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Abstract

Let G be a graph of order n such that |E(G)| > e¢;n*F. In 1963 Erdos
showed that this implies G contains a Cy; . He conjectured that this edge
density condition implies G contains a Cy for every integer [ € [k, nt]. In 1974
Bondy and Simonivits proved the conjecture with ¢, = 100k.

The purpose of this paper is to provide a generalized degree analogue to this
classic result of Erdés. Here we use the following idea of generalized minimum
degree. Let

6:(G) = min|N(u;) U N(ug) U - N(ug)]

where the minimum is taken over all independent sets of vertices {u;, -, u;}
of size k and N(u;) denotes the neighborhood of the vertex u;. We call 6;(G)
the minimum generalized k-degree for G.

1 Introduction

All graphs considered in this paper are finite and simple. For a vertex z € V(G) we
denote the degree of z as d(z). We define the neighborhood of a vertex = to be the
set N(x) where

N(z)={y € V(G) | zy € E(G)}.

For terms not defined here. see [5].

Many results in extremal theory are based on edge density conditions. for example,
a minimum degree requirement. Turan’s (8] classic result on the existence of complete
subgraphs is a prime example of such an edge density result.
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Over the last few years a wide variety of results using various forms of generalized
degree conditions have been found (see for example [6] and [7]). In this paper we are
concerned with the following minimum generalized degree

8k(G) = min|N(ur) U N(ug) U--- U N(ug)|

where the minimum is taken over all independent sets of size k.

In 1989, Noga Alon, Ralph Faudree and Zoltan Furedi [1] proved the following
theorem based on this minimum generalized degree, again a form of edge density
condition.

Theorem 1 Let G be a graph of order n. Let k and d be integers where k > 1 and
d>2. Let

81(G) = min|N(uy) U N(uz) U -+ - N(ug)|

where the minimum is taken over all independent sets of size k. If G satisfies the

condition

d—2
~87“
— d _ 1 n,

then for sufficiently large n, G contains a K.

8(G)

Their result, as stated, can be viewed as the §;(G) analogue of Turan’s Theorem.
Note that when k& = 1 we have §(G) = 6;(G).

The purpose of this paper is to provide another generalized degree analogue, this
time to an edge density result due to Erdos [3]. In particular, Erdés proved the
following theorem. ‘

Theorem 2 There exists a ¢, and an no(k) such that if
|E(G)| > epniti/k

and n > ng, then Cy is contained in G.

Erdés [3] conjectured that this edge density condition implies G contains a Cy
for every integer | € [k,n%]. Bondy and Simonivits [2] proved this conjecture with
cx = 100k. Our analogue of Theorem 2 is the following.

Theorem 3 Let G be a graph of order n. Let k and p be integers greater than or
equal to one. If G satisfies the generalized minimum degree condition

b > env

for some real number c, then for sufficiently large n, G contains a Cap.



2 Results

We first consider the case where G is a bipartite graph. Consider uy € V(G) such that

d(ug) > con%. Let U; = N'(ug) denote the set of all vertices V(G) whose minimum
distance from wug is 7, that is,

U:={z € V(G) | d(z,w) = }.
Note that Up = {ug} and that U; = N(ue).

Lemma 1 Let p and k be a fired integers greater than 1. Let G be a bipartite gr aph
of order n that satisfies the generalized minimum degree condition

8(G) > en¥

for some real number c. If G does not contain a Cy,, then for sufficiently large n,

\U:| > en® for 1 <i< p and some real number c;.

Proof: The proof is by induction on . Note that the claim is true for : = 0 with
co = 1 as in this case Uy = {uo} and ¢on®? = 1. Now assume for some j,0 < j < p ,
that the claim is true for all 0 < ¢ < j.

Given any collection of p vertices in U;, there must exist at least two vertices in
the collection, say v and v, such that

(1) ]+l ﬂ ;+1 |<P—1

where N7, (u) = N(u)ﬂUj+1 . If this were not the case, given any collection of p
vertices in U;, the intersection would be at least p — 1, that is,

| ]+1( u)N N;+1(v)l >p—1

In order to see that is is true, let z, be a vertex in U,,, 0 < m < j — 1, such
that there exists vertex-disjoint paths from z, to u and v and let m be maximal
with respect to this property. Note that such a z,, must exist as u and v are both at
distance j from uo. Then there exist a path of length 5 — m from z,, to u, a path of
length 2(p — j + m) from u to v via the vertices in U; and U;4+; (using the fact that
any two such vertices have at least p — 1 common neighbors), and a path from v to
zm of length 7 —m. Hence, we have a cycle of length 2p in G obtained by combining
the path from z,, to u, the path from u to v and the path from v to z,. Therefore,
given any collection of size p in Uj;, the two vertices u and v that satisfy (1) must
exist.

This implies that at most p — 1 vertices in U; can cover the same neighborhood
set Sin Ujyq if |S] > p — 1. This implies

2
)
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1
[Ujt1] 2 ~—F55cnr = ¢jpan'»

c;nP
(7)
for some real number ¢;;;, hence completing the proof. o

With the use of Lemma 1 we can now prove a version of our main result for
bipartite graphs.



Lemma 2 Let k > 1 and p > 1 be integers. Let G be a bipartite graph of order n
that satisfies the generalized minimum degree condition

5:(G) > en»
for some real number ¢. Then for n sufficiently large, G contains a Cap.

Proof: Let G be a graph that satisfies the conditions of the lemma and does not
contain a Cy,. We shall show that this leads us to a contradiction. Let wo € V/(G)

such that d(ue) > fn% Such a vertex must exist or our condition on éx(G) would be
violated. Then, by Lemma 1, | N?(u,)| > con for some real number co. Let uy € N (uo)
such that d(uy) > %n% Then again by Lemma 1, |[N?(u1)| > ¢in for some real number
¢; and since G is bipartite, NP(uo) N NP(uy) = ¢. For each t € Z*, we may choose
u; € N(us—1). Note, for example, that if z € NP(uo) N N?(uz), then the minimum
distance from z to ug would be both p and p+ 2. Thus, in fact, we obtain a sequence
of pairwise disjoint subsets of V(G), each of order ¢;n for some real number ¢,. Since
n is finite, this process must terminate, which is a contradiction to Lemma 1. ¢

We are now able to prove our main result.

Proof of Main Result: Let G be a graph of order n and 6 > en# for some real
number ¢. There can be at most k — 1 vertices whose degree is less than fn]? Erdos
[4] showed G contains a spanning bipartite subgraph H. where each vertex z € V(H)
has degree at least half its degree in G, that is,

deggr
degyz > ‘;G.

Such a spanning subgraph satisfies the generalized minimum degree condition

1 : .
§x > ¢n¥ for some real number ¢’. Hence, by Lemma 2, H contains a C3,, and thus,
so does G. ©

3 Future Directions

We can now ask the same question posed originally by Erdés: Do all cycles Cy; exist
for t € [p,n'/?)? If so, for what constants can we verify this result?
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