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Abstract

We examine several problems involving paths or eycles in graphs. In par-
ticular, we eonsider the following:

Problem: Given a particular hamiltonian-type property £ such as being
lamiltonian, traceable, pancyclic {and others), and given a connected (or 2-
connected) graph 5 when is it possible to determine all pairs of grapls (12, §)
sielt that if &' is (R, §)-free, then & has property P?

Problem: A hamiltonian eyele is in some sense the simplest type of 2-factor
possible in a graph, Under what conditions can we determine other types of
2-factors? For example, when can we determine that a graph will contain a 2-
factor consisting of exactly & disjolnt cycles? When can we specily the lengths
of these & eycles?

Problen: Given vertices 21,22, .. Zky Y14 ¥2,- .. 2 4 of &, then G s called
k-linked if there exist vertex disjoint paths joining z; to y; foreach i = 1,2,... , k.
Conditions implying a graph is A-linked will be discussed.

1 Introduction

All graphs considered will be finite and simple. For terms not defined here see [15].

Given a family F = {{1, Ha, ..., 1.} of graphs we say that a graph ¢ is F-Tree if
G contains no induced subgraph isomorphic to any If;, i = 1,2,... 4. In parlicular,
il F = {1}, wesimply say G is f[-[vce. We call the graphs in F forbidden subgraphs,

We denote the cycle on n vertices as Oy, path on n vertices as £, conmplete graph
ot it vertices as A, and the complete bipartite graph with r vertices in one set and m
verlices in the other set as K. We define the graphs Z; 7 = 1,2,... to be a triangle
with a path P; altached to one of its vertices (sce Figure | for Zy). Recall, a graph is
hamdtonian il i contains a spanning cycle; traceable il it contains a spanning path.
Further, let a9((5) = min{degu + dege}, where the minimum is taken over al} pairs
of nonadjacent vertices u, » in G,
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Problems involving paths and cycles in graphs abound. In this paper we will
concentrate on three such problems, each very different in nature. A background of
refated results for each problem is discussed and key remaining questions are high-
lighted.

2 Characterizing Forbidden Families for Hamilto-
nian Properties

The use of lorbidden subgraphs to obtain classes of graphs possessing special prop-
erties has long been a commen graphical technique. It has been pointed out that,
tlie star Ay 3, sometines called ihe elaw, has often been a part ol these forbidden
families. The reason {or this observation shall become clear, at least for hamiltonian
properties, as we proceed,

Onc of the earliest forbidden subgraph results dealing with hamiltoniaa properties
is the following result from {9]. The graphs Kya and N are shown in Figure 1.

Theorem 1 Let & be a {Kya, N}-free graph. Thea
(1) i G is connecled, then G is traceable and
(2} 4f ( is 2-connected, then G is hamiltonian.

Theoremn | is typical of those in the literature to date. It imposes minor, but
necessary, connectivity conditions on the class of graphs defined by a forbidden pair
of graphs in order to obtain hamiltonian results. The connectivity conditions used in
Theorem 1 are the minimal ones necessary in graphs with the corresponding hamil-
tonian properties, :

Sl

Figure 1: Some common forbidden grapls.

[ P is a hamiltounian property (like traceable, hamilionian, pancyclic, etc.}, let
&{P) denote the least connectivily possible in a graph with property P. Thus, for
example il P is tracecability, then £(P) = 1; while if P is hamillonicity, then &(P) = 2.



In this section we wish to consider the following problems:

Problem 1 For fired & > 1 and hamitonian property P, determine all families F
consisting of k distinct connected graphs with the property that any k(P)-connected
F-free graph will possess pmpmf_j P,

This idea was introduced by Bedrossian [5] who constdered it for pairs of connected
graphs and the properties of being hamiltonian and pancyclic. However, in proving
which graphs must be forbidden, he considered small order graphs in his proofs. In
[L1] his results were reexamined with the added restriction that only infinjte families
of graphs would sulfice to rule out a particular subgraph. In doing so, Bedrossian’s
results were extended for-graphs of sufficieutly large ovders.

We concenirate here on one and two graph forbidden families, The single forbidden
subgraph problem Lurns out to be a very restrictive situation and easy to solve,
The case of forbidden triples has also been studied for several different hamiltonian
properties. Elowever, we shall not consider that problem here. The question for
triples, as you might expect, is considerably more involved.

The single forbidden graph problem is trivial. Suppose (7 is connected, has order
1 > 3 and is Ps-free, then (7 is casily seen to be a complete graph K. But EGis -
complete, then (7 has every hamiltonian property. Thus, forbidding £y alone implies
each hamiltonian property P and thus any other graph could be paived with & to
obtain the same result. In [act, in [11] it is shown that £ is the only single graph
that solves our problent {except for induced subgraphs of %)} and thus we will remove
it (and its induced subgraphs) from consideration in forbidden pairs,

We now consider the problem of all forbidden pairs that imply a 2-connected graph
is hamiltonian. In order to solve this problem we will need several results from the
literature as well as the example graphs of Figure 2, each of which is 2-connected and
nonhamiltonian. The positive results were provided for the families { Ky 3, Fs} in [6],
{13, Za} 1 [16] and {13, W} in [3]. )

A characterization of all pairs that imply a 2-connected graph is hamiltonian was
accomplished in [5], However, as mentioned carlier, graphs of small order were used
in the proof to climinate certain graphs, namely Z3. However, recently {A 1, Z3)
(see [131) was shown to be a viable forbidden family for graphs of order n > 10. The
following result is from [L1].

Theorem 2 Let R and 8 be connceted graphs (1,8 # %) and G a Z-connccted
graph of order n = 10, Then (7 is (R, §)-free implies G is hamiltonian if, and only
if, B = Kig and § is one of the graphs Ca, Py, P, Py, Zy, Z3, 73, B, N or W.

Nate thal the condition that n > 10 in the last result is only needed for the pair
{K1a, Z3}. We now sutnmarize the results of [L1] in the [ollowing table, Here, Y (Yes)
indicates that graph can be paired with the claw to give the corresponding property
P. Note that a graph & of order n is pencyelic il it contains cycles of all possible
lengths from 3 to n, panconnected if any two vertices u amd v are joined by paths of alt
possible lengths from the distance d(w, v} up to n, and finally, G is cycle eztendable
(sce {17]) if any nonhamiltonian cycle of (¢ can be extended to a cycle containing
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exactly one more vertex, that is, € is extended to C" where V(') = 1(C) U {«}
for some z iIn V. Note, the 2 cases below when n > 10 represent extensions of
Bedrossian's work,

P [Graph Ca| Py | Bs A Z 1 2 Za BN W
Traceable Y | Y Y Y'Y
Hamilton Y| Y|Y Y Y Y Y YiY]Y
n > 10
Pancyclic . Y| Y Y Y [Y
n 2> 10

_ T14]
Panconnectod Y
Cycle Y | Y Y| Y
IExtendable

A very big hole remains, namely lov the property of being hamiltonian connected,
that is, having the plopelty that cach pair ol vertices can’ be joined by a spanning
patls.

Problem 2 Whal pairs of connected graphs (£,8) (R, S # Py) imply thal a 3-
conneeled (1, SY-free graph @ is hamillonian connceled?

Unfortunately we have few answers to problem 2. We do know that one of the
graphs must again be Rys (see [11]). However, the only pairs for which we have
positive results are {iy2, N} [22] and very recently, {/y3, Z;} [LL]. It would be
helpful to determine which of Py, Za, and W, il any, can also be paived with &' a.

3 The Structure of 2-Factors

Recall that a 2-factor of (7 is a 2-regular spanning subgraph of (. Thus, a 2-factor
is clearly the union of cyeles. Henee, in finding hamiltonian cycles, we are actually
finding 2-factors. In one sense these are the simplest 2-factors as they consist of
onfy one cycle, In another sense, Lthis may make them the most difficult 2-factors to
actually find, Can we find 2-factors consisting of two disjoint cycles thal together
span V()7 Or for that matter, for some specificd inleger &, can we find & disjoint
cycies that form a 2-factor of &7 Can we ask for ever more?

Problem 3 Under whal conditions can we complelely control the struclure of a 2-
Jactor? More specifically, when can we specify the number and lengths of the eycles
conmposing the 2-factor?

Erdds (see [2]) asked a :imilar, but more particular question,

Problem 4 Lel [f bea Jmph of order Ak with 8(H) > 2k, then does II contains k
verter disjoint 4-cycles?
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The following result (see [3]) has proven useful in our study of 2-factors, as it
supplies a condition for a graph to contain k disjoint cycles (not necessarily spanning

ViGY).
Theorem 3 If [V(G)] = 3k and J(G) > 2k, then G conlains k disjoint eyeles.

This result can be deduced from a result of Corradi and Hajnal (7] which provides
the special case when |V{G)| = 3£.

Aigher and Brandt [2] were able to find a very powerful condition answering our
original question on 2-factors.

Theorem 4 Let H be a graph of order nowith §(1T) = (20— 1)/3, then I contains
any graph G of order at most n with A(G) = 2, '

In particular then, given iy, ny, ..., g where n; > 3 and EL! ni = n, the graph
I will contain a 2-lactor F =CLUC U, UG, where |V(CH)| =04, i =1,2,.., k.
That is, we can find a 2-factor of every po:;siblc form in .

The Aigner and Brandt result imposes a very strong condition on the graph,
however, that is to be expected when we are asking for so much in return, Now
suppose we ask [or a little less control on the structare of the 2-factor,

Problem & nder what conditions can we control the number of eyeles in a 2faclor?

In termss of degree conditions, this problem has again been answered.

Theorem 5 [4{] If (7 is ¢ graph of order n with
(1) 8(GY > n/2 and n > 1k or
(2) o2() 2 n and n > 5k
then G has a 2-facior with exactly k cyeles.

It is now natural to modify our last problem as follows.

Problem 6 Whel conditions allow us to reduce or eliminale the degree condilions of
Theorem 5 7

One divection that has been explored is the use of forbidden subgraphs, In his
Ph.D. thesis, Acree [1] showed that the Corradi-Hajnal condition in 2-connected K 3-
free graphs implies the grapl contains a 2-factor with & disjoint cy(lts in fact, he
showed that any collection of & disjoint ¢ycles could be extended 1o a 2-factor of the
graph. :
Finally, one other duchmu should be mentioned. El-Zahar [10] gave the following
conjecture,

Conjecture 1 Let /I be a graph of ordern = ny + ... + ny with §(11) > T 2
then Uf‘___IC»,l‘ c i, .

Note that for & =1, this is the well-known Theorem of Dirac [8] an hamiltonian
- cyeles; while for ny = 3 (1 = 1,2,..., k) this is again a result of Corradi-Hajnal [7]-
El-Zahar [t0] proved the case & = 2. The graph G=HK, 4+ [\Ln_ﬂ_;/” [nea4172]
shows that the conjecture is best possible.
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4 k-Linked Graphs

We say that a graph G is k-Linked if it has at least 2k vertices and, for any ordered
set
{’U1, Uy e y Ul Wiy - ,'[L'k}
of 2k distinet vertices, G has k disjoint paths P,... , P, such that P; connects v; to
wiy = L.,k
Clearly, a necessary condition for (7 to be A-linked is that 7 be (2k—1)-connecled,
Jung [18] and Larman aad Mani [19] independently showed the following sufficient

condition.

@

Figure 2. A 5-connected planar graph not 2-linked.

Theorem 6 If ¢ is a 2k-connected graph which contains a subdivision of Ny, then
G is h-linked.

k
The prool used a result of Mader [20] that says if §(G) = 2(3), then G contains
a subdivision of Ny, Szemeredi (see [24]) has dramatically lowered this lower bound.
Llowever, the problem: that has drawn the mest attention to date is the lollowing:

Problem 7 What is the smatlest conneclivily necessary lo ensure thal a graph is

k-linked, k> 17

Let f(k&) denote Lhe smallest connectivily ru:cessm‘y'to ensure that a graph is k-
tinked. Clearly, f{1) = 1 (just the definition of connected). Jung [18] proved that
J(2) = 6. To sce thal 5-connectivily is not cnough, counsider the graph of Figure 2
with {A, 3,C, D) as the ordered set of vertices. Clearly, any path from A to B in
this graph will block all 3 to D paths. For & =3, f(k) is still unknown.

Seymour f21] and Thomassen {23] independently characterized graphs that are not
2-linked. Their characterization is somewhat technical and will not be explored liere.
Many other gnestions siill remain.
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Problem 8 Determine conditions, olher than connectivity, that imply a greph is k-

Iinked.

Problem 9 What conditions will reduce the conneclivity needed to show a graph is
k-linked?

Migure 3: The graph X,

At least some work {see [12]) has been done in this direction.

Theorem 7

1 f G is a S-connecled Kyg-free graph of order n > 4, then G is 2-linked.

2, If G is a f-connected { Ky a, B}-free graph, then (0 is 2-linked or (¢ conlains an
indueed X (see Pigure 3).

Generalizations ol this to higher values of & are also possible, The following is
also from [12].

Theorem 8 {f G is K\, -free and has conncclivity {20 — 23k - 1) + 1, then G is
k-linked.
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