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ABSTRACT

A formula is presented for the ramsey number of any forest of order at
least 3 versus any graph G of order n=4 having cligue number n—1. In
particular, if T is a tree of order m =3, then r(T, G)=1+(m —1Hn-2).

INTRODUCTION

For graphs G, and G,, the ramsey number r((G,, G,) is the least positive
integer p such that if every edge of the complete graph K, is arbitrarily
colored red or blue, then there exists either a red G, (a subgraph
isomorphic to G; all of whose edges are colored red) or a blue G..
Equivalently, r{G,, G,) is the least positive integer p such that if K, =
RODB is an arbitrary factorization of K, [i.e., R and B have order p and
E(R)UE(B) is a partition of E(K,)], then G, is a subgraph of R (in
symbols Gy < R) or GG, is a subgraph of B.

There has been great activity in recent vears in the determination of
ramsey numbers of certain pairs of specific graphs and, in some cases, of
graphs belonging to prescribed classes. One of the best-known results of
this latter type is due to Chvétal [3] who showed that

T, K)=1+{m—-1)}n—-1),
for every tree T of order m and every positive integer n.
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TREES VERSUS NEARLY COMPLETE GRAPHS

In this section we present a result analogous to Chvétal’s. The following
lemma will be useful, where P, denotes the path of order 3, B,(G)

denotes the edge-independence number of a graph G, and G is the
complement of G.

Lemma 1 (Chvital and Harary [4]). For any graph G or order m
without isolated vertices,

m, if G has a 1-factor;

"G B {Mmzﬁl(é)—l,

First we establish the ramsey number of any tree of order at least 3 vs:
P,

Theorem 1. 1f T, is any tree of order m =3, then

T P3):{m+1, if T, is'; a star and m is even;
", otherwise,

Proof. If T, is a star and m is even, then T, does not have a 1-factor
and and B,(T,.)=4(m—2), so, by Lemma 1, r(T,,, Ps)=m +1. The re-
maining case also follows from Lemma 1 once we show that g,(T,,)=
[1m]. This is verified by induction on m. If m =3 or m =4, the result is
immediate; thus we assume that m =35, Since T,, is not a star of even
order and since m =3, it is possible to remove two end-vertices from T,
so that the resulting tree T,,_, is not a star of even order. By the inductive
hypothesis, By(T,,—o)=[3(m —2)]. Since B(T,)=B:(T,-2)+1, we have
Bi(T,)=[im]. 1

We now present a formula for the ramsey number of a tree versus
K, —e, which denotes the graph obtained by deleting an edge from K,.
Portions of the proof of the next result were suggested by Burr’s proof [ 1]
of Chvital’s theorem and are similar to techniques employed by Burr and
Erdos [2].

Theorem 2. For each tree T, of order m =3 and each integer n=4,
T, K,—e)=1+{m—1)(n—2).
Proof. Since K,_; =K, —e, it follows by Chvétal’s theorem that
1+{m—D{n-2)=r(T,, K,_)=rv(T,, K, —e).

We establish the reverse inequality #(T,, K, —e)=1+(m—-1)(n-2),
and thus the theorem, by induction on n{=4). Observe first, however,
that Lemma 1 implies that r(T,, K, —€)=2n—3 for all n=4.
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We begin with the case n =4, which is verified by induction on m(=3).
Note that r(T,, Ky—e)=25 (which is also stated in [4], for example).
Assume for m =3, that »(T,,, K,—e)=2m~—1, where T,, is an arbitrary
tree of order m. Let T be an arbitrary tree of order m + 1. We show that
r(T, K,~e)=2m+ 1. Suppose, toa the contrary, that there exists a factori-
zation K., =R®B such that TZ R and K,—eZ B.

Let v be an end-vertex of T and let u be the vertex of T adjacent with
v, Then T—wv is a tree of order m. Since, by hypothesis, r{T—uv, K,—¢)=
2m—1, we may assume that T—v < R. Let S denote the set of m+1
vertices of K, ,, that do not belong to the given red T—v. Since TZ R,
each edge joining u and a vertex of S is blue. If T is not a star of even
order, then r(T, P;)=m+1 by Theorem 1, so that the induced subgraph
{8) contains a blue P;, implying that K,— e < B, & contradiction.

Assume next that T is a star of even order m + 1. If {§) contains fewer
than 4(m+ 1) (necessarily independent) blue edges, then S may be par-
titioned as S,US,, where |S;|=1, |S;;=m, and all blue edges of {S)
belong to {S,). Thus, a red T is a subgraph of {8}, which produces a
contradiction. Otherwise, (S) contains exactly 4(m -+ 1) blue edges. In this
case, the red subgraph of (8} is (s ~ 1)-regular. If only blue edges join S
and the vertices of T—v, a blue K,— e is produced; otherwise, a red T is
produced. In either case, we arrive at a contradiction.

Next assume that

T K,—e)=1+(m-1)(n-2),
for a fixed but arbitrary integer n =4 and for each m =3. We prove that
r(Tm: Kn-+~1 - e) =1+ (m o 1)(” - 1)>

for every m=3 by induction on m. We have already seen that
r(Ts, K, ., —e}=2n—1. Hence we may assume now that

T Kppr—e)y=1+(m—-1(n—-1),
for a fixed m =3 and prove that
Wy, Koy —€)=1+m(n—1),
Proceeding as above, we let T be an arbitrary tree of order m+1 and

assume there exists a factorization K, .. 1,= R@ B such that T# R and
K, 1—eZ B. Let v be an end-vertex of T and let u be the vertex of T

n

adjacent with v. Then T—v is a tree of order m. By the inductive
hypothesis on m,

HT—0, K —el=1+{m—1}(n—1),
which implies that T—v <R,
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Let S denote the set of vertices of K, (1) that-do not belong to the
fixed red T—v. Observe that |S|=1+m(n—2). By the inductive
hypothesis on n,

T K,—e)=1+mn—2),

implying that (S) contains a blue K, —e. If any edge joining vertex u of
T—v and a vertex of K, —¢ is red, a red T is produced; while if all such
edges are blue, a blue K,,,—e is produced. Thus, a contradiction arises,
completing the proof of the theorem. I

The conclusion in Theorem 2 may also be given in the form

HT,, K, +EK)=1+(m—1{(n—2}.

Bounds and some specific results on the ramsey numbers #(T,,, Kﬂ-ﬁ,)
have been obtained by Rousseau and Sheehan [5].

The clique number of a graph G is the maximum order of a complete
subgraph of G. Since K, ;= G< K, —e¢ for every graph G of order n and
clique number n—1, we apply Theorem 2 and Chvétal’s theorem to
obtain the following result.

Corollary 2a. I T is any tree of order m=3 and G is any graph of
order n =4 having clique number n—1, then

(T, G)=1+(m—1){n—2).

FORESTS VERSUS NEARLY COMPLETE GRAPHS

Chvatal’s theorem was extended in another direction by Stahl [6] who
showed that if F is a forest, then

1 1) = max {G=100=2)+ 3, i1}, )

i=j

where k; is the number of components of F of order i and m is the largest
order of a component of F, We now show that Stahl’s proof technique can
be used to extend Eq. (1). Following Stahl [6], we begin with a lemma.

Lemma 2. Tor each forest F of order at least 3 which consists of k trees,
each of order m, and for each integer n =4, ,
HF K,—e)=mk+(m—1{n—3).
Proof. By Stahl’s theorem,

mk+(m—D(n-3)=rF, K, ;)=rF K, —e).
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With the aid of Theorem 2 we now show that
rHF, K, —e)=mk+{m—1}n-3),

which is verified by induction on k(=1). For k=1, the result follows
directly by Theorem 2. Assume the lemma is true for all forests consisting
of k—1 trees (k>1), each of order m >3, and let F be any forest with k
trees, each of order m. Let l=mk+(m—1)}{n—3) and consider an
arbitrary factorization K, = R@B such that K, —eZ B. We show that
FcR. :

Let T be a component of F. By employing Theorem 2, we conclude
that Tc R. Observe that

K~ V(T)=[(K;—~ V(T)HNRIBUK; ~ V(TH N B]
is a factorization of the complete graph of order
l-n=m{k—1)+(m—Di{n—3).
By the inductive hypothesis,
F-WV(T)=(K; - V(ThNR.

Hence Fo R

We now proceed to the case of an arbitrary forest of order at least 3.
For a forest F, recall that k; denotes the number of components of order i
and that m is the largest order of a component of F.

Theorem 3. For each forest F of order at least 3 and each integer n =4,

r(F, K, —e)= max [(j— Din—3)+ 'Ej:z ‘ ki].

1=j=m

Proof. By Stahl’s theorem

max {(G-1n =3+ & i+ k| =1l K, 9=r(E K=o

1=j=m i=

With the aid of Lemma 2 we verify the reverse inequality

r(F, K, —e)= max {(j—'l)(n—S)-fi i-k,}. 2)

1=j=m i=j
For 1=j=m, it is convenient to let F, denote the subforest of F
consisting of all components of order at least j. Observe that F; has order
YLk
Suppose that the maximum in Eq. (2) is assumed for j=j, and let

m

o= Z ik

i=fo
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The maximum in Eq. (2) is then [ = py-+(jo—1)}n—3).

iet K, =RWUB be an arhitrary factorization where K,-eZ B. We
shaw that F=F, = R by descending induction on j. Note that F,, © R by
Lemma 2. Assume that F, = R, where 1==j<‘m. We show that F;, = R. If
F,=F4, the result is obvious. Otherwise, F;— V(F,,,) consists of k;
trees, each of order j. Note that

K= V(F, ) =[(K— V(F,. ) NRIB(K, ~ V(EF..)) N B]

is a factorization of the complete graph of order I—-} . i k. By the
definition of [, it follows that

m

I— Y ikg=j-k+(—1{n-3).

i=j+l
By Lemma 2,
r(F,— V(F.), K, —e)=j-k+({—1}{n-3).
Hence _
F=V(F, )= (K~ V(B )NR,
so that F, < R.

Thus, by induction, F, = F< R, completing the proof. 1
Theorem 3 and Stahl’s theorem now imply the following,

Corollary 3a. I F is any forest of order at least 3 and G is any graph of
order =4 having clique number n—1, then

r{F, G)= max {(]— 1}(n—3)+ﬁii- ki}.

1=j=m i=j
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