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Abstract

Given a family F of connected graphs, a graph G is said to be F-free if 7
contains no induced subgraph that is isomorphic to a graph in F, and the graphs
in such a family are called forbidden subgraphs, A topic considered recently
has been the investigation of which sets of subgraphs can be forbidden in order
to imply a particular hamiltonian property in a graph. Faudree and Gould
have characterized all pairs of subgraphs that imply traceablity in connected
graphs. In this paper we identify two families of triples of subgraphs that impiy
traceability when forhidden.

1 Introduction and Definitions

All graphs considered here are simple—no loops or multiple edges. For terms not
defined here, see [3].

Let (+ and S be connected graphs, If & ddes not contain an induced subgraph
that is isomorphic to 5, then & is said to he S-frec. Furthermore, if F is a family of
connected graphs, and if ¢ does not coutain an induced subgraph that is isomorphic
to any graph in 7, then (7 is said to be F-free. In these cases, the graph S and the
graphs in F are called forbidden subgraphs.

A topic that has long been of interest ts the determination of various families of
subgraphs that imply certain hamiltonian properties. In particular, this paper inves-
tigates the relationship hetween forbidden subgraphs and traccability, the existence
of & spanning path. The reader will notice that eacli result presented here assumes
connectivity, This is a necessary assumption since a graph must first be connected in
order to have a chance at heing traceable,
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A reasonable first question to ask is whether or not there exists 4 connected graph
5 such that if a connected graph (7 is S-iree, then & is traceable. The graph P;. the
path on three vertices, provides an affirmative auswer to this question. It is relatively
easy to see that if a connected graph G is Ps-free, it is necessarily complete and. of
course, traceable. In [2} Faudree and Gould show that Py is in fact the only single
graph that implies traceability when forbidden.

Having taken care of the single graphs, let us now shift our attention to forbidden
pairs of subgraphs. First of all, it is trivial to see that if S is eny graph. the pair
{Ps. S} will imply traceability. This heing the case, it is more interesting to consider
pairs that do not involve Pa. An early result. of this type comes from Duffus. Gould,
and Jacobson [1]. The graphs A3 and N can be seen in Figure 1. The graph A7 3 is
also called the “claw.” and it appears frequently in forbidden subgraph resulis.

Theorem 1.1 If GG is ¢ connected {Ry3, N}-frec graph. then (0 is traceable.

N ALY

the claw the "bull”
the “net”
—— N\
A g
K,
Z 1

Figure 1: Graphs involved in forbidden pairs.

For a graph G, let C'{(7) denote the set of all connected induced subgraphs of
GoIE S € CI{N). then it is relatively easy to see that the pair {3, 5} is another
pair that implies traceability when forbidden. Foril (¢ is {4, 8}-ree. it is corlainly
{ N5 N}free as well, and is Lherelore traceable. There are live nonisomorphic con-
nected induced subgraphs of N: CI{N) = {N. B, Z1, Ku. Py} (see Figure 1. Henee,

we have the following corollary,

Corollary 1.2 Let (i be a connected graph and let § € CHN). If (7 is { Ky . SY-free,
~then (7 is fraceable,

Thus we know of five pairs of subgraphs that imply traceability when forbidden.

Faudree and. Gould [2] have recently shown that these five are the only pairs with
this property.
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Having characterized the pairs of subgraphs that imply traceability. it is a natural
step to ask about triples of forbidden subgraphs. Once again. it is clear that any triple
that has Py as a member will antomatically imply traceabilty. regardless of what the
other two members are. Furthermore. any triple that contains one of the five pairs of
graphs referred to in the above Corollary will alse immediately imply traccabilits. In
the sections that follow. we identify two families of triples of subgraphs that. when
fothidden, imply traceability in sufficiently large, connected graphs. These families
do not involve F;. and they do not, contaiu any of the five pairs mentioned earlicr.

Before proceeding, we give explanations [or some of the notation that will be
encountered. First of all, if 5 is a subset of the vertices of a graph (. then < 5 > will
denote the suhgraph of & that is.induced by 5. Furthermore, if T is a subgraph of 7
and v € V{G), then the set Np(v)is described by Np(v) = {z € V(T : 20 € E(G)}.

The last bit of notation that we wish to explain involves paths. In a graph G.
supposc we have paths F; described as [ollows:

P1 B AT T T TR L T

Pyruggiveg .o

P,;- CUREINUE2 e PR g

Assuming that the edges v;; vipy, exist for i = 1,... & — 1. and assuming thal the
vertices are all distinct. then the path P in (7 described by

P 1 sy P23 e 200 oo vV T

will be denoted as follows:

R R N SR [USTE U A

In a similar fashion. if »y ;, = py1. then the notation given by

[ora- v des (v o2 )Ry

will represent the path & in 7 given by

5 A T S T A I L P

2 The First Family: {K;,.Y. 7}
We begin this section with several lemmas,

Lemma 2.1 ({5]) - graph v is Zy-free if and only if each component of (7 is Ky-free
or complete mullipariile.

The following lemma is a well known result from introductory graph theory.
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Figure 2: The First Family.

Lemma 2.2 If G = Ky ppirpr then G s traceadle if and only if for each i €
{1,2,...,k}

<13
Ji

Theorem 2.1 Let r > 4 and | > 4 ke fived integers, Let G be a connected graph of
order n which is { K, ,,Y}, 7y} -free. Then if n is sufficiently large, G is traceable.

Proof: We consider two cases,
Case 1; Suppose G is Ky-free.

Suppose the maximum degree of &, A{(7), is at least r, and let v be a vertex of
degree A{G}. Since G is I5-free, we know that N (v} is an independent set. So we
have an induced A7, in &, a contradiction. Therefore it must be that A(G) < r.

Let w be a vertex of degree A{(G) and suppose that deg(w) > 3. For each 1 &
{1,2,...} define

Ni(w) = {v e V(G du,w) =i}

Since deg(w) < r we know that |V, (w)| < r. Similarly, since the degree of any vertex
in Ni{w) is bounded by r, we know that |[Nz(w}| < r%. By the same icken, we can
argue that [Na(w)| < r®,... | |Ni(w)j < r',.... Thus, if n is large enough, it must be
that Ny{w) #£ §. We assume that n is large enough for this to be true,

Let a; be a vertex of Ni{w). Then there must exist vertices ay,dy, ..., 4.1 such
that a; € N;(w) for each ¢ and such thaf

{w ey a0, iy, )

is & path in G. In fact, due to the nature of the sets A, this path is induced, Let
by, ¢, be vertices of Ni(w) different from «, (see Figure 3).

Since & is A-free, there are no adjacencies among «;,b;, and e,. If one of ) or
¢y is adjacent to ag, (say by ), then

< {(11..17],(!2,03.6[4._.. .C[}} >

is an induced 17, a contradiction, If neither by nor ¢; is adjacent to «y, then we have
that
< b, o, w, a1, 80,63, .. LGz} >
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Figure 3: The sets N;(w).

is an induced ¥}, another contradiction. Thercfore it must be that deg(w) = A(G) <
2.

Hence, G is & connected graph with maximum degree 2. That is, G is either a
path or a cycle, and both of these are traceable.
Cese 2: Suppose (4 is not Ky-Iree.

Since G is Z;-free, we know from Lemma 2.1 that G is complete multipartite.
Further, since G is K1 ,-free, the size of each partite set must be less than r. Thus,
if » is large enough, no one partite set can be larger than the sum of the sizes of
the other partite set. That is, the condition of Lemma 2.2 holds, and G must be
traceable.

This completes the proof, : 1

{~1 -
Nole here that n > 1 + Z(v — 1) suffices in the proof. Also notice that the resuli

i=0
holds for » < 4 and/or { < 4 from the pairs work in [2].

Corollary 2.2 Let r 2 4 and | = 4 be fized integers. Let R € CI{K1,),S € CI(V),
and T € CI(Z,). If G is a connected graph of order n that is {R, 5, T} -free, and if n
is sufficiently large, then G is traceable. ]

3 The Second Family: {K;,, P, V,.}

The proof in this section will make use of Ramsey numbers, a well-known topic in
graph theory. Given positive integers m and n, the Ramsey number, denoted R{m, n),
is the least positive integer p such that every graph on p vertices contains either Kn,
or K, as an induced subgraph. That is, either G contains a clique of size m (or more)
or (7 contains an independent set of vertices of size n.

We now state another well known result from Hall [4].



Theorem 3.1 {[4]) Let G = { \’UY F) be a bipartite graph. Then X can be matched
to a subsel of Y if and only if [IN(X")| = |X'| for all subsets X' of X

- ——

— P,

Figure 4: The Second Family.

Theorem 3.2 Let r > 4 and m > 3 ke fized intergers. Let G be a eonnected graph
of order n that is { N ,, By, Vi }-free. If n is sufficiently large. then 7 is traceable,

Proof: Let € be the largest clique in G, and let
F={veV(G\C):ew e B{GF) lor some ¢ € V(C)}.

That is, P is the set of neighbors of the vertices of €' that are not themselves in C.
We will call the vertices of P peripherals. We now prove several preliminary facts.

Fact 3.1 lor the graph G, V{(G) = V(CIYU P.

Proof: Suppose this is not the case. Then there must be some vertex of &, say »,
that is neither in V(') nor P, and such that d{», ') = 2, We know then thal v must
be adjacent to some vertex, say w of P. Further, it must he that w is adjacent to some
e € V(C), and since (© is maximal, there is some ¢ € V({') such that we' & E{G

But this means that < {1!,w.c.c’} > is an induced Py, a contradiction. Hence, no
such v can exist, and s¢ V(&) = V(CjU P. E

Fact 3.2 For the cligue C. |V(C) > Ar +m.

Proof: Since n is sulficiently large. we can suppose n > R{dr 4+ m.r{dr+m)+ 1), If
[V ()] < 47 + m. there must be an independent set of vertices 1 of size r{dr 4-m) -+ 1.
Al most one of these vertices is in C, so there are at least »(dr + m) li}depEi]df_‘lﬂ
peripherals. Thus some vertex ¢ € (! is adjacent to at least

r(dr 4+ m} 5 r{dr +m)
V() Ar +m

of these independent peripherals in I. Denote r of these vertices by viova, ... 2.
Then we have that
{(:, DIy Uy e e 20 )

is an induced K'),. Therefore it must be that [V (C)] = 4r + m. ]



Fact 3.3 For the set P, alP) < r. where a{P) is the independence number of P.

Proof: Suppose this is not the case, and let {v1.24.... .15} be an independent set

of peripherals. We suppose without loss of generality that these vertices are labeled
so that [Ne(e )] = [Ne(m)] = .0 = INe (e

We now claim that if r and y are nonadjacent peripherals, then either Ne-(2) C

j\—(_'(y) or .-'\'C(- ) € Ne(x), If this is not the case. then both Ne(2) '\ \c i] ) and

y)\ Neia) are nonempty. Let a € Nef(x )\ Ne(y) and let b€ Ne{y \ AN Then

we ha\e that < {x.a. by} > 1san mduced P4 (see Figure 5). which s a (OIltldLllCUOIL

Figure 5: An induced Fy.

Thus, the claim hoidq and therefore we have that Ne(wv) 2 Ne(i) 2 000 2

Nele:), and since Ne(v,) # @ | there exists a vertex w € Ni_; Ne(w). But then
we have that < {w, 1;.“, ... ¥} > is an induced K, and this is a contradiclion.
Therefore. it must be that o(F) < r. 1

Now we partition £ into two sets:
Pr={ve P |Ne(v)| > 2r)
T ={ve P |Ne(v)| £ 2]
Fact 3.4 The graph < P~ > is completc.

Proof: Supposce that r and y in P~ are ronadjacent. We }M\r that | Ne (e UNe(y)] <
2r 4 20 = dr,and since [V(C)] 2 Ar +anowe have that [V(CV Ne(ry U Ne ()] = m.
Now, from the claim within the proofl of Fact 3.3, we know that » d“(l y must have
a common neighbor in (', say ¢ (see Figure 6).

Thus il 23,29, .. o1 are distinct vertices of O [N (r) U Neo{y)). then

<f{rydornre. o o1}

is an induced 1,,, a contradiction. Thus. < £~ > musl be complete. [



Figure 6: An induced V7,.

We will now partition the vertices of P* into disjoint paths. Let 5; be a longest
path (not necessarily induced) in < P* >. Say that a; and by are the endpoints of 5,.
Let 57 be a longest path in < P*Y ¥ (5;) », say with endpoints ay and by, We can
continue this process until we have paths 5y, 5;,... .5 where V{5;) U V(S)U... U
V(5) = P, and where for each i € {1,2.... .I}. the path 5; has endpoints ¢; and
b;. Now, from this construction, we see that ¥(5:),1{52),... . ¥(5)) are necessarily
disjoint. Further, {a.,ay,... ,a;} must be an independent set. for il a; were adjacent
te a; where 7 < j, then the path 5; could have heen extended by one verlex, Hence,
from Fact 3.3, it must be that | < r.

Now, it might be the case that some of these paths are single vertices. Suppose
that the paths S1,53....,5, are the paths with more than one vertex, and that
Siyr1.Siey. ... oS are the single vertex paths, That is, a; = b; for each 7 € {# + L1 +
2,....0}. Fort 41 <7<, split the vertex ¢; into two distinct vertices a; and b;.
and connect them with an edge. Further, place edges between & and all vertices of
Nela;) (see Figure 7).

G el

Figure 7: The splitting of veriex a,.

This splitting creates a new graph &' (il + = £ then 7 = ). and we have
converted Lhe single vertex paths Sy, ... S into two-vertex paths. while the ather
paths Si..... Sy remain unchanged.



Consider the bipartite subgraph of G’ defined as follows: B = (XU}, F(B}) where
X =day, baybs. .. .a,b}and Y = f_l(;VC((z;)UA\'g-(b;)) and where E{ B} = {zy:

reX,ye¥ and sy € E(G")}. Let R T X. Then in B we have
IR < |X| =21 < 2r < [N(R)]

since in &G, |Ne{x)| > 2r for anv @ € R. Thus by Lerama 3.1. X can be matched to
a subset of Y. For each i, say that ¢; and §; in X are matched to ¢ and &7 in 1,

-

respectively. Figure & iilustrates the situation in the graph G'.

|
4

Figure 8: The graph .

We now show that (' is traceable by constructing a hamiltonian path. Since
< P~ > is complete, it is certainly traceable. Let 73 he a hamiltonian path in
< P7 > say with endpoints & and y. Now, let ¢ € V((7) be a neighbor of y.

Case 1: Suppose ¢ = ¢} or ¢ = b7 for some I,
Suppose without loss of generality that ¢ = «}. Let T, be the following path i
"
afay by boag, [aa bo)s, b5 e [an s, O
Finally, let T3 be a path that begins at #7 € V{(7) and contains all vertices of  that
are not on the path 75, and suppose the other endpoint of T3 15 = € V(€7). Then the
" path given by
[r.y]r . elay Bl 0 =],
is a hamiltonian path in .
Case 2 Suppose ¢ # of. b7 for all 1.

Let T be as described in Case 1. Let Ty be a hamiltonian path in (" with endpoints

e and ¢}, Then the path given by l

{‘Iv y]ﬂ' [( (IHTJH ((’T‘ bﬂ'ﬁ

is a hamiltenian path in G
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Therefore, we can conclude that 7 is traceable. {Note: If either of Pt or P is
empty, (' is siill clearly traceable.) If G is isomorphic to (. the proof is complete.
So. assume that ¢ is not isomorphic to (', and sav that vertex a; € (v was split 1o
form vertices a; and b; in G’, In our construction of a hamiltonian path in /. the edge
a;b; was used (it was the path S;). Hence, by identifving the vertex a; € V(G') with
the vertex & € Vi), we do not affect the existence of a spanning path. Therelore.
if we identify all pairs of vertices of (7 that were a result of splitting. we obtain the
graph &. and we see that 7 is also traceable. [

Note here that » > R{dr + m.r{dr + m) + 1) suffices. Again. if r < 4 and/or
n < 3, the result follows from the pairs result in [2].

Corollary 3.3 Leir > dandm = 3 beﬁ.rf-d infegers, Lt Re CI{KN, ). 5 € CI{UP).
and T € CI(V). If G is @ connecied graph of order n that is {R.S.T}-free. and if
n i« sufliciently large, then G is traceqble, F
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