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1 INTRODUCTION

We only consider simple graphs and refer to [BM] for terminology and notation not defined
here, A graph G with n > 3 vertices is hamiltonian if & contains a cycle of length n and
pancyclic if G contains a cycle Cy of length k for each k with 3 < & < n.

I Ch I8 a cycle with m vertices labeled wy,vq,+++, v such that {v,-i).-.,.]ll Li<m~—
1} {vmur} C B(G) and 'vj9j4% € E(G) for some 7,k {(modulo m}, then the edge vjuiy is
called a k-chord of Cy,. Clearly, this k—chord can be used to construct a cycle of length
m—k+1 from the given cycle C\,. If G and G’ are graphs, then we say that G is G-freeif G
contains no induced subgraph isomorphic to G'. Specifically, we denote by C the claw Kia,
by B the bull, by W the wounded, by D the deer, by ¥ I;he net, by H the hourglass, by P
and Cy the path and the cycle ou k vertices, and by Z; the graph obtained by identifying

a vertex of iy with an end-vertex of Pryy (see Figure 1)

Vo Hox A

The claw € The bull B The deer D The hourglass H The net N
I'he wounded W 2 Zo b
Figure 1

Bedrossian [Be} characterized all pairs of forbidden subgraphs {or hamiltonian graphs.

THEOREM Al [Be]. Let & and § be connected graphs (R, 8 % P;) and G be a 2-
connected graph. Then G is RS-free implies @ is hamiltonian if, and only if, R= C and §
is one of the graphs Cs, Py, Py, Pg, 21, %2, B, N, or W.




Bedrossian [Be] also characterized all pairs of forbidden subgraphs for panc‘yc].ic graphs.

THEOREM A2 [Be]. Let R and 5 be connected graphs (R, § # ;) and let G (G # Cy)

be a 2-connected graph. Then G is RS— free implies G is pancyclic if, and only if, R= C
and S5 is one of the graphs Py, Ps, Z,, or Zy. .

Bandy {Bo} proposed the following metaconjecture,

METACONJECTURE A3 [Bo]. Almost any non-trivial condition on a graph which
implies that she graph is hamiltonian also implies that the graph is pancyclic. (There may

be a simple family of exceptional graphs.)

Altliough the Metaconjecture is not true in general, it holds for a remarkably large
number of sufficient conditions for hamiltonian graphs. In this paper we will examine
Theorent Al in light of the metac:onject;.lr& The following (additional) results have already

been established.
"THEOREM A4 [BV]. If G is a 2-connected C D Py-free graph, then & is hamiltonian.

THEOREM A5 [FRS]. Let G be a 2-connected, C—free graph. If, moreover, G is DP;—
free and n > 11,G is P free and n > 10, or G is Ps— free and n > 6, then & is paneyclic.

REMARK. There are 50 excep-tiona,l graphs, which are C D Pr— free and not pancyclic.

THEOREM A6 [FRS]. Let G be a 2-connected, C-free graph. If G is H Pr— free, then

(7 is hamiltonian.

THEOREM A7 [FRS). Let G be a 2-connected, C-free graph. If, moreover, G is H Py

free and n > 9, then G is either pancyclic or missing only one cycle length,

2 RESULTS

I order for the reader to more easily follow the development of the results of this paper, we
shall state and discuss the results in this section and hold the proofs until the next section.

Lo [FR5] ihe graph Hy {see Figure 2) shows that ' and Zs, as forbidden subgraphs, are
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not sufficient Lo guarantee even hamiltonicity. The natural question, whether there exists

an’infinite class of exceptional graphs or not, led to our first Theorem.

THEOREM Bl. I Gisa 2-connected CZs-free graph, then G is either hamiltonian or

isomorphic to fi} ar H,. (see Figure 2).

i, H, ) Hs_ Hy
Figure 2
Next we will derive a full characterization of all 2-connected € Z3— free graphs, which
are 1ol paucyclic.
For r 2 2 let E4, be the {unique) graph on » = 4r vertices labeled vg, vy, - -+, 04y with
edge set E{Ey) = {vivig1 | 0 €4 < 4r — 1} U {04407, VajosVajir, Vaj—304): Vaj_aVajqn |

I €5 <1} tindices modulo 4r).

PROPOSITION B2 (Reduction Procedure RP). "Let G be a 2-connected CZy—free
graph on = > & 2 6 vertices. If G contains a Cj with a chord, then & also contains a Cy_,

o' (7 contains a subgraph Fy, with &k = 4r,

ProrosiTioN B3 (Repluction Procedure RP). Let G be. a 2-connected CZz—Tree
graph on n > k > 6 vertices. I G contains a Cy, then & also contains a Cy_; and a

" Ca.

PROPOSITION B4, Let G be a 2-connected CZa—free graph on n > 5 vertices. Ii'

7 contains an irduced Cx and has no Cy, then 7 is isomorphic to Cs, Ggq, Hs or H, (see

Figure 2).

Forr > 2let Fyr be the (unique} graph on n = 47 verticeslabeled vy, va, -+, vor, w1, + -, 2y
and with edge sel E(Fy) = {owi | 1 <4< < 2r) U {ugiquy |1 <4<} U {wju; |1 £
J<2rh



PROPOSITION B5, Let G bea graph on n = 4r vertices for some r > 2. If G is
C—free, E,; C G and G has no C,_y then G & Fy,,

We are now ready to state our second Theorem.

THEOREM B6. G is a 2-connected CZz—free graph, then G is either pancyclic or
belongs to one of the following three classes of exceptional graphs Gy U Gz U Ga, where (see

Figure 2 and Figure 3)

g] = {Cn | n 2 4}
g2 ‘[F4.r I r> 2}
Gs {Hy, Ha, Hs, G4, G122}

]

Nexl we complete the characterization of all 2-connected ¢ H Pr-free graphs that are nat
pancyclic. which was started iz [FRS). The proof of Theorem A7 (Theorem 15 in [FRS))
slu;ws ihal every 2-connected ¢ H Py-free graph on n > 9 vertices contains all cycles from Cs
up to & or is missing only one cycle. Moreover, if G is missing a cycle Cp, then k = 4r —1

for some r.> 2 and E,,. C G.

PROPOSITION B7. Let G be a 2-connected CH Py-free graph on n > 4r > 8 vertices.
U £y is an induced subgraph of G, then G has cycles Cy for 3 < & < 4r. '

PROPOSITION BS. If G is a 2-connected CH P;—free graph on n < 12 vertices, then
(7 is eitlier pancyciic or isomorphic to one of the following graphs: Cy, Cs, Cs, Gz, +++, G12

(see Figure 3).

PROPQSITION BY. 1Let G be a CPy-free graph on = > 9 vertices. If G has a

hamiltonian cycle without 2-chords, then G has a cycle Cr for 3 < k < 7.
We are now ready to present our third Theorem.

THEOREM B10. IfG is a 2-connected C H Pr-iree gfa.ph, then (7 is either pancyclic
or belongs to ane of the following two classes of exceptional graphs Gy U Gy, where
Gi={Fu 722}, ‘
G2 = {0, 5, Cs, Gy -, Gz} (see Figure 3).
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Next we will derive a full characterization of all 2-connected C'W —free graphs, which

are not pancyclic.

PROPOSITION B11. Let G bea CW—free graph on 2 > k > 4 vertices. If G contains

a (" with a chord, then (i also containg a Cy_;.

We will now study the structure of 2-connected C'W—free graphs which have an induced

cycle C for some k > 6, but no eycle Cj_;.

Claim B12, Let G be a 2-connected CW —free graph on = > k > 6 vertices. If G
has an induced cycle Cp but no Cy—;, then for every vertex z € V{(G) — V(Ck) we have

Ne(2) = {r= o 0"} for some vertex v € V(C).

Claim B13. U C is an induced cycle of length k > 6 in a 2-connected C'W —{ree graph
¢, then for any two components Hy, Hy in G — C and any two vertices z; € V(H;) and

xy € V{Ha) we have [No(z) N Ne(zp)| € 1.



Inspired by Claim B12 and Claim B13 we introduce the following class ¢ of graphs.

Let Cp be tl.'ne class of all graphs that can be generated from all induced cycles Cy, k > 4, by
replacing every vertex of 'y by a clique and joining all vertices of two cliques if and only if
ihe corresponding vertices are adjacent in C. Now let G be a graph of (¢ generated from
a C with vertices labeled v, v, -+, v, and corresponding cliques K, 1< ¢ < k. We call
a subgraph Gl Kpyy, -+, K] a saussage if |V(K,)| = [V(K,)| = 1 and {V(&)| > 2 for
pt+l1£i<g—1(indices moduio- k), and G a saussagé-graph if it has at least one saussage.
Now observe that & has exactly one induced cycle of length at least 4, namely Cy, from
which it has been generated. All other cycles smaller than £ can only occur in thé saussages
of (. Now for each graph G € Cg let A() denote the length of the only induced cycle of
length at least 4, (i.e., A{G) = k), and let u(() be the maximum number of vertices among

all saussages of G. Then MG} > p(G) + 2 if and only if G has no Cy_;.

Ciaim B14. Let G be a 2-connected C'W —free graph on » > k > 6 vertices. If G has an
induced 'y and no Cg_1, then G €Cp.

THEOREM B13. If Gis a 2-connected CW —free graph, then G is either pancyclic or
(¢ € Ce- for some induced cycle Cy with £ >4 and MG) > p(G)+ 2 or ¢ = G (see Figure
31, '

COROLLARY B16. If G is a 2-connected C'B-free graph, then G is either pancyclic
or G £ ¢ for some induced cycle Cy with & > 4 and MG) > p(G) + 2.

3 PROOFS

We first jntroduce some additonal notation which will be useful in the proofs that follow.
Let € be a cycle in a graph. I an orientation of C is fixed and u,» € V{C), then by
u (v we denote the consecutive vertices on ¢ from « to v in the direction specified by the
orientation of €, The same vertices, in reverse order, are given by vau. I{ C is a cycie of
G with a fixed orientation and u € V(.C), then ut denotes the successor of 4 on € and u™

s predecessor with respect to the given orientation, respectively.

Proof of Theorem Bl. Suppose G satisfies the hypothesis of the theorem, but @

is nonbamiltonian. Let €' be a longest cycle of G with a fixed orientation. Since G is 2-
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counecied, there exists a path of length at Jeast 2, internally-disjoint with €, that connects
two vertices of C', Let P = vjuju; -+ - %, v be such a path of minimum length, implying that
P is an induced path unless vjv; € E(G). Fori = 1,2, let w; be the first vertex in v aus_‘-
satisfying w;v; ¢ E(G) {existing by Lemma 2 in [BV]). Since G is C—free, vJ v} € E(G)
for i = 1,2, Hence, since C is a longest cyele, |V {vf 5v§_;)| >3fori=1,2

Case 1. Suppose {o7 vy, mvtt e vee TN E(G) £ 0.

Without loss of generality we may assume that v;2+ € E(G). Fori = 1,2 let z; be an

arbitrary vertexin v} (' w; and u be a vertexin ¥ (P)—{v, vz}, Then uzy, uzy, 3199, 290y, 7129 &

E{G) (by Lemma 2 in [BV]). If vyv; € E(G), then G[{v]F, v}, v1, vg, wy, we}]is an induced
Z3, a contradiction. If vyvy € E(G), then G[{v}*, v}, v1,u1, 1,0y, vy, wy ,ws}] is an in-

dueed Z,,3, a contradiction, since r > 1 and G is Za—free.
Case 2. {v; v, vet*} ¢ E(G) fori=1,2,

If vyo, @ E{(7) and r > 2, then G[{a, vy, vi";ul,-- +, %y, v2}] is an induced Z,41, a con-
tradiction. since (7 is Zz—free. If vyvy € E(G), then r = 1, since otherwise G[{v], v1,v2, 141 }]
would be an induced claw. Hence we may assume that r = 1. With |V(v?5v§_i)| >3
for i = 1,2 we have n > 9. I n = 9 then vffvy; € E(G) for i = 1,2, sinee &
is Zz~(ree. Now observe that G is C'Za—free and that {as above) no other edges are
possible. since C' is a longest cycle. Hence, if n = 9, then G is either hamiltonian
or isomarphic to My or Hy. If n > 10, then we may assume without loss of general-

ity that IV(NI*'FL-;)I > 4. We now comsider {v]",vr,vf, 077,05, m) if vz € E(G)

and {o7. ool wvgovy ey T) i mwy € E(G), respectively. Then vy € E{G) or

v vy T € K((). since otherwise G[{vy, v, wF, v 7,95, v2}] would be an induced Z3 and
Gliv oo vuyova, 05,977} would be an induced Zy, respectively, If vfuy € E(G), then
vf tus vfes ™ € E(G), since G is C—free and vyl t vy, vl v, vy " er € B(G). Now con-
sidering the claw {v,v{, o7 %, v7 7} we conclude that v}tv;™ ¢ E(G). If vy ¢ B(G),
then v} *oy vtur ™ € E(G), since G is Z3—free (symmetric argument), Again we conclude

that v} *e5~ € E(G}. Now vy~ »f ¢ E(G), since otherwise vy ~vf Cv] vferogvg oft C'v2

or vy ~ug C uvf v P vyvy v o vy ~ would be a cycle longer than €. But then G[{v; ~, v},

is an induced Z3 when wiva € E(G), and G[{z7~, o]+, vf, v1, ur, w3, 07 }] is an induced Z,

when vy, @ F{G), respectively, a contradiction. i

”il-y V1, ¥




For the prool of Proposition B2, the following four statements for ' —free graphs can easily

be verified and will be frequently used and just referenced by the indicated label.

(A) Let Cp be a cyele with m > 2k + 2 > 6 vertices labeled v;,vs, -, vy, and a k—chord

;u54. If there are no i—chords for 2 <4 € & — 1, then v;_1vj0k, ;054441 € E(G).
{B) I, moreover, vj_1v4k—1 € E(G) or vipvisksr € E(G), then v;_qv540040 € E(G).

(C} Let vyvj4; bean i—chordwith3 <7 < % in a cycle O without 2—chords. If v;v,4i-1 &

E(G), then v;v5441 € £(G), and likewise if vip1v;4; & E(G), then vj_1v;4: € E{G).

(D) Let vju;4; be an i—chord in a cycle Cp. If 1 > 2 and vj41vj4i42 € E(G) orif i 2 3
— — — —_
and vj1avipip1 € B(G), then vj950: Cvj4 V402 C ¥ O 9054 C Vj42054it1 Cvj s a

Cr_1, respectively.

PROOF OF PROPOSITION B2. Let ¥1, -, Uk be the verticesof Crand ¢ (2< i<
’5‘) be the smallest integer such that G has an i-chord. Among all chords of Cj choose such
a minimal i-chord {2 < { £ %) Choose a labeling vy, v, -+, of the vertices of Cj such
that ({#,ep41 | 1 €7 €k =1} U {mv, v }) C E{(G). We now distinguish the following

three cases.

Case 1. S-uppose i=2

Then vyvgny ---vpwy is a Cr_1.
Case 2. Suppose i = 3

By (A) we have vjug, vpvy € E(G). I vovs €' E(G), then we obtajn a C-1 by (D).
Hence we may ussune that vovs € E(G) and so vvs € E(G) by (B). If vqv7 € E{G), then
VLU Vg Py ity T c vk is a Cg—y. Hence we may assume that vyvr € E(G). Suppose now that
vsvg € E(G), If vyvg € E(G), then wvaus, vqvg € E(G) by (A) and thus w339 € E(G) by
(B), since wyvy ¢ E{G) ( or else (vyvsuamvywavr C ve)). But then we obtain a Ch.q by
Uk'i)]?).;‘l}s‘l)s'l):rvgﬂa’l)ga’l)k. Hence we may assume that vyug & FE(G). Next ulbe g F(G) (or
else (vevsvsogv ve C ve))y v € E(G) (or else (vpvsvqvavavyvr C v)), and mavy & E(G) by
(D). Now if wowg € E(G}, thén 91y € E(G), since G is claw—{free ({ve,v7, vs, vg}), but then

U U505 V7 Vg Uty C ) is & Ch_y. Hence we may assume that vovs ¢ E(G). Again the claw
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{v1,v3, 24, vg} shows that vyvg & E(G) But I;hen Gi{m, vy, v5, vg, vy, ‘Ugj‘} is an induced Za,
a contradiction. This shows that vsvs € E(G). A repeat of these argumerits (cf. also Proof
of Theorem 15 in FRS]) either gives a Cy_y or k = 4r for some r > 2. In the latter case,
V4i-a¥ai, 1)4.-'_41)4,'.,.1, Yai—3vsi1 € E{G) for each edge vy;_3v4;,1 < i < 7 (indices modulo 4r)

énd the C4, has no other 3-chords, 4—chnrds, 5-chords or 6-chords.
Cage 3. Suppose i > 4

We proceed as in Case 2 and obtain that V1Viga, ViV, UkTipe € E{G). Since i is

minimal, G{{i42, %k, 11, V2,93, v4}] is an indaced Zs, 2 contradiction.

Proof of Proposition B3. et v,.--, v, be the vertices of C} labeled such that
Hvivipr | 1<5 € k~1}U{opm}) C E(G). Since k < n, thereis a vertex u € V(G)—V(Cy)
such that N{u) N V{Cy) # . If C has a 2-chord, then we obtain a C4_; and a 3. Hence
we may assume that Cy has no 2-chords. Now, if » € N(u) for some v & V{(C), then
{1, 0341} 0 N {u) # 0, since G is C-free and vj_g ;47 would be a 2-chord, Hence & has a
Cy. Next, if {v;,vi41, vig2,viz3} C N(w) for some v; € V(Cy), then wjuwvz akv,- is a Cy_y.
Hence, ¥(u)NV(C}) consists of pairwise disjoint pairs {v;, v;41} and triples {95, 9541, visa}

of consecutjve vertices. We distinguish these two cases.
Case 1. Suppose vq,vs € N(u), vs,vs & N(u)

Ifvj, %45 € N(u)or vj,v;-3 € N{u), then we (easily) obtain a C4_,. Hence, vj_a,v;43 ¢
N(u) for each v; € N(u). Thus, vy, vy, vr,v8 & N(u). Since C} has no 2-chords, we have
0103, Yoy v, Lave. 57, tets § E{G). i vivy € B(G), then vjvquv; 5:}1 isaCi_1. Hence
we may assume that vyvy, v5v8 € E(G). H both vpus, vevr € E(G), then vgvsuv4v75vk_;
is &2 Cr-y. Hence we may assume without loss of generality that vgvy € E(G). ¥ vyvs €
E(Q), then vavg € E{('), since otherwise, vzv;,uvwavsavg is a Cp_q1. Now, if vqug €
E(GY, then Gl{vs,va,u,vs}} is an induced claw, a contradiction. Hence vvs & E(G),
but then G[{vq, 1, v5,v5,v7,v8}] is an induced Zz, a contradiction. This shows that both
Va¥s, b4v7 € E{G). Hence, v v5,04vs € E(G), since G is Za—free. Considering the claws
{v1,vs,u, vg} and {wy, vy, v, vz} we conclude that v ve, vavs € E(G), since @ is C —free. But

then wvgusuogvave O vy is a Cr_q.

Case 2. Suppose vy, va,vq € N{u), vi,vs & N(u).




Since Cy has no 2-chords, we have vpuy, vavs, v4vs, v5%7 € B(G). If 131 € E(G) or
w07 € E(G) or vavr € E(G), then vyuvgvg E v OT U3uDyUy E'ﬂs or Vo U U3vT 5 vy is a Cry,
respectively. Hence we may assume that vave, vaty, tavy ¢ E{G). As in Case 1 we have
uve, uvy ¢ E{G), since uvy, uvy € E(G). But then Gi{vs, v, vy, vs,v8, v7}] is an induced Zg,

a contradiction. B

Proof of Proposition B4. Let vy,vs, -, vs be the vertices of the induced Cs such
that {vjuaq|l € 7 € 4} U {vsty} C E(G). ¥ n = 5, then G = C5. If n > 5, then let
H = G —1'({s). Since G is 2-connected, there is a vertex z € V(H ) such that Ng, () # §.
As in the proof of Proposition B3, we conclude that = has either two or three consecutive
neighbors on the Cs. Since G has no C4 we conclude that for every 2 € Ng(V(Cs)) we
have |[M{z)n V(Cs)] = 2 and Ng,(2) = {v;, %41} for some i. By the 2—connectedness
of G we conclude that each component of H either is an isolated vertex or has at. least
two vertices each of them having two neighbors or C. 'I“hus for n = 6 we obtain the
unique exceptional graph Gg; (see Figure 3). Since G has no Cy, for = > 7 there is no
pair of vertices 2,y € V(H) such that Ng,(z) = Ng,(v) = {vi, vt} for some i {which
gives (zv;yriyiz)). Without loss of generality we may assume Ne,(z) = {1, v2} for some
x € V(H). Suppose Ne,(y) = {vs,,} for some y € V(H) - {z}. Since & has no G4, we
have zy & E(G) (or else (zvovzyz)). But then G[{z,vq, v1,v5,24,¥]}] is an induced Zs, a
contradiction. Hence we may assume that Ng{vs) = @ and thus |[Ng(Cs)| = 2 (symmetric
argument). Without loss of generality we may assume that Ng, (y) = {vs, v} for some
¥ € V(H) - {r}. Since G has no Cy, we have zy ¢ E(G) (or else (yv;v22y)). Thus for
n =7 we obtain the unique exceptional graph Gy, (see Figure 2). For n > 8§ we conclude
that H consists of one component, since |Ng(Cs)| = 2. Let zwywy - w,y be a shortest
path connecting » and y in H. Then r > 2, since & has no C, (zvygwiz). M r 2.3, then
G[{v1,v2, z, w1, w2, wa}] is an induced Z3, a contradiction. Hence we have v = 2. This gives

the unique exceptional graph Hj (see Figure 2). Al

Proof Of‘PI'OpOSitiOIl B5. Lét the vertices of G be labeled vy, vy, -+, vy, such that
{vjvipi|l €7 € n=1}0{vam} C E(G), {104, ”5”8;"'1v4r—3u4r} C E(G}and {vgi_svaiy1,
Vai-aPai, Vai—itait1} C E(G) for each edge wyi_gvy; (indices modulo n), If » = 2 then
G = [y(= L), since any additional edge gives a C7. For r > 2 we perform. an induction

on k for 1 < & £ {F]. Foreach k and all possible i-chords with 4k — 1 < ¢ < 4k + 2 (and
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3 <4< 2r) we shall show: L '

i=dk—1: wvog € B(G) vavars1, vatyrss, nlap_1 # E{(G)
iz Ak otk V1Vaki1 € B(G); vivanes, vsvarss € E(G) N B
t=ak+ 10 vataigr € B(G); v1Vaki2, V2Vekss) V300kra € E(G) ‘.
1= Ak 20 Vnbikyn, D1%ak43, VeVskid, Bstakys € E(G). ’ : E
By the cyclic structure of G these properties then remain valid for all induced subgraphs i
Gl{v4j, a1, -+, Yajsap45 ], We first show the induction step “6 — k +1”. To show that
By Vaks UnCake~ ) Vak41. VnPaker € E{G), we consider suitable claws and make use of the claw—

freeness of (7:

{v1, vax—1, vag, Ugheqd) i V1Tag, Vgkb—i Uik, VarUakts € B(GY,
V1Bak_1, Wk-1Vakp4 & E(G);
herce wivgreq € E(G).
AL Dk Dk Vaki 5} D V1 Vak, Uk Vaks VikVakgs € E(G),
l V1Vgk-1, Vak-1Vap45 € E(G); _
hence wvyvgi4s € E(G).

{tns ko1 0ak, Pakgs} 1 v vak, Vako1 04k, Tarvarys € E(G,
VnUik—1, Vak—1Varss & B(G);

hence vhvgrys € F{G).

{'b‘n, Vak-1,y Vak, ’U4k+4} b UnUgk, V4k—1V4k, VapVakyq € E(G),
UnViak—1, Vak-10ak44 € B(G);

hence whvippq € B(G).

tetakss  B(G): else  vpugiq 5v2v4k+5 Cu, isa Ca
tntaes € E(G): else UnUggps Evlv4k+5 Ev,{ isa Cup,y
Vatuppe & B(G): else wvyuy 6'”4k+4‘01 U2V3k4s C ¥, 6 2 Cra
ntikys £ E(G): else wyuy E Uik 45U V2 Uk s 5 v, isa
vatakt? € E(G): else vy 5 Vak 451 V20300447 avn isa Ch
Mtapre € £{G): else Un Vaktd Eﬂ1v4;‘+5 avn isa Cp

— L —
vavakyr € B(G): else v1vikys O vavakir C vapistqeso G0 is a Cn1



v3tikss € F{G):  else vyvgpqs 5v5v4;¢+9 (_;"1:3 isa Gy,

UnUakps § B(G):  else  vpUyppevakssty av4k+4ﬂ4k+3 Cvn isa. Cnoy
vy € E(G) 1 else  vuvypqq Evlv4k+7 'C_vql;+5v4k+9 Cua isa Cay
Vatgpgs € E{(G) 1 else  wivgpys E Y4Vsk 49 E vp isa Cpa

— -
VaVak49 E E(G) :  else N Vk48 O Valyr4oCv1 182 Can-1-

Next we show the induction beginning with “k = 1. By the hypothesis we know that
V164, Vs, )5, a5 € E(G). For & = 1 the (12} constructions above (of a €1} remain

valid, Thus, vevs, vavs, - -, vavs ¥ E(G).

Proof of Theorem B6. If G is nonhamiltonian, then G is isomorphic to either H or
H; by Theorem Bl. Hence we may assume that ¢ is kamiltonian. If G has a €, without
chords, then G = Cr. Hence we may assume that C,, has a chord. If & has no Cpry,
then by Prépositiom (B2) we have Ey, Q G with » = 4r, and thus by Proposition (B5) we
corelude that G = Fy,. Hence we may assume that G has a Cp—;. Then by Proposition
{B3) G has cycles Cp for k = 3 and 5 < k < n. If G has no C4 then G is isomorphic to Gg
or G7g or Hy by Proposition B4 and pancyclic otherwise, ll

Proof of Proposition B7. Let vy,v5, -+, v, 61,0z, -+, ug, be the vertices of Fy,
such that dp, (u;) = 2, with wiv; € B(@) for 1 € ¢ € 2r and ugjqup € E(G)for1 <i<r.
We know that Fy, is only missing & Cyr.q. Suppose there is a vertex w € V(G — Fy,)
such that wa, € £{¢) for some i with 1 < i € 2r. We may assume that wuy € E(G).
dince wpuy ¢ E(G) and G s claw-free, we have mw € E(G) or wuy € E(G). Then
VWU U Vg DU UV - - Ugr—a Vor—2V2r—1 V2r U1 OF V18 WHa Va3 gty - » - Uz, 3 V2r—_3V2r_1¥2r 1
is a Cy;—1. Hence we may assume that do(w;) = 2 for 1 < i < 2r. Thus, there is a vertex
w € V(G ~ Fy,) such that wo; € E(G) for some ¢ with 1 < { < 2r. We may assume that
wy; € E(G). Since G is claw-free and wuy, muy € E(G), we have wy; € E(G). But then,

UL Wt by Uy - - -t 2, 35 the desired Cyr_y, B

Proof of Proposition B8. At first we generate all CH Pr-free graphs on n < 8
vertices_, which are not pancyclic. For 4 € n < 7 it can be easily verified that all exceptional
graphs are given by the graphs in Figur.e 3; Next suppose there is a CH Pr-free graph on
n+1 vertices, n > 8, which is not pa,ncyclic.“’.l‘hen by Proposition BS, it has a 2-chord. Using

this 2-chord in the reduction procedure, we also obtain an exceptional graph on n vertices.
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Vice versa, the sel of all exceptional graphs on n + 1 vertices can be generated from the set
of all exceptional graphs on n vertices as follows. Let 7 be a counterexample on n vertices
Uy, g, 0+, ¥y such that ({wwia|l €1 < n—1} U {v,tn}) C E(G). We then successively
replace each edge viviy1 of this Cp by a triangle with edges viviyy, ¥viUnt, VigiVnpr if 1 <
i< n-1and a triangle with edges 75, v10nt1, ¥ntny1, otherwise. Each new graph has to
be checked as to whether it is C'"H Py-free and not pancyclic, and whether additional edges
adjacent t0 v,4; are possible.

We now consider six cases.
Case 1. Suppose n=8.

By the hypothesis of the proposition, the cycle Cs contains a chord. Since G is claw-free,
it contains a 2-chord or a 3-chord. Among all chords of Cs choose an i-chord (2 £ i £ 3)
such that ¢ is minimal, Choose a labeling w, vz, -+, vs of the vertices of (g such that

({rsvipr | 1 €5 <7} {waoy, vivpn }) € B(G).
Case 1.1. Suppose i=2

Then G contains Cy, Cy and Cy. If there is a 3-chord e;.ncl a 4-chord then G is pancyclic,
since a 4-chord gives a C's and a 3-chord gives Cy and Cg. If there are only 4-chords and
there is a pair of 2-chords and a 4-chord that are crossing, then since  is claw-free and has
no 3-chord, G has a é3, Cs,Ce, C7 and Cs. H there is also a pair of a 2-chord and a 4-chord
that are not crossing, then G is pancyclic. Otherwise we obtain the only exceptional graph
(.1 having only 2-chords and 4-chords. If there are only 3-chords then G has Cy, Cy, Cs, Cr
and Cs. Now each pair of a 2-chord and a 3-chord, whether they are crossing or not, leads

to a {5 and thus &' is pancyclic, or we obtain the exceptional graph Ga.

Hence we may assume that G has only 2-chords. Suppose first that there are no crossing
2-chords. Since G is Pr-free, there are at least two vertex disjeint 2-chords. Since G is H-
freeE any pair of 2-chords is vertex disjoint. Thus the only exceptional graphs with two
2-chords are given by Gaz and G4,

Next suppose there are crossing 2-chords. If, for example vy vs, vauy, v3v5 € E{G), then
&' is pancyclic. Hence we may assume that among every five successive vertices of Oy there
oceur ab most two 2-chords. We may assume that vevy € E(G). Hence vavs, ugve ¢ E{(),

since GG is H-free, Thus we obtain the exceptional graphs Gs5, Geg and Gar.




Case 1.2. Suppose i=3
The only exceptional graph in this case is ¥y € G

For the sake of brevity, in the following four cases we list those exceptional graphs on n

vertices, that have been generated from a specific exceptional graph on n — 1 vertices,

Case 2. Suppose n=19 Case 4. Suppose n =11
Gag : Giax:
Gsz: Gp1,Gaz Goa Guz: Gn
Gsa: G Gua: Gn
Gga: Gga,Gs.
B 8 e Case 5. Suppose n = 12
Gss: Gas
) Gn: Gp
Gss: Gag )
Gy Case 6. Suppose n =13
Gg_g H

Case 3. Suppos‘e n =10

Goa: G

Gsz: Gz, Guoa

Goat Grug
Ggl.; M :
69_5 M

The graph Gz is only missing a Cs. Replacing an edge by a triangle, we either obtain
a (5 and thus a pancyclic graph, or a graph that is not H-free. In the latter case, every

additional (possible) edge gives a C5. Il

Proof of Propositon BY. ‘In ([Frs] Propesition 4) this was proved for the class of
C D Py-free graphs. However, the D-freeness is not needed there, hence the conclusion even

holds in the class of C'Pr free graphs. il

Proof of Theorem B10. Let G be a 2-connected CH Pr-free graph on = > 3 vertices.

By Thecrem AG we know that G is hamiltonian. If n < 8 then & is either pancyclic or
isomorphic 10 Cy, Cs, Cs, Ge.15 -+, Gar, F5 by Proposition B8, If n > 9, then G contains all

cycles from Cy up to Cy or is missing only one cycle Cyp_; for some v > 2 and Fy, C G as
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mentioned earlier. In the latter case, Fy; is an induced subgraph of G by Proposition B5.
Ifn > 4r then G has all cycles G for 3 < k < 4r by Proposition B7 and hence is pancyclic.
Otherwise, G & Fjy, and hence G is not pancyclic. Hence we many assame that G contains
all eycles from Cg up to Cy,. ‘

If, moreover, G' has a cycle C, for some k£ > 9 without 2-chords, then & is paneyclic by
Prolposition Bg.

Hence, any exceptional graph must have n = 8 vertices or must have a cycle Ci with a 2-
chord for some £ > 9. All these exceptional graphs are given by Propostion B8. Furthermore,
the proof of Proposition B8 shows that there are no exceptional graphs on n > 13 vertices.

This completes the proof. B

Proof of Proposition B11. Let v, - v be the vertices of Cy. Let i be the smallest
integer such that G has an i-chord. Since G is C- free we have 2 < i € "—;1 Among all
chords of O choose a minimal i-chord (2<i<g "—;1) Choose a labeling vy, vg,++ -, 2 of the
vertices of Cy such that ({vjujp1]t < § <k — 1} U {nevy, m1vi4}) € E(G).

We now distinguish the following two cases.
Case 1. Suppose i = 2

Then vivzvg - --wevy I8 & Ce_g.
Case 2. Suppose i 2 3

Fori > 3 we have & > 7. For £ = 7 we conclude (successively) that all 3-chords
are present, since ¢ is C-free. Then v vsvsv9vevrty s a Cg. For & > 8 we will show
that G either has a Ci_; or that G[{ve—q, !Jk.-ml,l?k,’l)l,vg,'v,q.l}} is an induced W. Since
G is a C-free and i is minimal we have vivip2, mpvipy € E(G). If o452 € E(G), then
Vi Uig1 E VaViya 6 v is a Oy, Otherwise, vrvige € B(G), or Gi{vg, v1, v2, vi42}] would be
an induced claw. Since i > 3 and { is minimal we have vy_pvy, vro1v1, Vavy, oty € E(@).
Il wp_av1 € E(G)or w102 € E(G) o1 vpnva € E(G), then vy_om 5 Vi1 Vi Vigg Eﬂk_z or
k_102 € Big1aviss C Vg OF D03 C Vipy 1 VkViga C Dp_z 18 @ Ch—y. If vk-1vi+1 € E(G)
or vt € E{G), then ve_yvip E'vlv,-.,,g Evk_l OF Vjo.zDip1 E’Uk'b‘,‘+2 av;‘_g is a Cp_q.

Otherwise, G[{vk—2, Yk—1, Uk, V1, V2, Wiqq }] is an induced W, a contradiction. B

Proof of Claim B12. For k = n the assertion holds. Hence we may assume that
k < n. Since G is 2-connected, there are two vertices v € V(C) and z € V{G)\V{C) such




that vz € E(G). Since G is C-free and Cy is an induced cycle, we have {v—, v*}NNg(z) # 0.
Suppose first, that v~,v € N(z) and v~ , 2" & N(z). Then v=—~,vt+ ¢ N(z), since G
has no Ci.;. But then G[{v—, v, v,vH, v+, 2}] isAan induced W, a contradiction. Hence
we may assume that v~,v,»#t € N{z). Again, sinte G has no Ci_1, we conclude that
v~ vt g E(G). Now, if there is a vertex w € V{C') N N(z) such that w ¢ {v—,v,vt},
then G[{v~,v*,w,z}] is an induced claw, a contradiction. Next suppose there is a vertex
y € V(GI\V(C) such that No(y) = . We may assume that there is a path yrw such that
w & V(CYand ¢ ¢ V(C). But then G[{y,z,v~,v*}] Is an induced claw, since Cj has no

chords, a contradiciton, B

Proof of Claim B13 Supposé there are two components Hy, Hy in ¢ — € and two
vertices x; € V'(H;}, 23 € V(Hg) such that |No{z)NNeo(z2)| 2 2. By Claim B12 we then

distinguish two cases.
Case 1. Suppose Ne(z, ) = No(zg) = {w™,w, wt} {or a vertex w € V(C).
- But thes G[{zy, z9, wt,wtt}] is an induced claw, a contradiction.

Case 2. Suppose Np(z) = {u)‘,w,w*} and Ne(zz) = {w,wt, wt*)} for a vertex w €
V().

But then G[{w~,z,w, 3y, wtt, wH++}] is an induced W, 2 contradiction. &
Proof of Claim B14. We perform an induction on p = [V(GN\V(C)|.
1. Induction Beginning with p =0,

Then & = n and thus G = C,. Herce G € Cp.

2. Induction step p— 1 — p.
Suppose that Claim B14 holds for all graphs with |[V(GN\V(C) € p— 1 and let G be
a graph with |V{G\V(C)| = p. Choose a vertex z € (V{(G)\V(C)) and put &' = G — =.

Then, the following properties hold:

1. G is CW-free, since ‘C'W-Ireeness’ is a hereditary property.

2, G'is 2-connected due to Claim B12.
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3. C is an induced C; in &".
4. There is no cycle in G' of length V(C)] -1,

- Thus, by the induction hypothesis, G' € Cc. Let the vertices of C be labeled yy,¥2. -, ¥k
and let K be the clique with y; € V(E;),{1 < i 5 k), corresponding to the structure of the

class Ce. By Claim B12, & has exactly three neighbors on €, say yi—1, 9i, ¥is1.

(i) If there is a vertex z € V(&) such that zz; ¢ E{G), then G[{y-12, %, %i_2}] is an

induced claw, a contradiction,

{ii) If thereis a vertex zi41 € V{Kjy:)such that 2z01 ¢ E(G), then GHa, %, Vo1, imzs Sid1s Yit+2}]

is an induced W, a contradiction.
(i) Symnetric to {ii) we have zz;_; € E(G) for all vertices z;_; € V(R 1).
Thus G € Cc. B

Proof of Theorem B15. Let G be a 2-connected CW-free graph. By Theorem
Al we know. that & is hamiitonian. By Proposition B11 we conclude that (3 is either
pancyclic or has an induced cycle Cy for some & > 4. If k£ > 6 and G has no Cr_; then
Ge Ce by i’roposition‘BM and neeessarily A(G) > p(G) + 2. Hence we may assume that
i 5 k<5 1 k=n, implying G 2 C,, then G € Ce. Hence we may further assume that
k < n. Since G is C-free there is no pair of vertices v € V{C),x € V(G - V(C) such that
v € B(G) and zv™, 2ot ¢ B(G). If {v=,v,vt} C No(z) for a vertex z € V(G) — [ 4(#R
then G has a Cy and a )y and thus is paneyclic. Hence, if G is not pancyclic, then k = 5
and for each vertex z € V(G) — V(C) we have Ng(z) = 0 or.[Ng(z)| = 2. In the latter
case, No(z) = {v,vt} for a vertex v € V;[C). Thus for n = 6 we obtain the exceptional
graph Gig;. Now for # > 7, suppose first that there are two vertices z,y € V(G) - V(C)
such that Ne(w) = {v=. 0} Noty) = {w=,w} for two vertices v,w € V{C). Since G is
missing only ‘a Cy, we canrot have v = w. I w™ = v or w™ = v+ ther zy ¢ E(G),
since otherwise xyw v~ x or zyw~ve gives a Cy. But thea GH{v—— v v, @, v, 9} or
CGlv—— v, e, w™,y}] s an induced W, a contradiction. Hence we may assume that
V{G)=V{(") has exactly one component and that here are two vertices =,y € V(G- V{C)
such that #y € E{G) and Ng{z) = {v~, v} for a vertex v € V(C}and No(y) = 0. But then

GHe==",#=".v",v,z,%}) is an induced W, a contradiction.




4 CONCLUDING REMARKS

Qur results obtained in this paper and in [FRS] ma-y now be summarized as follows: We
have examined Theorem Al in the light of the Metacorjecture for all forbidden pairs RS
with R =  and S is ore of the graphs Py, Fs, Fs, Zi, Z3, B and W. Hence the two cases
where § = Chor § = N remé.in. Note that ‘Cy-—freeness’ is not a reasonable choice,
since pancyclicity implies the existence of a C3. For § @ N observe that all exceptional
graphs of Theorem B15 are also CN-free. Mareover, we have constructed a large variety of
classes of exceptional graphs that are C N-free, and there is no indication that this might
be a *simple family’ (in the terminology of the Metaconjecture), In addition the classes of
C.D Pr-free graphs, of CH Pr-free grf;phs, and of C Zs-free graphs that are not pancyclic are
now completely characterized. .

Finally, observe that all exceptional graphs have connectivity x = 2.

Corolla.ry Cl, Let R,§ and T be connected graphs (R,5,T 2 P;) and G be a 3-

counected graph. Then G is RS-free or G is RST-free implies that & is pancyclic,if R C

and & is one of the following graphs Py, Ps, Ps, Zi, Z1, %3, B, N or W, or 57 is one of the
- paiirs of graphs DP-;— or HP;. '

The case B = C and § 2 N has been settled by Shepherd [Sh].
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