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ABSTRACT

We consider a generalized degree condition based on the cardinality
of the neighborhood union of arbitrary sets of r vertices. We show
that a Dirac-type bound on this degree in conjunction with a bound
on the independence number of a graph is sufficient to imply certain
hamiltonian properties in graphs. For K, ,-free graphs we obtain
generalizations of known results. In particular we show:

Theorem. Let r=1 and m = 3 be Integers. Then for each non-
negative function f{r, m) there exists a constant C = C{r, m, f(r, m))
such that if G is a graph of order n (n=r,n > m) with §(G) =
(n/3) + Cand B(G) = f{r,m), then

{a) Gis traceable it §(G) = rand G is connected;
{b) Gis hamiltonian if 8(Gy = r+ 1 and G is 2-connected,;
{c) Gishamiltonian-connectedif 8{G) = r + 2and Gis 3-connected.
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Dirac [2] proved that if G is a graph of order n = 3 with 8(G) = n/2, then G
is hamiltonian. In [5], Matthews and Sumner lowered the minimum degree
condition for hamiltonicity by imposing the condition that G be clawfree
(i.e., G contains no induced subgraph isomorphic to K 3).

Theorem A [5]. If Gis a 2-connected K, a-free graph of order n = 3 with
8(G) = (n — 2)/3, then G is hamiltonian.

Recently, Markus [4] obtained similar results for K ,,-free graphs, m = 3.

Theorem B [4]. If G is a 2-connected K ,,-free graph of order n = 3 with
8(G) = (n + m — 2)/3, then G is hamiltonian.

Both of the previous theorems have analogs for traceable graphs and
hamiltonian-connected graphs.

The idea of minimum degree can be generalized as follows. For a graph
G of order n and r = n, define

8.(G) = min | U,es N)l.
SELY
=r

Then, of course, §(G) = §1(G). In [3], the following results involving §,(G)
were established.

Theorem C [3]. If G is connected K s-free graph of order n such that
8,{G) = (n + 1)/3, then for n sufficiently large ¢ is traceable.

Theorem D [3]. If G is a 2-connected K s-free graph of order n such that
8,(G) = (n + 1)/3, then for n sufficiently large G is hamiltonian.

Theorem E [3]. If G is a 3-connected K, ;-free graph of order » such
that 8,(G) = (n + 24)/3, then for n sufficiently large G is hamiltonian-
connected.

Here we will prove results that in some sense incorporate and generalize
Theorems A—FE. Undefined terms and notations can be found in [1]. We
begin with Theorem I, which establishes sufficient conditions for traceabil-
ity, hamiltonicity, and hamiltonian—connectedness based on 6.(G) and the
independence number B(G) of a graph G.

Theorem 1, Let r = 1 and m = 3 be integers. Then for each non-negative
function f(r,m) there exists a constant C' = C(r,m, f(r,m)} such that if
G is a graph of order n (n = r,n > m) with 8,(G) = (n/3) + C and
B(G) = f(r,m) then

(a) G is traceable if 8(G) = r and G is connected;



GRAPHS WITH BOUNDED INDEPENDENCE NUMBER 399

(b) (5 is hamiltonian if §(G) = r + 1 and G is 2-connected;
(¢) ¢ is hamiltonian-connected if §(G) = r + 2 and G is 3-connected.

Proaf. We proceed by induction on n and assume that (a), (b), and
{c) have been established for all graphs of order less than #. (The proof
is anchored by selecting C large.} Let G be a graph of order » such
that 8,(G) = (n/3) + C and B(G) = f(r,m). Assume that G satisfies the
hypotheses of (a), (b}, or (c). We first show that

(i) if G satisfies the hypotheses of (a), then & has a path of order at
least (Zn/3) — (2r/3);
(ii) if  satisfies the hypotheses of (bh), then G has a cycle of order at
least (2n/3) — (2r/3);
(iii) if G satisfies the hypotheses of {c), then G has a # — v path of order
at least (2r/3) — (2r/3) for each pair u,v € V(G).

Let X denote a longest path of G, longest cycle of G, or longest ¥ — v
path of & depending on whether we are in (i), (i), or (iii). We first
show that |V(X)| = n/6r. Since §.(G) = (n/3) + C, for C sufficiently
large every vertex of G with at most » — 1 exceptions has degree at
least (n/3) + r — 1. Let § be the set of vertices of degree less than
(n/3r) + r — 1 and let H = (V{(G) — S). Then every vertex of H has
degree at least n/3r (in H). Let P be a longest path in H, with initial vertex
w. Then every adjacency of w in H is on P so that one of these adjacencies
together with a segment of P forms a cycle € in H with at least n/3r
vertices. This cycle (or path) is also in G. It is straightforward to use this
cycle to show that in the hamiltonian-connected case, any two vertices u
and v can be joined by a path using at least half the vertices of the cycle.
Thus, in all cases, |V (X)| = n/6r.

Next, if L denotes the vertices of G not on X of degree less than C/r, then
L] = r — 1, Thus, if V(G) = V(X) UL, then [V(X}| Zzn—r+1=
(2n/3) — (2r/3). Assume, then, that V(G) # ViX) U L.

We wish to show that the removal of I vertices from G — V(X) — L,
0 = { = 2, results in at most two components, and each such component
H satisfies

|V{H)| = % +C =~ flr,m) —r — 2 (D
SH)=r + 2 (2)
5.(H) = 'V(Bi)' e 3)

To do so, let H be such a component and w € V(H). Then degg; w = C/r.
Suppose G satisfies the hypotheses of (a) and let X: vy, va,...,vp. If wis
adjacent to v; and v;, 1 =i < j <k, then viy1vj1 € E(G); otherwise,
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the path
!,
X vl,vg,...,vi,w,vj,vj_;,...,v;+1,vj+1,...,vk

has order greater than X. Thus, since B(G) = f(r,m) we have that
degy w = B(G) + 1 = f(r,m) + 1 (where the extra 1 is only needed
m the hamiltonian-connected case). Similarly, if G satisfies the hypotheses
of (b) or (c), then degy w =< f(r,m) + 1. Thus,

C
degpw=z — —flry,m)—1—-( -1 —l=¢r+2
r

for C sufficiently large. Thus, §(H) = r + 2. Let § be a set of r vertices
of H. Then

[No($)| = % +C.

However, since H is connected and B(G) = f(r, m) we have that [Ny{5)| =
f(r,m) + 1. Thus

INH(S)IE%JrC*f(r,m)-—I—(r—l)—l

2%+C—f{r,m)—r—2.

Thus, [V(H) = (n/3) + C — f(r,m) — r — 2 > n/3 for C sufficiently
large, so the removal of [ vertices from G — V(X) — L results in at most
two components, Since 8,.(H) = (n/3) + C, it follows that # = C. Thus,
by choosing C at least 187f{(r,m) + 187> + 36r, we have that

Tg;?zf(r,m)+r+2
so that
n B R |V (H)|
—+C - —r—2z = -t 2 + (.
3 C—Fflr,m)—r —2 3 ™ C 3

Since each component H of G — V(X) — L satisfies (1), (2), and (3)
and has independence number at most f'(r, m), it follows by induction that
each such component is traceable. Furthermore, any 2-connected component
is hamiltonian and any 3-connected component is hamiltonian-connected.
Also, if [V(X)| > (n/3) — 2(C — f(r,m}) —r — 2),then G — V(X) — L
consists of one component, which is necessarily 3-connected.
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Assume now that G satisfies the hypotheses of (a). We wish to show that
[V(X)| = (2n/3) — (2r/3). Since each component H of G ~ V(X) — L is
traceable and X is a longest path, we conclude that

VOl = [VE)| = 3—,3? +C = flrm) — r =2
>i;——2(C—f(r,m)—r—2)

for C sufficiently large. Thus, G — V(X) — L is hamiltonian-connected.

Let X: v, va,..., v Since G is connected there is a path from V(G) —
V(X) — L to some vertex v; on X. Let P; be a shortest such path and
let w be the vertex of G — V(X) — L on P,. Let z be any other vertex
of G — V(X) — L and let P, be any hamiltonian z — w path in G —
V{X) — L. Finally, let P; denote the longer of the subpaths vy, vy, ..., v;
and vy, vi+q,..., v Of X. Then

Py, Py, Py

is a path of G of order af least

n = vl - ¢ -+ X

Since, by assumption, X is a longest path in &, it follows that

Vool

VOOl =0 = IVEO] -~ — D+

and so |V(X)| = (2n/3) — (2r/3).

Assume next that G satisfies the hypotheses of (b). If G — V(X) — L is
2-connected, then G — V(X) — L is hamiltonian. If (G — V(X) —
L) = 1, then the removal of 0 or 1 vertices results in two 2-connected
components, each of order at least (n/3) + C — f(r,m) — ¢ — 2.1In either
case, we obtain a hamiltonian subgraph of G of order at least {(n/3) +
C~ f(r,m)—r — 2. Since X is a longest cycle of &, we conclude
that |V(X)| = (n/3) + C — f(r,m) — r — 2. Thus, G — V(X) — L is
hamilionian-connected for C sufficiently large,

Let X: vy, vy,..., v, vy, Since G 18 2-connected, there are two vertex-
disjoint paths, the first from V(G) — V(X) — L to V(X) and the second
from V(X) to V(G) — V{X) — L. Let P\, P, be a shortest pair of such
paths. Assume, without loss of generality, that P intersects V(X) at v;
and P, intersects V(X) at v;, with i <0 j. Let w be the initial vertex of Py
and let z be the final vertex of P,. Let P53 be any hamiltonian z — w path
of G — V(X) — L, and finally, let P, denote the longer of the subpaths
Vi, Vitt,..., vy and vy, vi-1,...,v; of X, Then

P1, Py, Pr, P3
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is a cycle of G of order at least

,1_|V(X)|—(r—1)+i‘1§2§11.

Since, by assumption, X is a longest cycle in G, it follows that

VXl =n— VX - - 1) + W(Z—X)l

and so [V = (2n/3) — (2r/3).

Next, assume that ¢ satisfies the hypotheses of {c). In this case, G also
satisfies the hypotheses of (b). Thus, a fongest cycle of G has order at least
(2n/3) — (2r/3). This implies that

f

Vool = 2

—L>£——2(C—f(r,m)—r—2)

3 3

for C sufficiently large, and so G — V{X) — L is hamiltonian-connected.
Since G is 3-connected, there are three vertex-digjoint paths from V{G) —
V(X) — L to V(X). Using two of these paths, a hamiltonian path in
G — V(X) — L, and all but an appropriate segment of X we conclude that
[V(X)| = (2r/3) — (2r/3).

Thus, we have established that if G satisfies the hypotheses of (a), (b),
or (c), then G has a path, cycle or ¥ — v path, respectively, of order at
least (2n/3) — (2r/3). If G satisfies the hypotheses of (a), let @ denote the
maximum namber of vertices of degree less than C/r on a path of order
at least (2n/3) — (2#/3), and let ¥ be a longest path containing « vertices
of degree less than C/r. Define a similarly if G satisfies the hypotheses of
{b) or (c) and obtain either a longest cycle ¥ or a longest # — v path ¥
containing « vertices of degree less than C/7.

If G — V(Y) has a vertex w such that degz w = C/r, then in a manner
analogous to earlier arguments, we can show that & — V(¥) has a com-
ponent H with [V(H)| = (n/3) + C — f(r,m) — 1 that, for C sufficiently
large, contradicts the fact that [V (Y)| = (2n/3} — (2r/3). Thus, every vertex
of G of degree at least C/r lies on Y. We complete the proof by showing
that every vertex of G of degree less than C/r also lies on Y. Assume, to
the contrary, that there are y > 0 vertices of degree less than C/r that do
not lie on Y. Since the number of vertices of G of degree less than C/r is
atmost r — 1, wehave « + y =< r — land r = 2.

Assume first that G satisfies the hypotheses of (a). Let ¥: vy, vz,..., v
and let w € V(G) — V(¥). Since 6(G)=r, we have degg w = r.
Thus, degrw=r —(y~1)=(r—-1)—y+2=a+ 2 Futher-
more, by the definition of «, neither v; nor v; is adjacent to w. Let
Uis Uiy o0, Uiy, De @ + 2 adjacencies of w on ¥, i1 = ip = - = iy,
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Let Iy = {U1,U2,...,U,’l~]}, let I,en = {U,‘MZ+1,U5QH+2,...,‘Uk} and for
J=12,...,a+ 1let

Ij‘ = {vfj‘!'l! vl‘j‘i‘Z': cees Uijpl—]} .
Since ¥ contains exactly « vertices of degree less than C/r, it follows that
three of the sets fy, I}, ..., 1,4, contain no vertices of degree less than C/r.
Let I, be the smallest such set. If 1 < 5 < a + 1, let
P Vi, Vo, e U WV Vs s Vs

If s =0, let

Pl 1, v, LV W Vi, Yigsd, e, Vi
Ifs=a+2 let

P ViV, o s Vi o Wo Vs Vigia—Ts - o s Vi 1

Then P contains & + 1 vertices of degree less than C/r. By the choice of
a, then, this means that P has order less than (2rn/3) — (2r/3). However,

n—('y—l)—(oz+2)i|
3

Vel =n - [ - 1+

+2y—a—4
‘“n%(n Y — )

3
2nﬁ(n+2y—4)
3
. ﬁ(n+2(r—1)—4)
3
(n+2r—6) 2n 2r
= =224,
3 3

which gives a contradiction. Thus, ¥ contains every vertex of degree less than
C/r, which completes the proof in the case that G satisfies the hypotheses
of (a).

If G satisfies the hypotheses of (b) or (c), the proof is completed in
an analogous manner. In these cases, we have §(G) = r + 1 or §(G) =
r + 2, respectively, so that every vertex w € V(G) — V(Y) has degy w =
o + 3 or degy w = a + 4. Tn either case, we are able to contradict the
chotce of a. This completes the proof of Theorem 1.

An immediate corollary of Theorem 1 provides the result that in some
sense generalizes Theorems A—E.
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Corollary. letr = 1 and m = 3 be integers. Then there exists a constant
C = C(r,m) such that if G is a K ,,-free graph of order n (n = r,n > m)
with 8,(G) = (n/3) + C, then

(a) G is traceable if §(G) = r and & is connected;
{(b) G is hamiltonian if §(G) = r + 1 and G is 2-connected,;
(¢) G is hamiltonian-connected if 8(G) = r + 2 and G is 3-connected,

Proof. 1t suffices to show that if G is a K ,,-free graph of order »
and 6,.{G) > n/3, then B(G) = 3{m — 1)r. Let t = B(G). If # < r then
we are done. Otherwise, let T be a set of ¢ independent vertices of & and
let § = V(G) — T. Since G is K| ,-free, each vertex of § is adjacent to
at most m — 1 vertices of 7. Thus, the number of edges from § to T is
at most (m — 1)(n — ). However, if T’ is a set of r vertices of T, then
[INg(TH| > n/3. Thus, the number of edges from T’ to S is greater than
n/3. Tt follows that the number of edges from T to § is greater than

t\(n )
L)
t—1y"
(r - 1)
Thus, (m — D)(n ~ 1) > (}) (n/3)/(!_!). This however, implies that ¢ =
3(m — 1)r, which completes the proof of the corollary. |

Since Theorems A-D are best possible with respect to the bounds on
81(G) and 85(G), the bound given on 8,(G) in the corollary is of the correct
order of magnitude. The graph G of Figure 1 indicates that a minimum
degree condition of at least r — 1 is required in (a). The connected K ,,-free
graph G satisfies 8,(G) = (n — r + 1)/2 and 8(G} = r — 2. However, G
is not traceable.

The graph G of Figure 2 indicates that a minimum degree condition of
at least » — 1 is also required in (b) for r = 4. The 2-connected X ,-free

(n—r+iy3 (n— 71+ 1)

FIGURE 1
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Ko rinn O Kiw-rsnn

FIGURE 2

graph G satisfies 8,(G) = (n — r + 1)/2 and 6(G) = r — 2. However, G
is not hamiltonian.

In our next result we restrict ourselves to lower bounds on 8:(G) m
K, s-free graphs. Here we can lower the minimum degree conditions for
traceable, hamiltonian and hamiltonian-connected from » =3, r + 1 =4
and r + 2 = 5 to 2, 3, and 4 respectively. We observe that in this case,
the property of being K, s;-free is used heavily throughout the proof.
Furthermore, the constant C in the statement of Theorem 2 must be chosen
so that n is sufficiently large for Theorem E to be applicable.

Theorem 2. There exists a constant C such that if GG is a K 3-free graph
of order n with 8:(G) = (n/3) + C, then

(a) G is traceable if §(G) = 2 and G is connected;
{b) G is hamiltonian if 8(G) = 3 and G is 2-connected,
{¢) & is hamiltonian-connected if §(G) = 4 and G is 3-connected.

Proof. 'We proceed by induction on 7 and assume that (a), (b), and (c)
have been established for all graphs of order less than #n. Let G be a K 3-free
graph of order n such that 85(G) = (n/3) + C. and assume that G satisfies
the hypotheses of (a), (b), or (c). Since G is Ky 3-free, B(G) = 18.

In a manner analogous to the proof of Theorem 1, we can show that G
has a path, cycle, or u — v path of order at least (2n/3) — 2, depending on
whether (7 satisfies the hypotheses of (a), (b), or (c). This, however, implies
that G has a path, cycle, or 4 — v path X that contains all vertices of
of degree at least C/3. Thus, |V(X)[ = n — 2. To complete the proof, we
show that G has a path, cycle or 4 — v path ¥ of order at least (2n/3) — 2
that contains all vertices of G of degree less than C/3.

Suppose, first, that G has exactly one vertex y of degree less than C/3. If
vison X, thenlet ¥ = X. If y is not on X, then since degg v is at least 2, 3,
or 4 depending on whether G satisfies the hypotheses of (a), (b), or {c), we
can delete an appropriate segment of X and add y together with two adjacent
edges to obtain the required Y. Thus, we assume that G has two vertices x
and y of degree Tess than C/3. If both x and y are on X, let ¥ = X. Suppose,
then, that at least one of x and y are not on X.
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I. Assume that & satisfies the hypotheses of (c),

Case 1. Suppose xy & E((G) and that exactly one of x and y, say x, is on
X. If degg v > 4, then we can delete an appropriate segment of X and add v
to obtain the required # — v path ¥. Thus, we may assume that degg y = 4.

Let X:u = x1,%z,...,%- = v and suppose Ng(y) = {x;,x;,x, %},
where | < j <<k < I. Let x = x,. We may assume { << ¢ <C [; otherwise,
we can easily obtain the desired Y. Then (by symmetry) either j < r < k
or k<<t <C1.

Subcase (i). Suppose j < ¢ < k. Then j = i + [#/3] + 4; otherwise,
let

Yiu T XXy K Y X Xl Ky TV

Similarly, / = k + |n/3] + 4. Furthermore, since G is K s;-free and
dege y = 4, it follows that x; 1x;,, € E((). Consider the vertex x;. Since
83(G) = (n/3) + C, we have that |Ng{x,y, x;}|(n/3) + C. Since degg x
and degg y are less than C/3, it follows that degg x; > n/3. Thus x;x, €
E(G)forsomepwithi + 1 <=p =i+ [n/3lorl —[n/3]|=p=<1-1
Thus we have either

Yiu=x,x,... K Vs X Xp, Xp s o s X1 X4 1 X425 o s X1 &= U
or
Yiu= i X2 oo s Xjm1a X jt1n e o s Xpus X Vo Xp X410y X = U
Subcase (ii). Suppose k < ¢ < [. Then, necessarily, j = i + |n/3] + 4
and k = j + {n/3] + 4. Furthermore, since G is Kji-free, x;_1x+1 €
E(G). As in the previous case, degs x; > n/3. Thus, x;,x, € E(G) for

some p with i + 1 < p =i+ [n/3] or k — [rn/3] < p =k — 1. Thus
we have either

Yiu= X1y Xzyenn ’xhy>xj’xp9xp+'{a e 9xj*19xj+19xj+23 N s Ml
or

Yiu=x1,x,. s K X X2 s X X YV X, X e s Xy T U

Case 2. Suppose xy & E(G) and that neither x nor y is on X. Since
degg x = 4, we obtain a u — v path X’ of order at least (2n/3) — 2 that
contains x. If we choose a longest such path X’ then X' contains all vertices

of degree at least C/3. If x and y are on X', let ¥ = X’ and if only x is on
X’ we may proceed as in Case 1.
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Case 3. Suppose xy € E(G) and one of x and y, say x is on X. Since
xy € E(G) and degs y = 4, we can clearly add y and delete an appropriate
segment of X to obtain the required # — v path Y.

Case 4. Suppose xy € E(G), neither x nor y is on X and [Ny ({x, y})| =
4. We then obtain a u — v path X' of order at least (2r/3) — 2 that contains
one or both of x and y. A longest such path X' contains all vertices of degree
at least C/3. If x and y are on X', let ¥ = X', otherwise, we may proceed
as in Case 3.

Case 5. Suppose xy € E(G), neither x nor y is on X and |[Ny({x,y}}| =
3, Let

Xiu=X,%X0,0..,Xp—2 = U

and suppose Ny({x,y}) = {x;,x;,x,} where { < j < k. We may assume
that j =i + |{n/3| + 4 and k = j + |n/3] + 4 since otherwise we can
easily obtain the desired u — v path ¥, As in Case 1, x;—1x;4) € E(G)
and degg x; > n/3. Thus, x;x, € E(G) for some p with i + 1 = p =
i +[n/3]ork — [n/3] =< p = k — 1. Thus, we have either

Yiu= Xl X2, >x."1x’y:xj:xp=xp+l:--',xj—l)xj+l)xj+21---;xnmz =V
or
Yiu= XXz oo s X b X X 2s oo o s Xp, Xy Xy Vo X Xp b1 -+ -5 X & U

. Assume that G satisfies the hypotheses of (b).

Case 1. Suppose xy € E(G) and that exactly one of x and y, say x, is on
X ¥ degg y > 3, then we can delete an appropriate segment of X and add
¥ to obtain the required cycle X. Thus, we may assume that degg vy = 3.

Let X: xy,x,...,%,—1,X; and suppose Ng(y) = {x:,x;, x4}, where i <
J << k. Without loss of generality, we may assume that x = x,, where k <
t = n — 1. As in previous cases, we may assume that j = [ + [n/3| + 4,
k=j+n/3]l+ 4 x; 1x;41 € E(G), and degg x; > n/3. Thus x,x, €
E(G)forsomepwithi +1=<p=<i+[n/ork—[n/3=p=sk—1.
In either case, we obtain the desired cycle Y.

Case 2. Suppose xy & E(G) and that neither x nor y is on X. Since
deg; x = 3, we may proceed as in I, Case 2,

Case 3. Suppose xy € E(G) and that exactly one of x and v is on X,
say x. Since xy &€ E(G) and degs x = 3, we may proceed as in I, Case 3.



408 JOURNAL OF GRAPH THEGRY

Case 4. Suppose xy € E(G), neither x nor y is on X and |Nx({x,
¥} = 3. Here we may proceed as in I, Case 4.

Case 5. Suppose xy € E(G), neither x nor y is on X and |Nx({x,
yPl = 2. Let

XX, %2, 000, X2, X)

and assume, without loss of generality, that Ny ({x,y}) = {x,x;}, where j <
n — 2. We may also assume j = [n/3]+ 5andn — 2 = j + |n/3] + 3;
otherwise we easily obtain the desired cycle Y. As in previous cases,
xi—1,%;+1 € E(G) and degg x; > n/3. Thus, x;x, € E(G) for some p with
2=p=[u/3]+ 1ot n—[n/31—1=p =n -2 In either case, we
obtain the desired cycle Y.

III. Assume that G satisfies the hypotheses of (a).

Cases 14 follow exactly as they did in I and II. We list them without
proof.

Case 1. Suppose xy & E(G) and exactly one of x and y, say x, is on X.
Case 2. Suppose xy & E(G) and that neither x nor y is on X.
Case 3. Suppose xy € E(G) and exactly one of x and y is on X.

Case 4. Suppose xy € E((7), neither x nor y is on X, and |Ny({x,
yPl =2

Case 5. Suppose xy € E(G), neither x nor y is on X, and |Nx({x,
yP| = 1. Consider the connected graph G' = G — {x,y}. Since each of
x and y has degree 2 in G it follows that §(G') > n/3. If G' is 2-
connected then, by the Matthews-Sumner result G’ is hamiltonian and
we obtain a hamiltonian path ¥ in G. If G’ has a cutvertex w, con-
sider G' — w. Then, since 8{(G' — w) > n/3 and, consequently, 5:(G' —
w)} > n/3, it follows that ¢/ — w has exactly two components, both of
which are 3-connected and hence hamiltonian-connected by Theorem E.
But then since G is K ;-free, G has a hamiltonian path ¥ and the proof is
complete. N

The graph G of Figure 1, with r = 3, indicates that for the traceable
case, (G} = 2 is a necessary condition.
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