,v,, 03,04} such that xv;, xv; € E(G). Moreover,
we may assume that if xv;, xv; e E(G) then xu, ¢ E(G) for k #1, j; for otherwise,
G contains K 3 as an induced subgraph and hence 3 € s,(G). Thus there are vertices
x and y such that v, x, v,, ¥, 03 is a path in G and for which the only possible chord is
xy. Then G contains either P, or K3 u K; as an induced subgraph depending on
whether xy € E(G). In either case, 3 € s5,(G). O

The proof of Theorem 4 depends only on the fact that G contains K3 and K5 as
induced subgraphs. Thus we also have the following results.

Corollary 3. If G is a graph for which at least one of 0,1 and one of 5,6 is in 5,(G)
then 3 € 54(G).
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Using Ramsey’s Theorem, the Gap Theorem, Corollary 3 and case-by-case analysis
we can describe precisely the situation for 4-spectra. In what follows we will use, for

example, 013 to denote the set {0, 1, 3}. Also, 013 will denote the complement of 013,
that is, {2,4,5,6}.
4-realizable sets:

0 6 01 03 36 56 012 013 023 034 035 136 236 346 356 456 0123 0124

Sets that are the 4-spectrum of some graph but are not 4-realizable:

12345121323 24 34 3545 123 124 134 234 235 245 345 1235

1345 2345 1234 06

The remaining subsets of {0,1,2,3,4,5,6} are the 4-spectra of no graphs.

Using similar techniques, although much more detailed, to those used in Theorem 4
we can show the following.

(a) If G is a graph for which 0,8 € s5(G) then 4 € s5(G).

(b} If G is a graph for which 0,1,9, 10 € s5(G) then S € s5(G).

(c) If G is a graph of sufficiently large order for which 0, 14 € 54(G) then 5 € s6(G).

We close with three open questions based on our knowledge of k-spectra for k < 5.
According to Theorem 4 and (a) above, {0, 1, ...,(5)} — {k — 1} is not k-realizable for
k=45

Question 1. For k >4,is {0,1,...,(5)} — {k — 1} k-realizable?

As mentioned earlier, the proof of Theorem 4 depends only on the fact that
G contains K3 and K; as induced subgraphs. Therefore, if 0, 3 € 53(G) then 3 € 54(G).
We can also show that if 0,4, 6 € 5,(G) then 4 € s5(G). Thus for k = 4,5 we have that if
G has a complete (k — 1)-spectrum, then k — 1 € 5,(G).

Question 2. For k > 4, if G has a complete (k — 1)-spectrum, is k — 1 € 5,(G)?

Finally, for k < 4 we know that if S is the k-spectrum of at least one graph and
either 0 or (%) is in S, then, in fact, S is k-realizable.

Question 3. For k > 1, if S is the k-spectrum of at least one graph and either 0 or (%) is in
S, then, is S k-realizable?
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