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ABSTRACT

One of the most fundamental results concerning paths in graphs
is due to Ore: In a graph G, if deg x+ degy= |G)| + 1 for
all pairs of nonadjacent vertices x,y € WG), then G is hamiltonian-
connected. We generalize this result using set degrees. That is, for
S C VUG), let deg S = |Uyes N(X)|, where N(x) ={v|xv € EG)} is
the neighborhood of x. In particular we show: In a 3-connected graph
G, ifdeg S; + deg S, = |(G)| + 1 for each pair of distinct 2-sets of
vertices S, S, C U G), then G is hamiltonian-connected.

Several corollaries and related results are also discussed.© 1994 John
Wiley & Sons, Inc.

1. INTRODUCTION

We use the notation and terminology of [2]. Only simple graphs are
considered. Let G be a graph. A hamiltonian path in G is a spanning
path of V(G). A hamiltonian cycle in G is a spanning cycle of V(G). A
graph is hamiltonian if it has a hamiltonian cycle. A graph is hamiltonian-
connected if there is a hamiltonian path between any two vertices. Let the
neighborhood of v be N(v) = {x € V(G)|xv is an edge of G}. Let §(G) =
min{deg v : v € V(G)}, and let deg{x,y} = |[N(x) U N(y)|. Clearly, this
idea of generalized degree could easily be extended to any number of
vertices; however, we will have need only for the above definitions. Now
let 62(G) = min{deg{u,v}: u,v € V(G),u # v}. Given a path in G we
denote by (a,b) the subpath from vertex a to vertex b, not including a
or b, while [a, b] denotes the subpath containing both end vertices. Where
needed, we use the notation v™ or v~ to indicate the successor or predecessor
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of the vertex v along some path with a given (or implied) direction. We use
the notation d(a, b) to denote the distance from a to b in the graph G and
dp(a, b) to denote the distance from a to b along the path P.

It is a well-known result of Ore [6] thatif deg x + deg y = |[V(G)| + 1

for each pair of nonadjacent vertices x,y, then G is hamiltonian connected.
A similar result also due to Ore [5] holds for G being hamiltonian. Ore’s
theorem generalized an earlier classic result of Dirac [1] based on minimum
degrees. A generalized version of Dirac’s hamiltonian result was shown
in [3]:

Theorem A. If G is a 2-connected graph on n vertices with §,(G) = n/2
where n is sufficiently large, then G is hamiltonian.

It is natural to wonder if Dirac’s theorem for hamiltonian-connected graphs
can also be generalized using set degrees. This was answered positively in

[4], where the following result, using only degree conditions, was shown.

Theorem B. If G is a graph of sufficiently large order n with §(G) = 3
and 8,(G) = (n + 3)/2, then G is hamiltonian-connected.

Note that the graphs in Theorem B must be 3-connected by a result of [4].
It is now natural to ask if the generalized degree bound in Theorem B can
be lowered somewhat if we begin by assuming the graph is 3-connected.
Here, we prove the following result, reminiscent of Ore’s Theorem.

Theorem C. If G is a 3-connected graph of order n and if all pairs of
distinct 2-sets of vertices S; and S, satisfy

degS1 + degSz =n + 1,
then G is hamiltonian-connected.

The following corollary is immediate from Theorem C and supplies the
weakening of Theorem B we sought.

Corollary D. If G is a 3-connected graph of order » and each distinct pair
of vertices § satisfies deg S = (n + 1)/2, then G is hamiltonian-connected.

The following corollary is also immediate from Theorem C.

Corollary E. If G is a 3-connected graph such that for all arbitrary 2-sets
of vertices §; and S,

deg S, + deg S, = [V(G)| + 1,

then G is hamiltonian-connected.
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2. THE PRELIMINARIES

We will need several lemmas before we can prove the main result,
Theorem C. We begin with a simple lemma used often in this area. For

this reason the proof is omitted.

Lemma 1. Let G be a graph on n vertices that contains no x — y
hamiltonian path. Further, suppose P : x = vy, vV,,...,U,-1 = y is a path
from x to y missing exactly one vertex of G, say v. If v; and v; are in
N(v), then neither v;—jv;- Or v;41v;4 are in E(G). 1§

Lemma 2. Suppose G has order n and contains no hamiltonian x — y
path. Further, suppose P : x = vy, v2,...,Up—; = yisanx — y pathin G
missing only v and that z € V(P) with the property that for every i, if
v; € N(v) U N(z), then v;_1,v;+1 & N(z). Then deg{v,z} = n/2.

Proof. From the hypothesis of Lemma 2, it is readily seen that N(v) U
N(z) contains no two consecutive vertices on the path P. Thus, deg{v,z} =
(lVv(P)| + 1)/2 = n/2 and the lemma is verified. @

Lemma 3. Suppose G has order n and satisfies deg S; + deg S, =n + 1
for each pair of distinct pairs of vertices Sy,S5,. Let P be an x — y
path in G missing only v where deg v is maximum and further suppose
deg v = (n + 1)/4 and v is not adjacent to x. If G contains no hamiltonian
x — y path, then we may select two neighbors of v on P, say s and ¢, such
that dp(s,t) = 3.

Proof. Select P and v so that deg v is a maximum. If the claim fails
to hold, then d,(s,7) = 4 and thus

4degv — 1)+ 1=n-—2

since v is not adjacent to x and all adjacencies are on P. Hence, deg v =
(n + 1)/4. But then, deg v = (n + 1)/4 and G contains the subgraph of
Figure 1.

LetP : x = vi,vy,...,U,—1 = yandletu = v,_g and w = v,_,. Then,

deg{v,x} + deg{u,w} =n + 1.

FIGURE 1
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This follows since if x is not adjacent to v,-3 then

deg{v,x} + deg{u,w} = n,

as the predecessor of any vertex in N(v) U N(x) is not in N(u) U N(w)
(except possibly v,-s, which does not affect our count).
If x is adjacent to v,—_3, then by our choice of P and v,

n+1
4

degw =degv =

and so w has at most deg v — 1 neighbors outside N(v) (since y € N(w) U
N(v)). Thus, deg{v,w} = (n — 1)/2. But then, deg{v,x} = (n + 3)/2 and
deg{u,w} = (n + 3)/2. Hence,

deg{v,x} + deg{u,w} = n + 3,
and Lemma 3 follows. #§

Lemma 4. If G is a graph of order n containing no hamiltonian x — y
path and P is an x — y path in G missing only v (where v is not adjacent
to x), then any two neighbors of v on P, say s and ¢, satisfy d,(s,t) = 3.

Proof. Clearly, d,(s,t) =2 or a hamiltonian path from x to y is
immediate. Thus, suppose d,(s,) =2 and let w = ¢t~ be the vertex on
P between s and ¢. Further, let u = s~ be the predecessor (in the x to y
direction) of s on P (note that u = x is possible).

For each z adjacent to either v or w, both u and v are not adjacent to z~
(where z € (x,s] or z € [¢,y]), or else a hamiltonian x — y path is easily
found. Thus, (as the adjacencies of u and v are restricted to P) we see that

deg{u,v} = n — 1 — deg{v,w} + 1,
hence
deg{u, v} + deg{v,w} = n,
a contradiction. Thus, Lemma 4 holds. @

Suppose G is a graph of order n with no hamiltonian x — y path
and suppose G contains an x — y path missing only one vertex that
is not adjacent to the first vertex x of the path. Further, suppose this
vertex has consecutive adjacencies say s and ¢ on the path P such that
dp(s,t) = 3. Then, over all such paths and vertices in G, we may select
apath P = x,vy,...,v,—1 =y, a missing vertex v and s, t € N(v) such
that dp(s,t) = 3 and dp(x,s) is a minimum. We may assume that s = v;
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and 1 = vy (where k = j + 3). Also, let ¥ = v+ and w = v;+,. Finally
suppose that G satisfies the condition that for each pair of distinct 2-sets Sy
and S,, we have that deg S; + deg S, = n + 1. In the remaining lemmas
we assume this situation holds in the graph G.

Lemma 5. In G, with vertices u,v,w defined as above, deg{v,w} +
deg{u,v} = n + 1, hence,

deg{v,w} + deg{u,v} =n + 1.

Proof. For each v; EN@W)UNWw), 1 =i<n-—1,i+#j+1, the
vertex v;+; & N(u) U N(v) or a hamiltonian x — y path results. Thus,
we see that deg{u, v} = (n — 1) + 1 — deg{v,w} + 1 (accounting for the
nonadjacency claim failing for w and possibly v,-;). Hence, the lemma
follows. B

Since we are considering graphs of order » that satisfy the degree condition
deg S; + deg S, = n + 1, pairs of vertices like those of Lemma 5 are
in a sense critical, as our adjacency—nonadjacency count is “tight.” If
we could find any other vertex that is not forced to be adjacent to one
pair and nonadjacent to the other pair, our degree sum count would fall
below n + 1. More precisely, a vertex v; is called a bonus vertex if
v; € (N(w) U Nw) — {v,- D' U (N(u) U N(v)). Note that x € N(u),
otherwise x is a bonus vertex.

Lemma 6. In G, the vertex u = v;+ is not adjacent to v;—1.

Proof. Suppose u = v;;; is adjacent to v;_;. Then for every z €
N(v) U N(w) where z € [x,v;-1) or z € (t* = v441,y), we have that
z7 & N(v) U N(vg41) or an x — y hamiltonian path exists. Further, in the
interval [v;—1, vk+1], v has only s and ¢ as neighbors, while if w is adjacent
to any of v;_y,s, Or vx4; a hamiltonian x — y path results. Finally, vy+; is
not adjacent to s, u, or w or again a hamiltonian x — y path results. Thus,
in this region, deg{v, w} = 3 and deg{v, vi+:} = 3. Finally, note that y has
been omitted from our count. But then,

deg{v, vps1} = (n — 1) — 6 — (degfv,w} — 3) +3 + 1,
hence
deg{v, w} + deg{v, vis1} = n,
again a contradiction, completing the proof of Lemma 6. £

Now, since w is not adjacent to v;—; (or a hamiltonian x — y path is
immediate) and just as clearly, v is not adjacent to v;—;, by an argument
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similar to that of Lemma 5 and Lemma 5 itself, we have that x # v;_; (or
x = v;j—; would be a bonus vertex). By Lemma 4 we also have that v is
not adjacent to v;—, and so from the argument of Lemma 5, u is adjacent
to vj—p or w is adjacent to v;—,, or v;—; would be a bonus vertex.

Lemma 7. In G, the vertex w must be adjacent to v;_,.

Proof. Since wv;-; € N(u) U N(v), then v;; € (N(v) U N(w) —
{vn-1})*. Using the fact that v; , & N(v), we have v;—, € N(w). §

Lemma 8. In G, x must be adjacent to v;_;.

Proof. If x = vj,, then x is adjacent to v;_;. Thus, suppose x # V-2,
Suppose also that x is not adjacent to v;-;. Now consider the path

Loy - _
Prx=wvy,...,vj0,Ww,u,s =vj,v,l = V,...,Y

with v/ = v;_q, s’ = v;, and ¢’ = v;. Then, P’,v’,s’ and ¢’ contradicts
our choice of P,s,t with dp(x, s) as a minimum. Hence, Lemma 8 follows
and so x is adjacent to v;_;. i

Lemma 9. In G, x # V).

Proof. Suppose to the contrary that x = v;_,. Recall, x € N(u). Now,
for each i with v; € N(v) U N(v;-y), then v;_y,v;4; €& N(v;-;). Thus,
by Lemma 2, deg{v,v;—1} = n/2. However, from this fact, combined
with Lemma 5, we either have deg{v,v;_i} + deg{v,w} <n + 1 or
deg{v,v;—1} + deg{u, v} < n + 1, a contradiction. §

By Lemma9, the vertex v;-3 exists. If x = v;—3, then x,v;q,
Vj2,W,u,s,v,t,...,y is a hamiltonian x — y path in G, a contradiction.
Hence, x # v;_3. By our choice of s,¢, we see that v is not adjacent to
v;—3. Also, since w is adjacent to v;_,, then v;_3 is not adjacent to u (or
a hamiltonian x — y path would exist).

Lemma 10. In G, v;—, & N(u).

Proof. Suppose to the contrary that v;_, € N(u). Then, if v; € N(v) U
N(vj-1), both v;—1, vi+1 & N(v;-1). Hence, By Lemma 2, deg{v,v;—1} =
n/2, a contradiction when combined with Lemma 5. [

Now, by Lemma 10, v;_, & N(u). Then we note that v;_3 € N(w), for
otherwise v;_; is a bonus vertex, contradicting Lemma 5. Hence, we may
assume that v;,v;41,...,vj—2 € N(w) where v; = x or v,y &€ N(w).
However, if x = v;, then x = v, vj-1,..., V41, W, 4,5,v,¢,...,y is a
hamiltopian x — y path, a contradiction. Thus, x # v;, hence, [ = 2.
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However, we also have that v, # v;; otherwise x = w;—1,vj-1,
. UL W, U, S, U, L, ...,y would be a hamiltonian x — y path. Hence, | = 3.

Lemma 11. In G, v, € Nw) U N(w) U N(w) and v3; € N(u) U

Nv) UNWw).
Proof. If v, € N(u), then
X, Uj—l, vj—Zs w, vj—3s U, UL S, U, ta s 7y

is a hamiltonian x — y path, a contradiction.
If v, € N(v), then

X, Vj—15.+..,U2, U, 8,...,)

is a hamiltonian x — y path, a contradiction.
We see that v, & N(w), for otherwise

X, Ujetyeee s Vs W U, S, UL Ly, Y
would be a hamiltonian path from x to y. Hence, v, &€ N(u) U N(v) U

N(w) and so, by the count in Lemma 5, v3 € N(x) U N(v) U N(w) or
else v; would be a bonus vertex. [

Note that since x is not adjacent to v, x € N(x) N N(w), otherwise v,
is a bonus vertex by Lemma 11, which contradicts Lemma 5. Further, v, is
not adjacent to v;—; for otherwise

xyvj—l,v:).y--~7vj_2>w7u,syv’tv'~"y
is a hamiltonian x — y path, a contradiction.

Lemma 12. In G suppose that there is a path from x to y missing only v,
that deg v = (n + 1)/4, and that v is not adjacent to x. Then G contains
a hamiltonian x — y path.

Proof. Suppose G is as above and that the result fails to hold. By
Lemmas 3-11, v; must be adjacent to one of u,v, or w. First, suppose
that vy € N(u).

Note that v, is not adjacent to v, where [ = p = j — 3, for otherwise,

x:-vZ’vpv-'-yv37uaw7vp+19~-'9S7vyt,""y

is a hamiltonian x — y path. Next, note that v, is not adjacent to vj-1,
for then

X, Vj—1,V2,...,Vj—2, W, U,S, VU, E,...,Y
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is a hamiltonian x — y path in G.

Claim 1. For each i, v; € N(v,) implies that v;_1, vi+1 & N(va).

Proof of Claim 1. 1f 4 <i{ + 1 = [, then v;, v;1; € N(vy) implies
that

X, Vj—1,Vj=2, W, Vj-3,. .., Uik, U2, Uiy o .., U3, U, S, UL L, L, Y

is a hamiltonian x — y path.
If i = ¢, then v;,v;4+; € N(v,) implies that

X, Uj...l, Uj_2, w, Uj-—37 <., U3, U, S, U, t..., Vi, U2, Vit1,---5)Y
is a hamiltonian x — y path. Thus, Claim 1 holds.
Claim 2. For every i, v; € N(v) implies that v;_y,v,+; & N(v,).
Proof of Claim 2. Note that v is not adjacent to v, where [ + 1 =
p =j — 2 (by Lemma 2), and that [ = j — 4 if v is adjacent to v, (by
the choice of s and ?). Thus, if v; € N(v), then v;_; is not adjacent to
vy, for otherwise

X,Uz,‘lll_l,...,'U3,L£,W,‘U[,...,S,U,t,...,y

is a hamiltonian x — y path.
For i < I, v;i-; € N(v,) implies

x,vz,vi_l,...,U3,u,S,Uj_1,'Uj_2,W,Uj_3,...,Ui,v,t,...,y
is a hamiltonian x — y path. While v;4+; € N(v;) implies that
x,vz’vi+ls"',Ulawavl'i'l?-"’uav39-°-’vi9v,t,~-'3y

is a hamiltonian x — y path.
For i = k, v;—; € N(v,) implies that

XoW, ooy U2, Ving,ye. s LU, V000, Y
is a hamiltonian x — y path. (Since v, is not adjacent to w, i = k is
obvious.)
Also, v;+; € N(v,) implies that

XUy Wik, oo, VUV, 8,00, U2, Vid e Y

is a hamiltonian x — y path. Thus, Claim 2 follows.
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Now by Claims 1 and 2, deg{v, vo} < n/2. Thus, deg{u, v} = (n/2) + 1
and deg{v,w} = (n/2) + 1, which contradicts Lemma 5. Therefore, we
conclude that v3 is not adjacent to u.

Next suppose that vs is adjacent to v. For every i, 3 =i = j — 2, if

v; € N(vy), then vy & N(vy), for otherwise
x,Uj-l,-..,'UH-],UZ,U,’,...,U3,U,S,u,w,t,...,y

is a hamiltonian x — y path.
Recall, v, is not adjacent to v;_; or u or w. For i = k, if v;, v;41 €
N(v,), then again a hamiltonian x — y path results, namely

X,Uj—l,...,U3,U,S,u,w,t,...,Ui,vz,vi+1,...,y.

For all i, if v; € N(v), then both v;_; and v;+; are not in N(v,). This
follows since for i = k, v;—; € N(v,) implies

x,W,u,S,...,‘U2,U,~_1,...,t,v,v,-,...,y
is a hamiltonian x — y path in G. While v;+; € N(v,) implies that
XUy Wol,o oo s Ui, Uy S, e, U, Vig gy oo e Y

is a hamiltonian x — y path in G. While for 3 = i = j, if v;-; € N(vy),
then

x,'U2,Ui~1,---,U3,U,'Ui,-~-,y
is a hamiltonian x — y path in G; if v;1, € N(v,), then
x3vj—1"--’vi+19v29v39-",vi,vssau,wata~"sy

is a hamiltonian x — y path.

Hence, by these conditions and Lemma 2, deg{v, vo} < n/2, contradicting
Lemma 5.

Thus, we conclude that v; is not adjacent to v. Hence, from our
earlier conclusions, vs &€ N(u) U N(v). Thus, v must be adjacent to w.
Hence, v4 € N(v) U N(u). By Lemma 5, vy is adjacent to w or vy is
a bonus vertex. Thus, we may assume that vs,vs,...,v, € N(w) with
vr+1 & N(w). Obviously, r = j — 2. Clearly, v,+;1 &€ N(u) U N(v) U
N(w). Hence, v,+; is a bonus vertex, contradicting Lemma 5. (Note that
v3,V4,...,v, € N(v) U N(u).) Hence, Lemma 12 is proved. §

Lemma 13. In G, let Q : vy, v,,...,v,-1 be an x — y path missing only
vertex v = vg. Let N(x) = V(G) — x and N(y) = V(G) — y. Further,
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suppose that deg S; + deg S, = n + 1 for any pair of distinct 2-sets
S1, S, C V(G). Then, G has a hamiltonian x — y path.

Proof. Suppose this was not the case. Let x' = v, and y' = v,—,. Let

v; € N(v)(2 < j < n — 2), which must exist as G is 3-connected (or else
a hamiltonian x — y path results). Then, v is not adjacent to x’ or y’ or a
hamiltonian x — y path is immediate. Note that x’ is not adjacent to y’ for
otherwise

X, 0, V5, LxL Y vy
is a hamiltonian x — y path in G.
Claim. Foralli = 3,ifv; € N(v) U N(y'), then v;+; & N(v) U N(x').

Proof of Claim. If v; € N(v), the fact that v;.; & N(v) is obvious,
while if Vit+1 S N(x/), then

!
X, U,Ujyonas X 3 Vjg15.-45Y

is a hamiltonian x — y path in G.
If v; € N(y') then if v;4; € N(v) we see that

/ !
XUy Uitlse e Y 5 Vis e s X5 Y

is a hamiltonian x — y path in G. On the other hand, if v;+1 € N(x’), then
when i < j,

XU, Ve Vs, X5V 041,y
is a hamiltonian x — y path in G, while when i > j,
XU, Ve X Vit LY Vi UL Y
is again a hamiltonian x — y path. Note that x’ € N(v;+1) implies that
P VR VU 00 VENR TN ¢

is a hamiltonian x — y path, proving our claim.

Hence, by the claim, deg{x’,v}=n — 1 — deg{y’,v} + 1. Thus,
deg{x’,v} + deg{y’,v} = n, a contradiction. Thus, G must have an x — y
hamiltonian path. §
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3. THE MAIN RESULT

We now turn our attention to the proof of the main result, Theorem C.

—Proof-of Theorem-C.-Suppose-the result-fails-to-hold: Let-G-be-an-edge-—

maximal counterexample of order n and suppose that G has no hamiltonian
path between vertices x and y.

Claim 1. There is a vertex v & N(x) such that deg v = (n + 1)/4.
Proof of Claim 1. Suppose such a vertex v does not exist.
Claim 1.1. The graph G has at most two vertices not adjacent to x (or y).

Proof of Claim 1.1. Suppose there are three vertices not adjacent to x,
say u, v, and w. Then deg u, deg v, and deg w are all less than (n + 1)/4.
But then,

deg{u, v} + deg{u,w} <n + 1,
a contradiction.
Claim 1.2. N(x) = V(G) — x (and N(y) = V(G) — y).

Proof of Claim 1.2. Suppose that v # x and v & N(x). By our choice
of G, the graph G + xv has a hamiltonian path from x to y and this path uses
the edge xv. Hence, G has a path from v to y missing only x. By Claim 1.1,
x has at most two nonneighbors. If x has only v as a nonneighbor, then by
the 3-connectivity of G there exists a v; € N(x) with v;4+; € N(v). But
then a hamiltonian x — y path is easily found.

Thus, x has two nonneighbors. Let the second nonneighbor be vy, k = 2.

If £ = 2, then by the 3-connectivity and the above argument, a hamilton-
ian x — y path can easily be found. If k = 3, then v, & N(v) or else

Xy Vp—15Vf—25 s Uy Uy Ut 150025 Y

is a hamiltonian x — y path.
Since G is 3-connected, v is adjacent to at least two vertices in {vs, ..., y}.
So v is adjacent to some v;, 3 = j =n — 1 and j # k + 1. Hence,

x,vj_l,...,v,vj,...,y

is a hamiltonian x — y path, again producing a contradiction and completing
the proof of Claim 1.2.

Therefore, we have that N(x) = V(G) — x and similarly, N(y) =
V(G) — y. Then, by Lemma 13, G has a hamiltonian x — y path, a
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contradiction. Thus, we may assume that there exists a vertex v & N(x)
such that deg v = (n + 1)/4, proving Claim 1.

Claim 2. The graph G has a path P : v = vy, vy,...,VU,-1 = y missing

only x, where x & N(v) and deg v = (n + 1)/4.

Proof of Claim 2. By Claim 1, we have x & N(v), satisfying the desired
degree condition. Now, by our choice of G as a maximal counterexam-
ple, G + xv has a hamiltonian x — y path. Thus, the desired path P
clearly exists.

Now let s = v; be the neighbor of x on P closet to y where s # y. Let
x' = vj41 (noting x’ =y is possible).

Claim 3. Fori = j, if v; € N(x) U N(x'), then v;1; & N(v) U N(vy).
For j+2=<i=n—1, if v; € N(x) UN('), then v;_y &€ N(v) U
N(vz).

Proof of Claim 3. Suppose i < j. If v; € N(x), then v;4; € N(v)
implies that

XoUiseens Uy Uity e ey
is a hamiltonian x — y path in G; while v;4+; € N(v,) implies that
Xy VUjse e s U2, Vjt1se005 Y
is an x — y path in G missing only v (with deg v = (n + 1)/4) and by
Lemma 12, a hamiltonian x — y path exists in G, again a contradiction.
Now suppose v; € N(x'). If v;+; € N(v), then
X, Sy Vit Usee s Ui X',y
is a hamiltonian x — y path in G; while if v;+; € N(v,), then
X, S, Vig1sUgsen s Ui Xty
is an x — y path in G missing only v and again by Lemma 12 a hamiltonian
x — y path can be found, a contradiction.
Forj+2=<i=n-1,if v; € Nx') and v;—y € N(v), then
X, S,y UsUisty e s X3 Uiy ety

is a hamiltonian x — y path; while v;-; € N(v,) implies that

!
Xy Syeer s U2, Vimlsen s Xy VUiyen, Y
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along with v and an application of Lemma 12 yields the desired
hamiltonian path.
By a simple counting argument, we have that

deg{x,x'} + deg{v,vo} =n + 1,
which implies that
deg{x,x'} + deg{v, vy} = n + 1. (%)

Once again, we define v;(i < j) to be a bonus vertex (with respect to
equation (%)) if v; € (N(x) U N(x'))" U (N(v) U N(v,)), while for i =
j + 2, v; is a bonus vertex if v; & (N(x) U N(x'))”™ U (N(v) U N(v2)).

Claim 4. Suppose k < j, if vy € N(x) U N(x) and vi+; € N(x) U
N(x'), then v+ € N(v) U N(v,) and for any i, {v;, vi+1} € N(vi+1)-

Proof of Claim 4. Note that vy, € N(v) U N(v,) or else it is a bonus
vertex.

Now suppose {v;,vi+1} C N(vi4+,) and that vy, € N(v). Then for
i +1=<k, if x € N(v;), then

XyVUky oo e s Uit V15 V5 -0, U2, Uy Vg g2, -0 5 Y
is a hamiltonian x — y path in G; while if x’ € N(v,), then
!
Xy Syuees Up42, U, U2,y oo o, Uy Ugt 15 Vit 15 s Uy X 50005 Y

is a hamiltonian x — y path in G.
Forj—1=i=k+ 2, if x € Nw), then

X,Uk,---avz,v,vk+2,--.,vi7vk+1,vi+1,---,y
is a hamiltonian x — y path, while if x’ € N(v;), then
!
Xy Sy oo s Uity V415 Uiy e oo s Vg2, U U2y, Uy X500y Y

is a hamiltonian x — y path.
Finally, suppose i = j + 2, if x € N(v,), then

Xy Uy oo s U Uy Upg2y e oy Uiy Ut 15 Uit 15005 Y
is a hamiltonian x — y path in G, while if x’ € N(v;), then

/
Xy Sy oo s Ukt2, U, V25 o, Uy Xy oo o, Uiy Vgt 1, Vit o205 Y
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is a hamiltonian x — y path in G. If instead, vi+2 € N(v2), then all the
same paths are produced, minus the vertex v. However, v and these paths
satisfy Lemma 12, producing the desired contradiction.

Thus, in all cases a contradiction is reached and hence Claim 4 is proved.

Claim 5. No two vertices vy, v,k <[ <j exist such that vg,v; €
N(x) U N(x') and vis1,v541 & N(x) U N(x).

Proof of Claim 5. Suppose the claim fails to hold. Then we may select

k, I such that no vertex between v; and v; on P also has this property. Then
by (*) and our choice of v, and v;, we may assume that

Yg+2,---,Yp EN(U)UN(Uz) and Up, Up+is..., V) EN(X)UN(XI)

Note that p = k + 2 or p = | are possible.
The following notation will now be useful. In denoting a path as

the notation (¢) means that vertex ¢ may or may not be used in the path,
thus really creating two paths as possibilities.

Claim 5.1. Note that vy & N(vi+1).

Proof of Claim 5.1. Suppose the claim fails to hold. If x € N(v,), then

X, Uy eon, Vg2, V2, (U),... sUk+1 Vl+15 05 Y

is a hamiltonian x — y path in G or a path satisfying Lemma 12, while if
x' € N(v;), then

/
X,S,...,Ul+1,vk+1,...,Uz,(v),vk+2,...,vl,x seeesy

is a hamiltonian x — y path in G or a path satisfying Lemma 12. Thus,
both cases lead to a contradiction.

Claim 5.2. Note that Vi+3s.-., U] % N(Uk+1) and Vk+25.++5 V-1, $
N(vi+1).

Proof of Claim 5.2. This follows since if v; € N(vg+1), k + 3 =i =
p + 1, then if x € N(v;)

x,Uk,---»UZ,(U)vUi-l,-w,Uk+1,Ui,---,y
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is a hamiltonian x — y path or a path satisfying Lemma 12; while if
x' € N(vy), then

!
x,S,...,U,‘,Uk+1,...,Ui—l,(v),vz,...,vk,.x,...,y

is a hamiltonian x — y path in G or a path satisfying Lemma 12. On the
other hand, for p + 1 =i = [, if x € N(v;-1), then

Xy Uj—15.-- avk+2,(v)a V2yen e s Upt1s Uiy e v 7y

is a hamiltonian x — y path or a path satisfying Lemma 12; while if
x e N(Ui—l)v then

!
x,s,...,Ui,vk+1,...,Uz,(v),vk+2,...,vi—1,.x,...,y

is a hamiltonian x — y path in G or a path satisfying Lemma 12. Thus,
again we are lead to a contradiction.
If vj+1 € N(v;), thenfork + 2 <i < p — 1, if x € N(v,), then

x,UI,---,Ui+1,(v)’U2’---,Ui,vl+1,---,y

is a hamiltonian x — y path in G or a path satisfying Lemma 12; while if
x' € N(v)), then

N !
x,S,...,'U[+1,'U,',...,U2,(U),Ui+1,...,U[,x 9"-7y

is a hamiltonian x — y path in G or a path satisfying Lemma 12. Also, for
p=i=1-—1,if x € N(v;+), then (recall by Claim 4, v;4,» € N(v) U
N(v2))

x,vi+1""avl+lyvia-'~,U27(v)9vl+2v'--’y

is a hamiltonian x — y path in G or a path satisfying Lemma 12; while if
x' € N("UH_]), then

!
x9s5'~-’vl+2’(v)’v21~~'7vi’vl+17--'sUH-l,x yeeesy

is a hamiltonian x — y path in G or a path satisfying LLemma 12. Hence,
the claim is proved.

Claim 5.3. If v, € N(UH]), then Vi+1 $ N(‘Uk+1) for i +1=< k, i =
I+ 2.

Proof. To see this, note that for i + 1 < k and v;1; € N(vgyy), if
x € N(vg), then

XyoUkyooo s Uikl Uk+lse e e s U1, Ujy v v ,Uz,(U),UHz,---,y
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is a hamiltonian x — y path in G or a path satisfying Lemma 12; while if
x" € N(vy), then

i
-x7s,-‘"vl+23(v)’v25"'avi7vl+1,-"’vk+lavi+19'--,vkax yeeesy

is a hamiltonian x — y path in G or a path satisfying Lemma 12. Now
when i = [ + 2, if x € N(vy), then

Xy Vks oo ,'Uz,(v), Vit2s oo s VUi Uty oo s Vg1 Vit - 05 Y

is a hamiltonian x — y path in G or a path satisfying Lemma 12; while if
x' € Nvy), then

!
x’S’--°,vi+1avk+l,---’vl+l3via~"svl+2’(v),v2s‘-'$vk9x sy

is a hamiltonian x — y path in G or a path satisfying Lemma 12 when
i+1=j and

!
x,S,...,Ul+2,(v),U2,...,vk,x s s U Uil oo o s V1 Vit 15 -0 -5 Y

is a hamiltonian x — y path or a path satisfying Lemma 12 wheni = j + 2,
completing the proof of Claim 5.3.

Claim 54. If v; € N(v;1y), then v, € N(vgy) for i<k, i+ 1=
[+ 2.

Proof. Suppose v;—; € N(vi41). For i =k, if x € N(vy), then
x,‘Uk,...,vi,vl+1,...,vk+1,vi—1,...,Uz,(v),vl+2,...,y

is a hamiltonian x — y path in G or a path satisfying Lemma 12; while if
x' € N(vy), then

!
x,S,...,'Ul+2,(U),Uz,...,vi—l,vk+1,...,'U1+1,U,‘,...,Uk,x sy

is a hamiltonian x — y path in G or a path satisfying Lemma 12. Also, for
i—1=1+2,if x € N(vy), then

Xy Uy 7v27(v)’ V42505 Vi1 Vk41se e o s Vi1 Vs o vt 1y

is a hamiltonian x — y path in G or a path satisfying Lemma 12; while if
x' € N(vy), then

!
x,s,...,Ui,vl+1,...,vk+1,vi—1,...,U[+2,(U),U2,...,Uk,x 5-"vy
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is a hamiltonian x — y path in G or a path satisfying Lemma 12 when
i < j; while fori —1=j + 2,

!
x,s,...,'Ul+2,('U),'U2,...,'Uk,X sers Vim1, Ukl oo o s V1, Vs oo 0 Y

is a hamiltonian x — y path producing the desired final contradiction.

In a manner similar to Lemma 2, we may now conclude that |N(vz+1) U
N(vi+1)| = n/2, a contradiction to equation (*). Therefore, there is at most
one vertex vg, k < j, with vy, € N(x) U N(x') and vy & N(x) U N(x').

Claim 6. No k exists such that k < j, v; € N(x) U N(x') and vy, &
N(x) U N(x').

Proof of Claim 6. Suppose such a k exists. By Claim 5, it is unique.
Note that if v; € N(vy+1) U N(x), then v;—y, v;+1 & N(vi+1). This follows
since by Claim 4, v;—1, v;+; & N(vi+1) if v; € N(vg4y), so let v; € N(x).
If v;.1 € N(viy1), then for i < k

Xy Vi ooy Uktls Viels e os U2, (U), ka2, ...,
is a hamiltonian x — y path in G, or we obtain an x — y path missing only
v and apply Lemma 12 to produce the desired hamiltonian x — y path, and
hence a contradiction.
Fori = k + 4,v;, & N(x) U N(x') U N(v) U N(v,), for otherwise if
v;,_, € N(x), then

Xy VUi—=2500.5Ugk+2, (U), V2yeees Vg1, Vi—15- .. ,y

is a hamiltonian x — y path in G or a path in which Lemma 12 applies;
while if v;—, € N(x'), then

X385 e s Vi—1, Vk+15- -+, U2, (v), Uk+25-+ 45 U,‘—2,x,, RS
is a hamiltonian x — y path in G or a path satisfying Lemma 12, again a
contradiction.
Now if v;—» € N(v) U N(v,), if x € N(v;), then

Xy Uksyeos U2, (v)a Vi—2ye- s Vg1, Vi-15- - ,}’

is a hamiltonian x — y path in G, or we again use Lemma 12 to obtain the
desired contradiction. Otherwise, if x’ € N(v;), then

/
X,S,...,Ui_l,Uk+1,...,'U,'_z,(v),v2,...,vk,x yeeesy

is a hamiltonian x — y path or again we use Lemma 12 to provide the
desired contradiction.
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Hence, by Claim 5, v, & N(x) U N(x') for every p,k +2=p =
i — 2, and so v;_, is a bonus vertex for (%), a contradiction.

Now let wv;4; € N(vi+1), and suppose i + 1 < k. By Claim 35,
Vitl,...,Vx € N(x) U N(x'). This implies that i + 1 = k, for otherwise

vi+2 € N(x) U N(x'), but x € N(v,+2) implies that
X,Ui+2,---,vk+1,vi+1,---,Uz,(v),vk+2,--.,y

is a hamiltonian x — y path or a path with which we again apply
Lemma 12, providing a contradiction. Otherwise, if x' € N(v;4,), then

!
x»sa~'~’vk+29(v)a‘u2""9vi+13vk+19'-'7vi+23x seeesy

produces the desired contradiction (or again use Lemma 12). Finally,
i = k + 2 implies

X, Viye ooy Uk+2, (U)7 V2seo s Ukt1, Vitlye oo n Y

itself, or using Lemma 12 when v;4; € N(vy), gives the needed
contradiction.

Now we let m; be the number of vertices of P between the (i — 1)-st and
i-th neighbors of x. Let v;+; be between the (! — 1)st and /th neighbor of
x, where m; equals the number of vertices between v3 and the first neighbor
of x on P (excluding neighbors of x). Note that vy, & N(v) U N(v,).

Therefore, in a manner similar to Lemma 2 (with some slight care), we
may conclude that deg{x, v;+1} = n/2, a contradiction and Claim 6 follows.

Therefore, we may assume that ws,...,v; € N(v) U N(v,) and
vy,...,v; € N(x) U NX').

Claim 7. No k, where j +2 < k =< n — 3, exists such that vy €
N(x) U N(x') but vy & N(x) U N(x').

Proof of Claim 7. Suppose such a vertex exists. Then v, & N(v) U
N(v,); otherwise

!
x,S,...,Uz,(U),Uk,...,x sUk+1s--+5 Y

is a hamiltonian x — y path (or we use Lemma 12), providing a contradic-
tion. Hence, v, # v+, for otherwise x' is a bonus vertex for (*), and v;,—; €
N(v) U N(v,) for otherwise we may assume that vi—q,vi—p,...,v, €
N(x) U N(x') (to avoid bonus vertices) and v,—; & N(x) U N(x') (possibly
equal to x’) would be a bonus vertex for (*).

We claim that if v; € N(x) U N(v,), then vi—1, vir1 & N(vp).

Suppose first v, has consecutive neighbors along P, say v;,v;+;. For
i+ 1=j,

/
Xy Sy s Vidls Vks Uty e oo, U2, (U), V1, ooy X Ukt1y o5 Y
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is a hamiltonian x — y path (or we use Lemma 12), a contradiction. For
jt2=i=k—2,

!
x,s,...,U2,(U),vk—l,...,U,‘+1,vk,vi,.-.,x 7Uk+1,---,y

is a hamiltonian x — y path (or we use Lemma 12), providing the desired
contradiction. For i = k + 1,

/
x’S,"'sv27(v)7vk—17'-')x’vk+17-":vivvkvvi+1?"'sy

is a hamiltonian x — y path or we use Lemma 12 and obtain a contradiction.
Ifv; € N(x),theni < jori =n — 1.Fori < j,if v;—;1 € N(vy), then

X, Vi Vg1, (U), V2, oo Vi, Ugy e, Y

produces a hamiltonian x — y path (or an application of Lemma 12); while
if vy € N(Uk), then

x’vian'»UZ’(v)avk"l)"-9vi+1’vk,--~’y

is a hamiltonian x — y path (or we use Lemma 12), producing a contradic-
tion. Hence, by Lemma 35, deg{x, vy} = (n — 2)/2 + 1 = n/2, a contradic-
tion when combined with (*). Hence, Claim 7 follows.

Thus, by Claim 7 we may assume that v;4,,...,v, € N(x) U N(x') and
Up,...,y € N(v) U N(vy). Clearly, x',vj+2,...,up-1 &€ N(v) U N(vy),
otherwise a hamiltonian x — y path exists (or we find one via an application
of Lemma 12). When x’ # y, by direct counting (see Figure 2) we get

deg{v,vo} + deg{x,x} =0+ —p)+(j—-I+1+p—(j+1)=n

a contradiction.

Thus, x’ = y, which implies that x’ & N(v) U N(v,).

By 3-connectivity, some v, 2 < k <[, must be adjacent to some
vy, ¢ > 1. If vy = X/, then

X, 8y, Vi1, U2, (U)o, vp, Y

vy, v Ry X
() () s e e () e o e O O C
FIGURE 2




860 JOURNAL OF GRAPH THEORY

is a hamiltonian x — y path (or a path on which we apply Lemma 12).
Thus, let g =< j. If v,-; € N(x), then

x’vq‘la--~avk+lav27(v)a°'-svk$vq5‘--3y

is a hamiltonian x — y path (or one on which Lemma 12 applies). If
vy-1 € N(x'), then

x’ss“'7vq7vk"-"v2’(v)7vk+17"'vvq—lay

is a hamiltonian x — y path (or one is produced via Lemma 12). This
provides the final contradiction, completing the proof. [
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