

Generalized Degree Conditions for Graphs with Bounded Independence Number

- Ralph Faudree
UNIVERSITY OF MEMPHIS
MEMPHIS, TENNESSEE

Ronald J. Gould EMORY UNIVERSITY ATLANTA, GEORGIA

Linda Lesniak DREW UNIVERSITY MADISON, NEW JERSEY

Terri Lindquester
RHODES COLLEGE
MEMPHIS, TENNESSEE

ABSTRACT

We consider a generalized degree condition based on the cardinality of the neighborhood union of arbitrary sets of r vertices. We show that a Dirac-type bound on this degree in conjunction with a bound on the independence number of a graph is sufficient to imply certain hamiltonian properties in graphs. For $K_{1,m}$ -free graphs we obtain generalizations of known results. In particular we show:

Theorem. Let $r \ge 1$ and $m \ge 3$ be integers. Then for each nonnegative function f(r,m) there exists a constant C = C(r,m,f(r,m)) such that if G is a graph of order n $(n \ge r,n > m)$ with $\delta_r(G) \ge (n/3) + C$ and $\beta(G) \le f(r,m)$, then

- (a) G is traceable if $\delta(G) \ge r$ and G is connected;
- (b) G is hamiltonian if $\delta(G) \ge r + 1$ and G is 2-connected;
- (c) G is hamiltonian-connected if $\delta(G) \ge r + 2$ and G is 3-connected.

© 1995 John Wiley & Sons, Inc.

Dirac [2] proved that if G is a graph of order $n \ge 3$ with $\delta(G) \ge n/2$, then G is hamiltonian. In [5], Matthews and Sumner lowered the minimum degree condition for hamiltonicity by imposing the condition that G be clawfree (i.e., G contains no induced subgraph isomorphic to $K_{1,3}$).

Theorem A [5]. If G is a 2-connected $K_{1,3}$ -free graph of order $n \ge 3$ with $\delta(G) \ge (n-2)/3$, then G is hamiltonian.

Recently, Markus [4] obtained similar results for $K_{1,m}$ -free graphs, $m \ge 3$.

Theorem B [4]. If G is a 2-connected $K_{1,m}$ -free graph of order $n \ge 3$ with $\delta(G) \ge (n + m - 2)/3$, then G is hamiltonian.

Both of the previous theorems have analogs for traceable graphs and hamiltonian-connected graphs.

The idea of minimum degree can be generalized as follows. For a graph G of order n and $r \leq n$, define

$$\delta_r(G) = \min_{\substack{S \subseteq V(G) \\ |S| = r}} |\bigcup_{u \in S} N(u)|.$$

Then, of course, $\delta(G) = \delta_1(G)$. In [3], the following results involving $\delta_2(G)$ were established.

Theorem C [3]. If G is connected $K_{1,3}$ -free graph of order n such that $\delta_2(G) \ge (n+1)/3$, then for n sufficiently large G is traceable.

Theorem D [3]. If G is a 2-connected $K_{1,3}$ -free graph of order n such that $\delta_2(G) \ge (n+1)/3$, then for n sufficiently large G is hamiltonian.

Theorem E [3]. If G is a 3-connected $K_{1,3}$ -free graph of order n such that $\delta_2(G) \ge (n+24)/3$, then for n sufficiently large G is hamiltonian-connected.

Here we will prove results that in some sense incorporate and generalize Theorems A–E. Undefined terms and notations can be found in [1]. We begin with Theorem 1, which establishes sufficient conditions for traceability, hamiltonicity, and hamiltonian–connectedness based on $\delta_r(G)$ and the independence number $\beta(G)$ of a graph G.

Theorem 1. Let $r \ge 1$ and $m \ge 3$ be integers. Then for each non-negative function f(r,m) there exists a constant C = C(r,m,f(r,m)) such that if G is a graph of order n $(n \ge r,n > m)$ with $\delta_r(G) \ge (n/3) + C$ and $\beta(G) \le f(r,m)$ then

(a) G is traceable if $\delta(G) \ge r$ and G is connected;

399

- (b) G is hamiltonian if $\delta(G) \ge r + 1$ and G is 2-connected;
- (c) G is hamiltonian-connected if $\delta(G) \ge r + 2$ and G is 3-connected.

Proof. We proceed by induction on n and assume that (a), (b), and (c) have been established for all graphs of order less than n. (The proof is anchored by selecting C large.) Let G be a graph of order n such that $\delta_r(G) \ge (n/3) + C$ and $\beta(G) \le f(r,m)$. Assume that G satisfies the hypotheses of (a), (b), or (c). We first show that

- (i) if G satisfies the hypotheses of (a), then G has a path of order at least (2n/3) (2r/3);
- (ii) if G satisfies the hypotheses of (b), then G has a cycle of order at least (2n/3) (2r/3);
- (iii) if G satisfies the hypotheses of (c), then G has a u v path of order at least (2n/3) (2r/3) for each pair $u, v \in V(G)$.

Let X denote a longest path of G, longest cycle of G, or longest u-v path of G depending on whether we are in (i), (ii), or (iii). We first show that $|V(X)| \ge n/6r$. Since $\delta_r(G) \ge (n/3) + C$, for C sufficiently large every vertex of G with at most r-1 exceptions has degree at least (n/3) + r - 1. Let S be the set of vertices of degree less than (n/3r) + r - 1 and let $H = \langle V(G) - S \rangle$. Then every vertex of H has degree at least n/3r (in H). Let P be a longest path in H, with initial vertex W. Then every adjacency of W in H is on P so that one of these adjacencies together with a segment of P forms a cycle C in H with at least n/3r vertices. This cycle (or path) is also in G. It is straightforward to use this cycle to show that in the hamiltonian-connected case, any two vertices U and U can be joined by a path using at least half the vertices of the cycle. Thus, in all cases, $|V(X)| \ge n/6r$.

Next, if L denotes the vertices of G not on X of degree less than C/r, then $|L| \le r-1$. Thus, if $V(G) = V(X) \cup L$, then $|V(X)| \ge n-r+1 \ge (2n/3) - (2r/3)$. Assume, then, that $V(G) \ne V(X) \cup L$.

We wish to show that the removal of l vertices from G - V(X) - L, $0 \le l \le 2$, results in at most two components, and each such component H satisfies

$$|V(H)| \ge \frac{n}{3} + C - f(r, m) - r - 2$$
 (1)

$$\delta(H) \ge r + 2 \tag{2}$$

$$\delta_r(H) \ge \frac{|V(H)|}{3} + C. \tag{3}$$

To do so, let H be such a component and $w \in V(H)$. Then $\deg_G w \ge C/r$. Suppose G satisfies the hypotheses of (a) and let $X: v_1, v_2, \ldots, v_k$. If w is adjacent to v_i and v_j , $1 \le i < j < k$, then $v_{i+1}v_{j+1} \notin E(G)$; otherwise,

the path

$$X': v_1, v_2, \ldots, v_i, w, v_j, v_{j-1}, \ldots, v_{i+1}, v_{j+1}, \ldots, v_k$$

has order greater than X. Thus, since $\beta(G) \leq f(r,m)$ we have that $\deg_X w \leq \beta(G) + 1 \leq f(r,m) + 1$ (where the extra 1 is only needed in the hamiltonian-connected case). Similarly, if G satisfies the hypotheses of (b) or (c), then $\deg_X w \leq f(r,m) + 1$. Thus,

$$\deg_H w \ge \frac{C}{r} - f(r, m) - 1 - (r - 1) - l \ge r + 2$$

for C sufficiently large. Thus, $\delta(H) \ge r + 2$. Let S be a set of r vertices of H. Then

$$|N_G(S)| \ge \frac{n}{3} + C.$$

However, since H is connected and $\beta(G) \leq f(r, m)$ we have that $|N_X(S)| \leq f(r, m) + 1$. Thus

$$|N_H(S)| \ge \frac{n}{3} + C - f(r,m) - 1 - (r-1) - l$$

 $\ge \frac{n}{3} + C - f(r,m) - r - 2.$

Thus, $|V(H)| \ge (n/3) + C - f(r,m) - r - 2 > n/3$ for C sufficiently large, so the removal of l vertices from G - V(X) - L results in at most two components. Since $\delta_r(H) \ge (n/3) + C$, it follows that $n \ge C$. Thus, by choosing C at least $18rf(r,m) + 18r^2 + 36r$, we have that

$$\frac{n}{18r} \ge f(r,m) + r + 2$$

so that

$$\frac{n}{3} + C - f(r,m) - r - 2 \ge \frac{n}{3} - \frac{n}{18r} + C \ge \frac{|V(H)|}{3} + C.$$

Since each component H of G-V(X)-L satisfies (1), (2), and (3) and has independence number at most f(r,m), it follows by induction that each such component is traceable. Furthermore, any 2-connected component is hamiltonian and any 3-connected component is hamiltonian-connected. Also, if |V(X)| > (n/3) - 2(C - f(r,m) - r - 2), then G - V(X) - L consists of one component, which is necessarily 3-connected.

Assume now that G satisfies the hypotheses of (a). We wish to show that $|V(X)| \ge (2n/3) - (2r/3)$. Since each component H of G - V(X) - L is traceable and X is a longest path, we conclude that

$$|V(X)| \ge |V(H)| \ge \frac{n}{3} + C - f(r,m) - r - 2$$
$$> \frac{n}{3} - 2(C - f(r,m) - r - 2)$$

for C sufficiently large. Thus, G - V(X) - L is hamiltonian-connected.

Let $X: v_1, v_2, \ldots, v_k$. Since G is connected there is a path from V(G) - V(X) - L to some vertex v_i on X. Let P_1 be a shortest such path and let w be the vertex of G - V(X) - L on P_1 . Let z be any other vertex of G - V(X) - L and let P_2 be any hamiltonian z - w path in G - V(X) - L. Finally, let P_3 denote the longer of the subpaths v_1, v_2, \ldots, v_i and $v_i, v_{i+1}, \ldots, v_k$ of X. Then

$$P_2, P_1, P_3$$

is a path of G of order at least

$$n - |V(X)| - (r - 1) + \frac{|V(X)|}{2}$$

Since, by assumption, X is a longest path in G, it follows that

$$|V(X)| \ge n - |V(X)| - (r-1) + \frac{|V(X)|}{2}$$
.

and so $|V(X)| \ge (2n/3) - (2r/3)$.

Assume next that G satisfies the hypotheses of (b). If G - V(X) - L is 2-connected, then G - V(X) - L is hamiltonian. If $\kappa(G - V(X) - L) \le 1$, then the removal of 0 or 1 vertices results in two 2-connected components, each of order at least (n/3) + C - f(r,m) - r - 2. In either case, we obtain a hamiltonian subgraph of G of order at least (n/3) + C - f(r,m) - r - 2. Since X is a longest cycle of G, we conclude that $|V(X)| \ge (n/3) + C - f(r,m) - r - 2$. Thus, G - V(X) - L is hamiltonian-connected for C sufficiently large.

Let $X: v_1, v_2, \ldots, v_k, v_1$. Since G is 2-connected, there are two vertexdisjoint paths, the first from V(G) - V(X) - L to V(X) and the second from V(X) to V(G) - V(X) - L. Let P_1, P_2 be a shortest pair of such paths. Assume, without loss of generality, that P_1 intersects V(X) at v_i and P_2 intersects V(X) at v_j , with i < j. Let w be the initial vertex of P_1 and let z be the final vertex of P_2 . Let P_3 be any hamiltonian z - w path of G - V(X) - L, and finally, let P_4 denote the longer of the subpaths $v_i, v_{i+1}, \ldots, v_j$ and $v_i, v_{i-1}, \ldots, v_j$ of X. Then

$$P_1, P_4, P_2, P_3$$

is a cycle of G of order at least

$$n - |V(X)| - (r - 1) + \frac{|V(X)|}{2}$$
.

Since, by assumption, X is a longest cycle in G, it follows that

$$|V(X)| \ge n - |V(X)| - (r-1) + \frac{|V(X)|}{2}.$$

and so $|V(X)| \ge (2n/3) - (2r/3)$.

Next, assume that G satisfies the hypotheses of (c). In this case, G also satisfies the hypotheses of (b). Thus, a longest cycle of G has order at least (2n/3) - (2r/3). This implies that

$$|V(X)| \ge \frac{n}{3} - \frac{r}{3} > \frac{n}{3} - 2(C - f(r, m) - r - 2)$$

for C sufficiently large, and so G - V(X) - L is hamiltonian-connected. Since G is 3-connected, there are three vertex-disjoint paths from V(G) - V(X) - L to V(X). Using two of these paths, a hamiltonian path in G - V(X) - L, and all but an appropriate segment of X we conclude that $|V(X)| \ge (2n/3) - (2r/3)$.

Thus, we have established that if G satisfies the hypotheses of (a), (b), or (c), then G has a path, cycle or u-v path, respectively, of order at least (2n/3)-(2r/3). If G satisfies the hypotheses of (a), let α denote the maximum number of vertices of degree less than C/r on a path of order at least (2n/3)-(2r/3), and let Y be a longest path containing α vertices of degree less than C/r. Define α similarly if G satisfies the hypotheses of (b) or (c) and obtain either a longest cycle Y or a longest u-v path Y containing α vertices of degree less than C/r.

If G - V(Y) has a vertex w such that $\deg_G w \ge C/r$, then in a manner analogous to earlier arguments, we can show that G - V(Y) has a component H with $|V(H)| \ge (n/3) + C - f(r,m) - 1$ that, for C sufficiently large, contradicts the fact that $|V(Y)| \ge (2n/3) - (2r/3)$. Thus, every vertex of G of degree at least C/r lies on Y. We complete the proof by showing that every vertex of G of degree less than C/r also lies on Y. Assume, to the contrary, that there are $\gamma > 0$ vertices of degree less than C/r that do not lie on Y. Since the number of vertices of G of degree less than C/r is at most r - 1, we have $\alpha + \gamma \le r - 1$ and $r \ge 2$.

Assume first that G satisfies the hypotheses of (a). Let $Y: v_1, v_2, \ldots, v_k$ and let $w \in V(G) - V(Y)$. Since $\delta(G) \ge r$, we have $\deg_G w \ge r$. Thus, $\deg_Y w \ge r - (\gamma - 1) = (r - 1) - \gamma + 2 \ge \alpha + 2$. Furthermore, by the definition of α , neither v_1 nor v_k is adjacent to w. Let $v_{i_1}, v_{i_2}, \ldots, v_{i_{n+2}}$ be $\alpha + 2$ adjacencies of w on Y, $i_1 \le i_2 \le \cdots \le i_{\alpha+2}$.

Let $I_0 = \{v_1, v_2, \dots, v_{i_1-1}\}$, let $I_{\alpha+2} = \{v_{i_{\alpha+2}+1}, v_{i_{\alpha+2}+2}, \dots, v_k\}$ and for $j = 1, 2, \dots, \alpha + 1$ let

$$I_j = \{v_{i_1+1}, v_{i_1+2}, \dots, v_{i_{i+1}-1}\}.$$

Since Y contains exactly α vertices of degree less than C/r, it follows that three of the sets $I_0, I_1, \ldots, I_{\alpha+2}$ contain no vertices of degree less than C/r. Let I_s be the smallest such set. If $1 \le s \le \alpha + 1$, let

$$P: v_1, v_2, \ldots, v_{i_s}, w, v_{i_{s+1}}, v_{i_{s+1}+1}, \ldots, v_k$$
.

If s = 0, let

$$P: v_{i_2-1}, v_{i_2-2}, \ldots, v_{i_1}, w, v_{i_2}, v_{i_2+1}, \ldots, v_k$$
.

If $s = \alpha + 2$, let

$$P: v_1, v_2, \dots, v_{i_{\alpha+1}}, w, v_{i_{\alpha+2}}, v_{i_{\alpha+2}-1}, \dots, v_{i_{\alpha+1}+1}$$

Then P contains $\alpha + 1$ vertices of degree less than C/r. By the choice of α , then, this means that P has order less than (2n/3) - (2r/3). However,

$$|V(P)| \ge n - \left[(\gamma - 1) + \frac{n - (\gamma - 1) - (\alpha + 2)}{3} \right]$$

$$= n - \left(\frac{n + 2\gamma - \alpha - 4}{3} \right)$$

$$\ge n - \left(\frac{n + 2\gamma - 4}{3} \right)$$

$$\ge n - \left(\frac{n + 2(r - 1) - 4}{3} \right)$$

$$= n - \left(\frac{n + 2r - 6}{3} \right) = \frac{2n}{3} - \frac{2r}{3} + 2,$$

which gives a contradiction. Thus, Y contains every vertex of degree less than C/r, which completes the proof in the case that G satisfies the hypotheses of (a).

If G satisfies the hypotheses of (b) or (c), the proof is completed in an analogous manner. In these cases, we have $\delta(G) \ge r+1$ or $\delta(G) \ge r+2$, respectively, so that every vertex $w \in V(G) - V(Y)$ has $\deg_X w \ge \alpha+3$ or $\deg_X w \ge \alpha+4$. In either case, we are able to contradict the choice of α . This completes the proof of Theorem 1.

An immediate corollary of Theorem 1 provides the result that in some sense generalizes Theorems A–E.

Corollary. Let $r \ge 1$ and $m \ge 3$ be integers. Then there exists a constant C = C(r, m) such that if G is a $K_{1,m}$ -free graph of order $n \ (n \ge r, n > m)$ with $\delta_r(G) \ge (n/3) + C$, then

- (a) G is traceable if $\delta(G) \ge r$ and G is connected;
- (b) G is hamiltonian if $\delta(G) \ge r + 1$ and G is 2-connected;
- (c) G is hamiltonian-connected if $\delta(G) \ge r + 2$ and G is 3-connected.

Proof. It suffices to show that if G is a $K_{1,m}$ -free graph of order n and $\delta_r(G) > n/3$, then $\beta(G) \le 3(m-1)r$. Let $t = \beta(G)$. If t < r then we are done. Otherwise, let T be a set of t independent vertices of G and let S = V(G) - T. Since G is $K_{1,m}$ -free, each vertex of S is adjacent to at most m-1 vertices of T. Thus, the number of edges from S to T is at most (m-1)(n-t). However, if T' is a set of T vertices of T, then $|N_G(T')| > n/3$. Thus, the number of edges from T' to S is greater than n/3. It follows that the number of edges from T to S is greater than

$$\frac{\binom{t}{r}\left(\frac{n}{3}\right)}{\binom{t-1}{r-1}}.$$

Thus, $(m-1)(n-t) > \binom{t}{r} (n/3)/\binom{t-1}{r-1}$. This however, implies that $t \le 3(m-1)r$, which completes the proof of the corollary.

Since Theorems A-D are best possible with respect to the bounds on $\delta_1(G)$ and $\delta_2(G)$, the bound given on $\delta_r(G)$ in the corollary is of the correct order of magnitude. The graph G of Figure 1 indicates that a minimum degree condition of at least r-1 is required in (a). The connected $K_{1,m}$ -free graph G satisfies $\delta_r(G) \geq (n-r+1)/2$ and $\delta(G) = r-2$. However, G is not traceable.

The graph G of Figure 2 indicates that a minimum degree condition of at least r-1 is also required in (b) for $r \ge 4$. The 2-connected $K_{1,m}$ -free

FIGURE 1

FIGURE 2

graph G satisfies $\delta_r(G) \ge (n-r+1)/2$ and $\delta(G) = r-2$. However, G is not hamiltonian.

In our next result we restrict ourselves to lower bounds on $\delta_3(G)$ in $K_{1,3}$ -free graphs. Here we can lower the minimum degree conditions for traceable, hamiltonian and hamiltonian-connected from r=3, r+1=4 and r+2=5 to 2, 3, and 4 respectively. We observe that in this case, the property of being $K_{1,3}$ -free is used heavily throughout the proof. Furthermore, the constant C in the statement of Theorem 2 must be chosen so that n is sufficiently large for Theorem E to be applicable.

Theorem 2. There exists a constant C such that if G is a $K_{1,3}$ -free graph of order n with $\delta_3(G) \ge (n/3) + C$, then

- (a) G is traceable if $\delta(G) \ge 2$ and G is connected;
- (b) G is hamiltonian if $\delta(G) \ge 3$ and G is 2-connected;
- (c) G is hamiltonian-connected if $\delta(G) \ge 4$ and G is 3-connected.

Proof. We proceed by induction on n and assume that (a), (b), and (c) have been established for all graphs of order less than n. Let G be a $K_{1,3}$ -free graph of order n such that $\delta_3(G) \ge (n/3) + C$, and assume that G satisfies the hypotheses of (a), (b), or (c). Since G is $K_{1,3}$ -free, $\beta(G) \le 18$.

In a manner analogous to the proof of Theorem 1, we can show that G has a path, cycle, or u-v path of order at least (2n/3)-2, depending on whether G satisfies the hypotheses of (a), (b), or (c). This, however, implies that G has a path, cycle, or u-v path X that contains all vertices of G of degree at least C/3. Thus, $|V(X)| \ge n-2$. To complete the proof, we show that G has a path, cycle or u-v path Y of order at least (2n/3)-2 that contains all vertices of G of degree less than C/3.

Suppose, first, that G has exactly one vertex y of degree less than C/3. If y is on X, then let Y = X. If y is not on X, then since $\deg_G y$ is at least 2, 3, or 4 depending on whether G satisfies the hypotheses of (a), (b), or (c), we can delete an appropriate segment of X and add y together with two adjacent edges to obtain the required Y. Thus, we assume that G has two vertices x and y of degree less than C/3. If both x and y are on X, let Y = X. Suppose, then, that at least one of x and y are not on X.

I. Assume that G satisfies the hypotheses of (c).

Case 1. Suppose $xy \notin E(G)$ and that exactly one of x and y, say x, is on X. If $\deg_G y > 4$, then we can delete an appropriate segment of X and add y to obtain the required u - v path Y. Thus, we may assume that $\deg_G y = 4$. Let $X: u = x_1, x_2, \ldots, x_{n-1} = v$ and suppose $N_G(y) = \{x_i, x_j, x_k, x_l\}$, where i < j < k < l. Let $x = x_l$. We may assume i < t < l; otherwise, we can easily obtain the desired Y. Then (by symmetry) either j < t < k or k < t < 1.

Subcase (i). Suppose j < t < k. Then $j \ge i + \lfloor n/3 \rfloor + 4$; otherwise, let

$$Y: u = x_1, x_2, \dots, x_i, y, x_i, x_{i+1}, \dots, x_{n-1} = v$$
.

Similarly, $l \ge k + \lfloor n/3 \rfloor + 4$. Furthermore, since G is $K_{1,3}$ -free and $\deg_G y = 4$, it follows that $x_{j-1}x_{j+1} \in E(G)$. Consider the vertex x_j . Since $\delta_3(G) \ge (n/3) + C$, we have that $\lfloor N_G\{x,y,x_j\} \rfloor (n/3) + C$. Since $\deg_G x$ and $\deg_G y$ are less than C/3, it follows that $\deg_G x_j > n/3$. Thus $x_jx_p \in E(G)$ for some p with $i+1 \le p \le i+\lceil n/3 \rceil$ or $l-\lceil n/3 \rceil \le p \le l-1$. Thus we have either

$$Y: u = x_1, x_2, \dots, x_i, y, x_j, x_p, x_{p+1}, \dots, x_{j-1}, x_{j+1}, x_{j+2}, \dots, x_{n-1} = v$$

or

$$Y: u = x_1, x_2, \ldots, x_{j-1}, x_{j+1}, \ldots, x_p, x_j, y, x_l x_{l+1}, \ldots, x_{n-1} = v.$$

Subcase (ii). Suppose k < t < l. Then, necessarily, $j \ge i + \lfloor n/3 \rfloor + 4$ and $k \ge j + \lfloor n/3 \rfloor + 4$. Furthermore, since G is $K_{1,3}$ -free, $x_{j-1}x_{j+1} \in E(G)$. As in the previous case, $\deg_G x_j > n/3$. Thus, $x_j, x_p \in E(G)$ for some p with $i+1 \le p \le i + \lceil n/3 \rceil$ or $k-\lceil n/3 \rceil \le p \le k-1$. Thus we have either

$$Y: u = x_1, x_2, \dots, x_i, y, x_j, x_p, x_{p+1}, \dots, x_{j-1}, x_{j+1}, x_{j+2}, \dots, x_{n-1} = v$$

or

$$Y: u = x_1, x_2, \dots, x_{j-1}, x_{j+1}, x_{j+2}, \dots, x_p, x_j, y, x_k, x_{k+1}, \dots, x_{n-1} = v.$$

Case 2. Suppose $xy \notin E(G)$ and that neither x nor y is on X. Since $\deg_G x \ge 4$, we obtain a u - v path X' of order at least (2n/3) - 2 that contains x. If we choose a longest such path X' then X' contains all vertices of degree at least C/3. If x and y are on X', let Y = X' and if only x is on X' we may proceed as in Case 1.

Case 3. Suppose $xy \in E(G)$ and one of x and y, say x is on X. Since $xy \in E(G)$ and $\deg_G y \ge 4$, we can clearly add y and delete an appropriate segment of X to obtain the required u - v path Y.

Case 4. Suppose $xy \in E(G)$, neither x nor y is on X and $|N_X(\{x,y\})| \ge 4$. We then obtain a u - v path X' of order at least (2n/3) - 2 that contains one or both of x and y. A longest such path X' contains all vertices of degree at least C/3. If x and y are on X', let Y = X'; otherwise, we may proceed as in Case 3.

Case 5. Suppose $xy \in E(G)$, neither x nor y is on X and $|N_X(\{x,y\})| = 3$. Let

$$X: u = x_1, x_2, \dots, x_{n-2} = v$$

and suppose $N_X(\{x,y\}) = \{x_i,x_j,x_k\}$ where i < j < k. We may assume that $j \ge i + \lfloor n/3 \rfloor + 4$ and $k \ge j + \lfloor n/3 \rfloor + 4$ since otherwise we can easily obtain the desired u - v path Y. As in Case 1, $x_{j-1}x_{j+1} \in E(G)$ and $\deg_G x_j > n/3$. Thus, $x_jx_p \in E(G)$ for some p with $i + 1 \le p \le i + \lceil n/3 \rceil$ or $k - \lceil n/3 \rceil \le p \le k - 1$. Thus, we have either

$$Y: u = x_1, x_2, \dots, x_i, x, y, x_j, x_p, x_{p+1}, \dots, x_{j-1}, x_{j+1}, x_{j+2}, \dots, x_{n-2} = v$$

or

$$Y: u = x_1, x_2, \dots, x_{j-1}, x_{j+1}, x_{j+2}, \dots, x_p, x_j, x, y, x_k x_{k+1}, \dots, x_{n-2} = v.$$

II. Assume that G satisfies the hypotheses of (b).

Case 1. Suppose $xy \notin E(G)$ and that exactly one of x and y, say x, is on X. If $\deg_G y > 3$, then we can delete an appropriate segment of X and add y to obtain the required cycle X. Thus, we may assume that $\deg_G y = 3$.

Let $X: x_1, x_2, \ldots, x_{n-1}, x_1$ and suppose $N_G(y) = \{x_i, x_j, x_k\}$, where i < j < k. Without loss of generality, we may assume that $x = x_t$, where $k < t \le n-1$. As in previous cases, we may assume that $j \ge i + \lfloor n/3 \rfloor + 4$, $k \ge j + \lfloor n/3 \rfloor + 4$, $x_{j-1}x_{j+1} \in E(G)$, and $\deg_G x_j > n/3$. Thus $x_jx_p \in E(G)$ for some p with $i+1 \le p \le i + \lfloor n/3 \rfloor$ or $k-\lfloor n/3 \rfloor \le p \le k-1$. In either case, we obtain the desired cycle Y.

- Case 2. Suppose $xy \notin E(G)$ and that neither x nor y is on X. Since $\deg_G x \ge 3$, we may proceed as in I, Case 2.
- Case 3. Suppose $xy \in E(G)$ and that exactly one of x and y is on X, say x. Since $xy \in E(G)$ and $\deg_G x \ge 3$, we may proceed as in I, Case 3.

408 JOURNAL OF GRAPH THEORY

Case 4. Suppose $xy \in E(G)$, neither x nor y is on X and $|N_X(\{x, y\})| \ge 3$. Here we may proceed as in I, Case 4.

Case 5. Suppose $xy \in E(G)$, neither x nor y is on X and $|N_X(\{x, y\})| = 2$. Let

$$X: x_1, x_2, \ldots, x_{n-2}, x_1$$

and assume, without loss of generality, that $N_X(\{x,y\}) = \{x_1,x_j\}$, where j < n-2. We may also assume $j \ge \lfloor n/3 \rfloor + 5$ and $n-2 \ge j + \lfloor n/3 \rfloor + 3$; otherwise we easily obtain the desired cycle Y. As in previous cases, $x_{j-1}, x_{j+1} \in E(G)$ and $\deg_G x_j > n/3$. Thus, $x_j x_p \in E(G)$ for some p with $2 \le p \le \lceil n/3 \rceil + 1$ or $n - \lceil n/3 \rceil - 1 \le p \le n-2$. In either case, we obtain the desired cycle Y.

III. Assume that G satisfies the hypotheses of (a).

Cases 1-4 follow exactly as they did in I and II. We list them without proof.

- Case 1. Suppose $xy \notin E(G)$ and exactly one of x and y, say x, is on X.
- Case 2. Suppose $xy \notin E(G)$ and that neither x nor y is on X.
- Case 3. Suppose $xy \in E(G)$ and exactly one of x and y is on X.
- Case 4. Suppose $xy \in E(G)$, neither x nor y is on X, and $|N_X(\{x,y\})| \ge 2$

Case 5. Suppose $xy \in E(G)$, neither x nor y is on X, and $|N_X(\{x,y\})| = 1$. Consider the connected graph $G' = G - \{x,y\}$. Since each of x and y has degree 2 in G it follows that $\delta(G') > n/3$. If G' is 2-connected then, by the Matthews-Sumner result G' is hamiltonian and we obtain a hamiltonian path Y in G. If G' has a cutvertex w, consider G' - w. Then, since $\delta(G' - w) > n/3$ and, consequently, $\delta_2(G' - w) > n/3$, it follows that G' - w has exactly two components, both of which are 3-connected and hence hamiltonian-connected by Theorem E. But then since G is $K_{1,3}$ -free, G has a hamiltonian path Y and the proof is complete.

The graph G of Figure 1, with r=3, indicates that for the traceable case, $\delta(G) \ge 2$ is a necessary condition.

ACKNOWLEDGMENT

RF and RJG were supported by O.N.R. grant N00014-91-J-1085. LL was supported by O.N.R. grant N00014-93-1-0050. TL was supported by Pew Midstates Science and Mathematics Consortium Faculty Development Program.

References

- [1] G. Chartrand and L. Lesniak, *Graphs & Digraphs* (2nd ed.). Wadsworth, Inc., Belmont (1986).
- [2] G. A. Dirac, Some theorems on abstract graphs. *Proc. London Math. Soc.* **2** (1952) 69–81.
- [3] R. J. Faudree, R. J. Gould, M. S. Jacobson, T. E. Lindquester, and L. Lesniak, A generalization of Dirac's Theorem for K(1, 3)-free graphs. *Period. Math. Hung.* **24** (1992) 37–54.
- [4] L. Markus, Hamiltonian results in $K_{1,3}$ -free graphs. Preprint.
- [5] M. M. Matthews and D. Sumner, Longest paths and cycles in $K_{1,3}$ -free graphs. J. Graph Theory 9 (1985) 269–277..

Received September 3, 1992