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ABSTRACT

For several years, the study of neighborhood unions of graphs has
given rise to important structural consequences of graphs. In par-
ticular, neighborhood conditions that give rise to hamiltonian cycles
have been considered in depth. In this paper we generalize these
approaches to give a bound on the smallest number of cycles in G
containing all the vertices of G.

We show that if for all x,y € VG), IN(x) U N(y)| = 2n/5 + 1, then
V(G) is coverable by at most two cycles. Several related results and
extensions to t cycles are also given. ® 1994 John Wiley & Sons, Inc.

INTRODUCTION

There has been considerable interest in recent years in the idea of de-
termining structural features of graphs that have a given “neighborhood
union” condition. To be more specific, let G be a graph, for x € V(G), the
neighborhood of x, denoted N(x), is the set of vertices adjacent to x. If S
is a subset of V(G), then the degree of S is

deg(s) = U NW).
xES
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If S, is an arbitrary subset of two vertices of V(G), then &, is the minimum
degree over all such two element subsets. Several “Dirac”-like results
pertaining to this minimum degree and cycles in graphs have been given
in [2,6,7]. For example, in [6] the following result is given:

Theorem A. Let G be a 2-connected graph of order n, if 8, = n/2, then
G is hamiltonian for sufficiently large n.

This result is generalized in [2], where the following is given.

Theorem B. If G is a 2-connected graph of order n, then G contains a
cycle of length at least 26, — 2.

In this paper, we continue this line of study and give several results about
the minimum number of cycles necessary to cover all the vertices of G.

Many of the papers pertaining to neighborhood unions have concentrated
on various hamiltonian related properties. In this paper we give the following
result:

Theorem 2. Let G be a 2-connected graph of order n,n = 10. If §, =
2n/5 + 1, then there is a 2-cycle cover of G. Furthermore, one of the
cycles can be chosen to be a longest cycle in G.

Clearly, by considering K, ,-;, the condition is not sufficient to imply
a hamiltonian cycle; thus to be able to cover the vertices with two cycles
is, in some sense, the next best possibility. The idea for this research was
stimulated by results in [5]; in particular, it is shown that if G is a graph
of order n with minimum degree at least n/3, then the vertices of G are
covered by two cycles. In [4], this result is generalized, and it is shown
that if G is a graph of order n and the sum of the degrees of any three
independent vertices is at least n, then the vertex set of G can be covered
by at most two cycles, edges, or vertices. In the later paper the question of
extending this to neighborhood unions is posed. We address that question,
and generalize to t-cycle covers.

For completeness we give the following definitions. A cycle C in a graph
G is a dominating cycle if V(G) — V{(C) is an independent subset of vertices.
A set of cycles, C1,C,,...,C, is a t-cycle cover if each vertex in G is
contained in at least one of these cycles. If this is the smallest such set of
cycles, then we say that the cycle cover number of G is t.

MAIN RESULTS

Theorem 1. If G is a 2-connected graph of order n, with 8, = (n + 5)/3,
then G contains a longest cycle, which is a dominating cycle.
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Proof. Over all cycles of maximum length in G, choose C to be one in
which G — C has as many components as possible. If all components of
G — C are trivial, then C is a dominating cycle, so let 7 be a nontrivial
component of G — C. By Theorem B, it follows that

+ +
]V(C)|22(n : 5)_2=2n 4

3 3

and thus |V(T)| = (n — 4)/3. Since |V(T)| = (n — 4)/3, and &, =
(n + 5)/3 it follows that T contains most at one vertex adjacent to fewer
than two vertices of C.

We wish to find a path P from one vertex of C to another vertex of
C, such that the interior vertices of this path forms a longest path of 7.
Choose a longest path in 7. Suppose one of the endvertices, say u, has no
adjacencies in C. It is the only such vertex in T, and since §(G) = 2, u
must have an adjacency on P. The predecessor on P of this new adjacency
to u is the endvertex of a maximum length path in 7', and this path has both
endvertices adjacent to at least two vertices on C.

Let P be such a longest path in 7 with endvertices u and v. Of course
(N(w) U N(v)) N T is contained in P and there are two distinct vertices
on C, one adjacent to u# and one adjacent to v (these vertices on C could
be adjacent to both # and v, but we have shown the existence of a distinct
adjacency for each of u and v on C). Let |P| = k = 2. We will proceed by
finding a lower bound for the number of nonadjacencies of u and v in G.

LetS = {x1,x2,...,x = (N(uw) U N(w)) N C.Note, IN(u) U N(v)| =
k + s. For convenience, we will refer to an open segment (x;_;,x;) as a
gap, and it contains all the vertices strictly between x;—; and x;, none of
which are adjacent to u nor v. Also, the set S induces s such gaps. Since u
and v both have neighbors on C, there are at least two places on the cycle
where x;_; is a neighbor of u and x; is a neighbor of v or vice versa. Since
C was chosen to be a longest cycle in G, these two gaps must have at least
k vertices each, and as noted above, all of which are nonadjacent to u and
v. We now will show that for each of the other s — 2 gaps there are at least
2 distinct non-neighbors of # and v.

If the gap contains at least two vertices, then they must all be non-
neighbors of u and v. So we need only consider gaps containing a single
vertex. Let x;,_1,y,x; be such a gap. Clearly, both x;_; and x; are adjacent
to just one of u or v, say u, for otherwise a longer cycle would result. If y is
not adjacent to a vertex off C, then C' = (C — y) U {u} is a cycle having
the same length as C with more components in G — C’ than in G — C.
Hence, y is adjacent to y’ off C, and it follows that y’ is not in T since a
longer cycle would clearly exist. Consequently, neither # nor v is adjacent
to y’. Now for each such y, a distinct y’ results, for otherwise a longer cycle
would exist including all of the vertices of C, y’, and at least one vertex
of T. Therefore, the number of vertices nonadjacent to u and v is at least
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2k + 2(s — 2), which implies

2k +2s —4 + k+s=n,

since |S U T| = k + 5. This gives

INW) UN@W)| =k +5 = ,

a contradiction. [

This result is best possible. Consider the graph obtained by identifying
two vertices from three distinct copies of K(,+4y3. This graph is 2-connected
of order n with 8§, = (n + 4)/3, but contains no dominating cycle.

It is well known that a dominating cycle in G corresponds to a hamiltonian
cycle in the line graph; thus we get the following:

Corollary. If G is a 2-connected graph of order n, with 6, = (n + 5)/3,
then L(G) contains a hamiltonian cycle.

We will use Theorem 1 to help find a connection between neighborhood
unions and the cycle cover number.

Theorem 2. Let G be a 2-connected graph of order n,n = 10. If 8, =
(2n/5) + 1, then there is a 2-cycle cover of G. Furthermore, one of the
cycles can be chosen to be a longest cycle in G.

Proof. Choose C to be a longest cycle in G, say of length m, such that C
is a dominating cycle. Of course the existence of such a cycle is guaranteed
by Theorem 1. Let V(C) = {x1,x,,...,x,} with this “orientation.” Also,
recall from Theorem B,

2n 4n
=2{—+1)—2=—.
" (5 ) 5

We will proceed by showing that there is a cycle in G containing all the
vertices of G — C, which we will call W. This will give the desired result.

We introduce some convenient notation. If w € W and x;,x; € N(w),
then we refer to the segment ((x;,x;), (x;, x,], or [x;, x;)) [x;, x;] as an (open,
half open) arc subtended by w. The length of such an arc is the number of
vertices included in the segment.

Let wo € W, be a vertex of minimum degree ¢. By the §, requirement
in the hypothesis of the theorem, this implies that the remaining vertices in
W have degree at least max{zt, (2n/5) + 1 — t}. Let [x;,, ;) be one of the
shortest half open arcs subtended by wy. It follows that the length of this
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arc is at most m/r. Furthermore, since C is a longest cycle in G, for any
vertex w € W — {wg}

Lo, x| + 1 _m +t

INGW) N [, x,)| < e e (1)

L

Find the largest k so that there is a subset of k vertices {wi,ws,..., Wi}
in W — {wp}, which subtend nonintersecting “right” half open arcs in
C — [x;,,x;,). Over all such k element subsets, choose one where the sum
of the lengths of these subtended arcs is as small as possible. Without loss
of generality, we may assume that the vertex w; subtends the arc [xizj , Xi2,+,)
and that given the orientation of C, we have

X1 = X <xi1 =X < Xipg =0 = Xy, <xi2k+1 =X

We observe that for any w € W — {wg, wi,wa,...,wi} and any a =
1,2,...,k;

INW) N [xi, xp) = 1 2)
and
INW) N [xi, X, )l =1, (3)

follows by the maximality of k£ and the minimality of the length of the sum
of these subtended arcs, respectively. Note (2) and (3) also hold when the
right half open interval is replaced with the left half open interval. For a
vertex w € W — {wq, wi, Wy, ..., wi}, we will refer to a pair of consecutive
segments [x;,, ,,x;,) and [x;, , X;,,,,) as w-good if equality holds for both
(2) and (3) and these intervals. Let € = n — m — k — 1, that is

€ = |W - {w07w19w2a~'~7wk}| M

Label the vertices of W — {wq, w1, wo, ..., wi} with uy, uy, ..., ue. We will
show for each u; that there are at least €,;-good pairs of consecutive
segments. Before proving this claim, we will demonstrate how this will
in fact complete the proof. Since each of the € vertices have € distinct good
pairs, we can match each vertex with a distinct pair of good consecutive
segments.
At this point it is clear there is a cycle K containing all of
{Wo, Wi, Wa,..oo, Wk};
K = Xigs WOs Xigs oo v s Xigs W1, Xigy Xigys W2y Xigs o oo s Xigg s Wy Xigpiys 05 Xig
We need to only be able to alter this cycle and add the remaining € vertices
of W. To accomplish this we merely proceed along K and add the u;’s as
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they occur. The adjacencies of u; could either be the included endvertex
or an internal vertex for each of the consecutive pair of segments matched
with u;. Thus, there are four possibilities for the adjacencies of the u;-good
pair. Figure 1 shows how each case is handled. Hence, if a matching of the
u;’s with the possible “good” pairs of consecutive segments exist, then a

cycle containing all of the vertices of W must be in G. The claim assures
such a matching.

Proof of Claim. Suppose to the contrary that there is a vertex u €
W — {wg, wi,ws,...,w,} with fewer than €u - good pairs of consecutive
segments. Recall that [x;,, x;) is the only segment in which u could have
more than one adjacency. Thus, since u could be adjacent to at most
(k + 1)+ (£ — 1) of the 2k + 2 segments that C is partitioned into, it
follows that

m+t

deg(w) =k + 1)+ -2+ >

Thus,

deg(u)5k+€+n_(k+1+€)+t—1, 4)

2t

FIGURE 1. Resolving the possibilities for u-good pairs.
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since m =n — (k + 1 + €). We also know that

2
deg (u) = max{t,?n +1 - t}.

Case 1. Suppose max{t,(2n/5) + 1 — t} = (2n/5) + 1 — t. Note that
this implies that t =< (2n + 5)/10. We get

—k+1+6+1¢ 2
PRI I

2t 5

2t — 1 2n n—1+1¢
k+f=2 - 42,

2t ( ) 5 2t
(k +€) = ! (ir—lt—ZtZ—n+3t+1)
T 2r—1\5 ’

But since k + € + 1 = n/5, this gives

n 1 4n
——1= —t =2 —n + +).
5 2t—1<5 nt 3+l

Consequently, we get
2
f(t)=2t2—(—n +5>t+ = o.
5 5
We observe that £(2) = —2 < 0 and f((2n + 5)/10) = —2 < 0, and since
2 =t = (2n + 5)/10, this inequality is satisfied for no possible values of

t, and hence this case is impossible.

Case 2. Suppose max{t,(2n/5) + 1 — t} = t. Note that this implies
that > (2n + 5)/10, which gives that (m + ¢)/2¢ < 3 and thus

-;-’.< deg ) = (k + 1) + ¢,
which immediately gives the contradiction
n
k+€>——1.
5

Exhausting these two cases, the claim is proved, and as previously remarked,
a cycle containing all the vertices of W is achieved. Thus, a cycle cover of
all of G with 2-cycles is attained. &

We will now give an indication of the usefulness of the technique given
in the previous theorem.
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Lemma 3. If G is a graph of order » with maximal dominating cycle C,
so the G — C has a set B containing b vertices each of degree at least b,
then G contains a cycle containing all the vertices of B.

~ Proof. As in the theorem, label the vertices of C and find the largest &
so that there is a subset of B with k vertices, W = {w, w,, ..., w;}, which
subtend nonintersecting “right” half open arcs in C. Over all such k element
subsets, choose one where the sum of the lengths of these subtended arcs
is as small as possible. Without loss of generality, we may assume that the
vertex w; subtends the arc [xizj,l,xizj) and that given the orientation of C,
we have

XS X Xy =Xy < = Xy, <X, =X

Let € = b — k. If for each vertex u of B — W, u has £ u-good pairs,
then the desired cycle would exist. If there existed a vertex u with fewer
than € u-good pairs, then it would follow that its degree would be at most
k + € — 1. But since each of these vertices is required to have degree b,
and b = k + €, a contradiction would arise, and the lemma follows. [

Theorem 4. If G is 2-connected of order n with 8, = (n + 5)/3, then G
has cycle cover number at most 3.

Proof. By Theorem 1 and Theorem B, it follows that G contains a
dominating cycle C of length at least 2((n + 5)/3) — 2. We now will apply
Lemma 3 twice. Let x be vertex of G — C of smallest degree, say d. Choose
any d — 1 other verticesin G — C to formset Dy. Let D, = G — C — Dj.
The set D; is a subset of d vertices all of degree at least d, and D,
is a subset of at most ((n — 4)/3) — d vertices, each of degree at least
((n + 5)/3) — d. By Lemma 3, there is a cycle containing all the vertices
in Dy and a cycle containing all the vertices of D,; thus with C, it follows
that G contains a 3-cycle cover. §

The key to this result is the existence of the dominating c¢ycle. If we
assume that a dominating cycle exists, then the result can be extended to
cycle cover number .

Theorem 5. If G is a 2-connected graph of order n, with dominating cycle
C, and having

t = 6, then G has cycle cover number at most z.
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Proof. Let C be a maximum length dominating cycle. Since there are
vertices of degree at least n/(¢+ + 1), it follows that C has length at least
2n/(t + 1). As in the proof of Theorem 4, continued applications of the
lemma gives the desired cycles. §

Unfortunately, this result is far from best possible. Even for t = 3,
Theorem 4 is a vast improvement over Theorem 5. The principle reason
for this is that the dominating cycle is assured to be a cycle of maximum
length in Theorems 2 and 4, while that is not the case for Theorem 5. It
would be of interest to find the “best” possible value for 8,. Also, the
argument depends heavily on the degree of the vertices. It might help if
the neighborhood union property could be used more effectively to give a
smaller cycle cover number. Finally, it is possible that some structure other
than a dominating cycle might be useful in bounding this parameter.
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