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Abstract

In this paper we consider a generalized form of a degree sum condition
studied by Chen. Givenany set S = {v1,..., v;} of { independent vertices
in a graph, we bound from below the following sum:

tdeg(S) + deg(vy) + deg(wa) + ...+ deg(vy).

Bounding from below the sum of the degrees of the vertices of S plus the
degree of the set S itself, is shown to provide a sufficient condition for a
graph to be hamiltonian.

Dedicated to Roger Entringer on the occasion of his 60th birthday

1 Introduction

Over the past few years a form of generalized degree condition for sets of
vertices—where the sets satisfy various conditions—has been used to fur-
ther the study of a variety of graph properties. In [FGJS1] and [F], hamilto-
nian properties were studied using sets of independent vertices of various
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sizes, while in [FGJS2], matchings and extremal path and cycle lengths
were studied for the same types of sets. In [FGS] and [FGL], these gen-
eralized degree conditions were used to study connectivity. In [FGIL], a

Turan-type extremal result was obtained. A survey of recent results using
generalized degrees can be found in [L].

To be specific, we define the neighborhood N(S) of a set of vertices
S to be the union of the neighborhoods of the vertices in §. We then define
deg(S), the degree of S, to be the cardinality of its neighborhood. That
is, deg(S) = |Uyes N(v)|.

This definition of degree provides a straightforward generalization of
the idea of the degree of a vertex and as can be seen from the references
above, has been a useful tool in studying several types of problems. As an
example of this new approach, the following result was proved in [FGJS1].

Theorem A ([FGJS1]) Let G be a 2-connected graph of order n > 3. If
for each set S = {z,y} of two independent vertices in G,

deg(S) > (2n—-1)/3,

then G is hamiltonian.

Chen [C] provided a variation on this approach when he combined stan-
dard degrees with this new generalized degree for pairs of independent ver-
tices.

Theorem B (Chen [C]) If G is a graph of order n > 3 such that for each
set S = {z,y} of two independent vertices in G,

2 deg(S) + deg(z) + deg(y) >2n—1,

then G is hamiltonian.

The purpose of this paper is to further explore such generalized de-
gree sums and their implications for hamiltonian graphs. In particular, we
wish to consider a generalization of Chen’s result to ¢ independent vertices
instead of two vertices. We prove here the following theorem.

Theorem 1 If G is a t-connected graph (t > 2) of order n > 61> such
that for each set S = {vi,...,v} of t independent vertices in G,

tdeg(S) + deg(vy) + ...+ deg(vy) > tn+ 3¢2,

then G is hamiltonian.
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In the following discussion we will suppose that the graph G on n ver-
tices is not hamiltonian, that it is {-connected and that for all sets of ¢
mutually non-adjacent vertices, the sum of the degrees of the vertices plus

¢ times the degree of the set exceeds tn + 3¢, and then derive a contra-
diction. The analysis assumes that n is much larger than ¢; in particular
n> 615 suffices.

2 Preliminaries

For standard terms and notation not found here see [G].
Given a t-connected graph G = (V, E) on n vertices, we will denote

an edge from vertex a to vertex b by the concatenation “ab” of the vertex
labels.

e For S C V,let (S) be the sum of the degrees of all the vertices in
S. Thatis, (S) = ) cgdeg(v).

e We say that a set of vertices S is a bad t-set if it is an independent
set of size ¢t and (S) + tdeg(S) < tn+ 3t%.

e Since we are assuming that G is not hamiltonian, let C be the largest
cycle in the graph G and let n(C) = |V(C)|. Note that n(C) <
n. Label the vertices in C: vg,v1,...,vnc)—1 SO that vertex v; is
adjacent to vertex v, 1y mod n(cy) O0 the cycle. We will say that
vertex vy is the successor of vertex v; on the cycle and v; is the
predecessor of vi,1.

For convenience, if v = v; is a vertex on the cycle, define “v + 4 to
equal v;..;ymod n(C))
e Let G—C denote the subgraph induced by the vertices of V -V (C).

e Given two vertices v and w on cycle C, let [ v, w] represent the se-
quence of vertices v, v+ 1,...,w. Similarly, let [v, w), (v, w], and
(v, w) represent the sequence without w, v, or both, respectively. If
v = w then [v, w] = {v} and the other three intervals are empty.

e A path between two vertices u, v is C-disjoint if it consists (except
for possibly its endpoints) of vertices not on cycle C. We will write
such a path as “uy — v.”
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e A setof vertices S is C-isolated if there exists no C-disjoint path be-
tween two vertices in S. That is, S is independent and furthermore,
no two members of S are in the same connected component of the

graph G — (V(C) - §).

e A set S of vertices on cycle C has the non-crossing property if for
any two vertices u, v € S, and for any vertex a in (u, v), there does
not exist both an edge from u to o + 1 and an edge from v to a.

2.1 The basic plan

The basic idea for the proof of the main theorem is as follows. We will
present a sequence of lemmas that bound (.S) +t deg( S) for any C-isolated
set S with the non-crossing property. We will then consider several cases
for the structure of graph G, for each showing how to find large such sets
S. For the main case (type II below), this will involve a two-stage process.

More specifically, we consider three different cases for G depending
on the structure of the vertices and connected components of the subgraph
G — C. For the first case, we say ( is type I if some vertex in V — C has
more than 3; neighbors in C; label some such vertex 2. For the second
case, we say G is type Il if G is not type I and there exists some connected
component G, of G — C that either has less than 3 vertices, or else is not
hamiltonian-connected. If G is type II, let z be the vertex in G, with the
fewest neighbors in G ;.

For G of type I or II, since G is t-connected we know there exist at
least ¢ vertex-disjoint paths from 2 to the cycle C. A maximal collection
of these paths intersect C at vertices we will label as z1,...,z7 (T > t).
Notice that the neighbors of z on C, if any, are contained in the set of z;,
so for G of type I, we have T > 5.

For the final case, G is type III if it is not types I or II; so all con-
nected components of G — C both have greater than 3 vertices and are
hamiltonian-connected. If G is type III, let G, be some connected compo-

nentof G — C. Since G is t-connected and 3 > t (by our earlier condition

on n), we know there exist ¢ distinct vertices 21, ..., z; in G, with distinct
neighbors z1, ..., z; respectively on the cycle C. Let T = t.
Now, for G of any type, lety,, ..., yr be the predecessorsof 21, ..., 7

respectively and let Y be the set of all y;. For G of types II and III, let
= |G,|.
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What we will show is that if G is type I, then some subset of Y is a
bad t-set. Here we use the fact that set ¥ is large (size at least n/3¢ by
the definition of type I graphs). If G is type II, then either some subset

of Y U {2} is a bad t-set or clse some subset of a different set Bsolo(Y),
which is defined later, is a bad t-set. The reason for the conditions defining
type II is they imply that z has “few enough” neighbors in G,: note that
by Ore’s theorem [O], if G, is not hamiltonian-connected, then z has at
most |G|/2 neighbors in G,. If G is type III, we will use the fact that G,
is hamiltonian-connected to prove stronger facts about the set Y and show
that some subset of Y U {v} for some v € G, must be a bad t-set.

3 Some properties of the set “Y”

We now describe some useful properties held by the set Y defined in Sec-
tion 2.1.

Proposition 1 If G is type [ or II, then'Y U {2} is a C-isolated set.

Proof: First, there can be no C-disjoint path between z and any y;.
If such a path y; — 2 existed, let v be the vertex at which this path first
intersects the path z; — z (if the paths only touch at z thenv = 2). A cycle
larger than C would then be:

(v-o o3+ 1, .,y > v).

Now, consider two vertices y; and y; on the cycle. Any path y; — y;
cannot intersect paths z; — z or z; — z because this would imply the
existence of a path y; — z. So, any path y; — y; results in the cycle:

(z > z,z+ 1,y 2 vi,ui—1,...,5; — 2)

which is also larger than C (see figure 1). O

Proposition 2 If G is type Ill, then for all v € G, the setY U {v} is
C-isolated.

Proof: The proof is essentially the same as that for Proposition 1.
If there exists a path y; — v, then since there also exists a path z; — v
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Figure 1.

because G, is connected, there must be a path y; — z;. So, we get the
cycle
(zi)xf)$i+ ly"' yYi — zl')-

If there is no such path but there exists a path y; — y; then we have the
cycle

(zi,zi, 2+ 1,0,y m v i — 1,00, 35,25 — z).

Proposition 3 The setY has the non-crossing property.

Proof: Suppose y;, y; violate this property. So, there exist edges y;(a+
1) and y;a forsome a € [y;, y;], which cannot intersect by Propositions 1
and 2. We know thata # y; and o + 1 # y; since Y is an independent set.
Thus, if G is type I or II we have the cycle larger than C of:

(zyzi,zi+ 1,... 0,45, — 1,...,0+ Ly, p — 1,... 35, 2).
If G is type 111, we have the cycle:
(zi,m, 2+ 1,...,0,y5,y;— 1,...,0+ Lyi,yi—1,...,35,2; — 2).

(See figure 2.) O

Notice that if S is a C-isolated set with the non-crossing property, then
so is any subset of S.
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Figure 2.

4 Degree boundsfor C-isolated sets with the non-cross-
ing property

Let S be a C-isolated set of p vertices on cycle C with the non-crossing
property. We will now prove some facts about how the edges from the set
S may be distributed to other vertices on the cycle. In order to do this, we
will need some additional definitions.

o Let M(S) = {ve V(C) | |IN(v)NS| > 2}. We call these vertices
“multiples” since they are incident to at least two edges from set S.

In the following definitions, if v € V(C), let v_ and v, denote the
vertices in N(S) such that the interval [v_, v, ] is the smallest interval
containing v.

e Let B(S) = {ve V(C) — N(S) | forsome s,s' € S, Jedges sv_
and s'v, withv € [, s]}.
Note that S C B(S), since forv € S, we know v ¢ N(S) and we
may let s = s’ = v. Forv not in S, the edges sv_ and s'v, in the
definition must “cross” in that vertices v, s, s', v_ appear in order
around C. Set B(S) is a subset of the “blanks”—the vertices not in
N (8)—but does not necessarily contain the entire set.

e Let Brighmost(S) = {v € B(S) | v+ 1 € B(S)}. Thatis, for
vE Brighlmost(s), ve =v+ 1.
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e Let Bsoio(S) = {v€ B(S) |v—1¢B(S) and v + 1 & B(S)}.
o Let b(S) = |B(S)|.

e Let v(S) = |Brightmos: (S)|. This counts the number of non-empty .
segments or regions along the cycle between vertices in B(S).

In this section, since we mainly consider just one C-isolated set S, we will
drop the arguments and just write B, Byolo, Brightmost » b, T, and M. We will
specify the argument only if we wish to discuss these values with respect
to some other such set (eg. some subset of S).

An important part of our main argument rests on showing that By,
is large, because in certain cases we will be able to show that By, is
C-isolated with the non-crossing property as well. Lemma 1 below allows
us to put a lower bound on the size of B;go based on b and 7, numbers that
will be easier to deal with.

Lemma 1 lBsoloI 2 2T - b.

Proof: Say Bieft—or—rign = {v € B(S) |v—1¢€ N(S) orv+
1 € N(S)}. Then, 27 = |Biefi—or—sight | + | Bsolo|- That is, for each v €
Brighimost there exists a corresponding v' in the same block of vertices from
Bsuchthatv'—1 € N(S), where v' = v exactly when v € Bylo. Clearly,
’Blcft—or-—righll S b, so:

‘BSO]OI =2r— IBleft—or—-right| > 2r—b.

O

We will now look at how the edges from S may fall into a region be-
tween two “consecutive” vertices of B. Choose b;,b, € B such that
(b1,b2) is non-empty and there is no v € B inside (b, b,); so, by €
Brighimost and by would be in a correspondingly defined Bleftmost. For
convenience, label the vertices in S : sy, 52, ..., s, clockwise around the
cycle starting from b,. If by € S then s; = by. Also, notice there is no
vertex of S'in (b, 62).

Lemma 2 For any v,w € [by,ba], if there exist edges s;v and sjw for

1 < j, then [w,v] C [b1,b2]. (That is, either v = w or else vertices by,
w, v, by appear in order around the cycle.)
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Proof: We must show that we cannot have [v,w] C [b1,b2] and
v # w. We will use induction on the distance along the cycle from v to w.

~First, if w = v+ 1, then s;v and sjw violate the non-crossing property. So,

suppose we have shown that w cannotequal v+ 1,...,v+dford > 1 and
let us show that w cannotequal v + d + 1.

Suppose w = v+ d+ 1. If all vertices in the range (v, w) are not in
N(S), then they would all be in B since they reside in the interval [ s, s;],
and this would contradict our definition of b; and b,. So, there must be an
edge us; forsome s, € Sandu € (v, w). Ifk > 4, then the edges su and
s;v violate the induction condition because ¢ < k, v % u, [v,u] C [b1,b2]
and u = v+ d' forsome d’ < d. Similarly, if k& < j then the edges s¢u and
sjw violate the condition. (In the range ¢ < k < 7, both pairs violate the
condition.) O

Corollary 1 The vertexs; € S shares at most one neighbor inside [ by, b2 ]
withany of sy,...,Sk—1. Thatis, IN(sk)NN({s1,..., sk—1 })N[b1, b 1| <
1.

Proof: Suppose that s shares some neighbor v with s; and a neighbor
w with sj fori < j < kand v,w € [b1,b2]. By Lemma 2, since 1 < k
and there are edges s;v and s, w, we musthave [w, v] C [b1,b2]. Butalso
by Lemma 2, since j < k and there are edges sjw and s;v, we must have
[v,w] C [b1,b2]. Therefore, v = w. O

Lemma 3 The number of edges between vertices in S and vertices in the
region [by, by ] is at most |(b1,b2)| + p— 1. (Recall, p = |S|.)

Proof: Say that each s; has n; edges into [ b1, b2 ]. By Corollary 1, s3
may have at most one neighbor in the segment in common with s, which
means the union of the neighborhoods of s; and s inside [ b1, b ] has size
atleast m; + m — 1. Inductively, suppose that [N(s1) U...UN(sg)I N
[ b1, b2] has size at least ny + (mp — 1) + ... + (m — 1). According
to Corollary 1, vertex sg,; has at most one neighbor in that set, which
implies that the size of [N(s1) U...U N(sg+1)1N[b1,b2] is atleast my +
(m — 1 + ...+ (mq1 — 1). The size of N(S) N [by,b2] is at most
|(b1, b2) | since vertices by, by are not in N(S); so, we have: |(b1,b2)| >
m+(m—D+...+(n—1). Thus,n + ...+ np, the total number of
edges from S into [ by, by ], is at most |(by, b2) |+ p— 1. O
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Corollary 2 Ifng = |(V = V(C)) — N(S)|, then(S) < (n—mg —b) +
r(p—1).

~Proof: Each region (b;,b;51) of I; S 0 consecutive vertices from
V(C) — B(S) has at most ;+ p— 1 edges entering it from S. There are at
most r such regions on the cycle, and the sum of the [; is at most n( C) — b.
So, the number of edges between vertices in S and vertices in C is at most
(o(C) —b) + r(p—1). Since § is C-isolated, no vertex of G — C can be
the neighbor of more than one element of S; that is, the number of edges
between S and the vertices off C is at most (n— n(C) —ng). So, the total
sum of degrees of vertices in S is at most W(C) — b+ r(p — 1) + (n —
W C) —mp) = (n—mp — b) + r(p - 1). (W

Corollary 3 Ifng = |(V—C)~N(S)|, thenfor each q < p, there exists a
setS' C S of size q such that (8')+tdeg(S") < (t+ g)(n—m)+qr-—tb.

Proof: Let S’ be the set of ¢ vertices of least degree in S. So, (') <
(g/p)(8). Also, clearly deg(S’) < n— ng — b. Plugging in the bound of
Corollary 2 yields: (S") + tdeg(S’") < g[n—-m —b+r(p—D]+t(n—
m—b)<(t+§)(n—-no)+q'r—tb. O

Lemmad4 |M| < (p — ), and for any S' C S of size q, |M(S")| <
(g—Dr.

Proof: First, notice that since S is C-isolated, all vertices of M lic on
the cycle C. By Corollary 1, each s;, € S shares at most one neighbor in
[b1,bo] withanyof sy, ..., sg—1. Thus, if we “charge” eachv € M(S) in
[ b1, b2] toits neighbor in S of highest index, we will charge each vertex in
S — {s1} at most once and give no charge to s1, implying a total charge of
at most (p — 1). Similarly, if we charge each v € M(S") N [by, b2 ] to its
neighbor in S’ of highest index, we will achieve a total charge of at most
¢ — 1. Since there are r nonempty regions (b;, bi+1), we get |[M(S)| <
r(p—1) and |M(S)| < (g —1). O

Lemma S For each q < p, there exists some set S' C S of size q such that
(8" + tdeg(8") < Z1(8) + t(deg(S) — [M|)] +t|M].
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Proof: For each vertex s € S, calculate deg(s) + t|N(s) — M|, and
let S’ be the g vertices in S of lowest such value. Since over all vertices
s € S, the sets [ N(s) — M] are disjoint by definition of M, we know that

S [deg(s) + tIN(s) — M]] (S) +t|N(S) — M|
s€S

(S) + t(deg(S) — |M)).
(since M C N(S))

By definition of the set §', it must be that

3 Meg(s) +tN(s)—M] < %[(S)H(deg(S’)—-lMl)],so
‘6‘1
(S +t(deg(S)—|M]) < %[(3)+t(dcg(3)—|M|)]

(S")+tdeg(S) < ;’-)[(s>+t(deg(3)—|M|>]+t|M|-

O

5 The main result

We now apply the lemmas of the previous sections to the set Y to prove
the following theorem.

Theorem 2 There exists a bad t-setin G.

The proof involves considering the three types of graphs defined in Sec-
tion 2, and showing that the theorem holds true in each case. For this sec-
tion, unless otherwise specified, the terms B, Bsolos Brightmost » b, 7> and M
are implicitly defined with respectto Y.

51 Gistypel

We first consider the simplest case that G is type L. In this case Y has T
elements and T > ;. Applying Corollary 3 withp = T and ¢ = ¢ yields a
setY' C Y of size t with

(Y)+tdeg(Y") < (t+438%/myn+i(r—b) < tm+3t*. (sinceb>r)
So, Y is a bad ¢-set.
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52 Gistypell

If G is type II, then we will show that either some subset of Y U{z} or some
- subset of Bsolo(Y) U {2} is a bad ¢-set. To do this, we need the following
theorem that we will prove in the appendix.

Theorem 3 If G is type II, then Bso1o(Y) is a C-isolated set with the non-
crossing property and Bioio(Y') U {z} is C-isolated.

The plan for finding a bad ¢-set will be as follows. We show that either a
subset of Y U {2} is a bad ¢-set (applying Corollary 2 and Lemmas 4 and
5) or else that Byolo(Y') is large. In the latter case, using Corollary 3, we
show that some subset of Blo(Y") U {2} is a bad t-set.

Lemma 6 If G is type Il then either there is a bad t-set¥Y C Y U {2z} or
else (t — 1)|Bsoto| > n— Y51 — (T'+ B) (¢t + 1).

Proof: Let Y’ be the ¢ vertices of Y of least degree. So, (Y') <
%(Y), which by Corollary 2 implies that (Y') < wln—mn, —b+ (T —
)] < &(n—mn, — b) + rt. We can clearly upper bound deg(Y") by
n— n, — b and using Lemma 4 we know |M(Y")| < r(t — 1). We now
apply Lemma S with ¢ = ¢t — 1 and p = ¢. Thus, we find some set Y ¢ Y’
of t — 1 elements such that:

(Y")+tdeg(Y") < lc—';l(Y') + (¢t — 1)deg(Y") + |M(Y")]

IN

L k(n—m, —b) + rt] + (t — 1)(n—mn, — b)
+r(t —1)
= Eln—n,-b+({t-1)(n—n,—b)
+2r(t—-1)

< Er oy o D(n—n—b) +2r(t — 1)
< 92024 (1~ 1)(n—m) + (t — 1)|Bsoto-

(using Lemma 1)

Now, let ¥ = Y’ U {z}. We know 2 has T neighbors on C and at most
;¢ + & neighbors off of C by the definition of type II graphs. So, either ¥
is a bad ¢-set or else we have

24 (E— 1) (n—1) + (1= 1) [Balo [+ (1+ D(T+ 2+ %) > tn,
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which implies that

A (e 1§

(t = D|Bsowo| > n— U800 _(T+ 3)(t+ 1) —n,(35)
m n
Ta

O
Theorem 4 If G is type Il then there exists a bad t-set.

Proof: Suppose T" > 6t. Then, LTIM < 2. So, by Lemma 6, either
there is a bad t-set or else (¢ — 1) | Bsolo| > %n— (T + ;'i’)(t + 1). Now,
since G is type II, we know T' < 4%, so we have

Sn—(T+ 3@+ > n(f—F—5-4%) >n/3 fort>3.

Thus, | Bsolo| > 5. Now, using Theorem 3 and Corollary 3 (with ¢ = t)
we get that some set S’ C Bsolo Of ¢ vertices satisfies (S') + tdeg(S') <
[t+t/(n/3t)In+ tr(Bso) — tb( Bsolo) Which is at most tn+ 3t%. So,
S’ is a bad t-set.

On the other hand, suppose T" < 6¢. Since T' > t, we have ﬁt—l)—” <
n— n/t and since T" < 6¢, we have (T + T)(t +1) < 'n/tz for nlarge
enough. So, by Lemma 6, either there is a bad t-set orelse (t — 1) | Bsolo| >
n/t — n/t?, which implies that |Bsolo| > n/t*. We again use Theorem 3
and Corollary 3 (this time with ¢ = t — 1) to find some set S" C Bsolo of
t — 1 vertices that satisfies:

(S’) +tdeg( S’) < (t+ 7{2‘) (n—n,) + (t—1) 7( Bsolo) —tb( Bsolo)
< t(n—mn;) +t —b( Bsolo) -(since b( Bsolo)
> 7(Bsolo))

Now consider §’ U {2}. Vertex z has at most 6¢ neighbors on C and at
most ;- + % neighbors off of C. Thus,

(S'U{z}) +1deg(S'U{z}) < t(n—n)+t> —b(Bsolo) +6t(t+1)
Ht+ ) F+(+ D7

tn+t? + 6 (t+ 1)+ (t+ 1) & —b( Bsoo)

tn.( since b( Bsolo) > | Bsolo| >0/,
and nis large)

So, 8" U {2} is a bad t-set. |
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5.3 Gistype Il

Next, we consider the case that the graph G is type Il For this case we
-‘will need to prove two-additional lemmas-and then we will use Corollary 2
and Lemmas 4 and 5 to show the existence of a bad ¢-set. For vertices
u,v € Gy, let “u = v” denote the path from u to v that is hamiltonian in
the subgraph G, (which exists since G, is hamiltonian-connected).

Lemma 7 If Gistypelll thent < t + b—;i

Proof: Consider again the set Brighmost = {v € B |v+ 1 & B}. We
know the t vertices y1, ..., y; lie in Brighmos Since y; + 1 € N(Y') for all
i. To prove the lemma, we show that of the b — ¢ vertices of B left over, at
most 1 /7, of them may also be in Brightmost -

Suppose v € Brighumost — Y, s0 v+ 1 ¢ B. Itis enough to show
that the verticesv — 1,v —2,...,v — (n, — 1) all lie in B, because then
for each v € Brighmost — Y we have n, — 1 other vertices in B that are
not in Brighimost- Thus, assume to the contrary that the vertex v — k for
0 < k < n, isnot in B and let k£ be the least value such that this holds.
By definition of B, we know v — k € N(y;) and v+ 1 € N(y;) such that
(v—k,v+ 1) C BN(yj,v:). The cycle:

(zj,zj,2;+1,...,v—k,yi,ui—1,...,0+ Ly, 55— 1,..., 24,2 = 25)

has length |C|+ n, — [(v—k,v+ 1)| = |C| + n, — k which s greater than
|C|, a contradiction to C being the longest cycle. O

Lemma 8 If G is type Il then some u € G, has less than o C) [ n, neigh-
bors on C.

Proof: Suppose vertex v € C is a neighbor of more than two vertices
of G,. Thenthe vertices v+ 1, ..., v+ n, cannot be neighbors of any vertex
of G,. Otherwise, if 2/ € G, were aneighborof w € [v+ 1,v + n,] and
2" € @G, a different neighbor of v (which exists since v has at least two
neighbors in G',), then we get the cycle longer than C of:

(v, =2, ww+1,...,v).

So, for each vertex v in C that is a neighbor of at least two (and at most n,,)
vertices of G, there are n, others: v+ 1,...,v + n,, that are neighbors
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of no vertices of G,. So, if there are k vertices v € C with more than
one neighbor in G, the number of edges between C and G is at most
k-n,+(n(C) —kn,) -1 = n(C) total edges. Thus, some vertex u € G,

has at most n(C) /n, neighbors in C. O
Lemma 9 If G is type Ill then there exists a bad t-set.

Proof: We know that none of the vertices in G, are in the neighbor-
hood of the set Y (by the C-isolatedness of Y U{2;}). So,if n, > n/(t+1)
then Corollary 3 withq = p = ¢t implies that (Y) +t deg(Y) < (t+1)(n—
n,) < tn,soY isabad t-set. If n, < n/(t+ 1) then we will use Lemma
5.

Lemma 5 shows that some set Y/ C Y of t — 1 elements satisfies
(Y +tdeg(Y') < I:t—l[ (Y)+tdeg(Y)]+|M(Y)|. Applying Corollary
2 and Lemma 4 yields:

(Y +tdeg(Y) < Sln—mn—b+r(t—1)+t(n—n—b)]
+Ht—-Dr
< (t=1/t)(n—mn) +t(2r—b)

< (t-1/(n—m,) +1(2t — LD _p)
(by Lemma 7)

= (t—=1/t)(n—mn) +tlt+(E—b)(1-2)]

< (t-1/t)(n—m) +t?

(since b > t and n, > 2)

Now consider the vertex v € G, with fewest neighbors in C. By Lemma 8,
it has at most n( C) /n, neighbors on C and we know it must have less than
n, neighbors not on C. So (using n(C) < n— n,),

(Y'U{u}) +tdeg(Y' U{v}) < (t—1/)(n—mn)+1t
+Ht+ D(n/n, + m, — 1)

< tn—nft+t? +nBL
+Ht+ n/n, —t — 1.

In the allowed range 7+ < n, < 3y, (and with n > 6t°), the value

n, "L + (t + 1)n/n, is maximized at n, = 7%. So, using this value of n,

Ay



we get:

(Y'U{u})+tdeg(Y'U{v}) < tn—-n/t+t +n/t+(t+1)2—-—t 1
< tn+ 3t

Thus, the set Y' U {u} is a bad ¢-set. O

In conclusion then, no matter which case holds—G'is type I, II, or III—
we have produced a bad t-set. Therefore, our assumption that G is non-
hamiltonian must be false, and we have proved our main result, Theorem 1.

"

6 Conclusion

In conclusion, we have shown that Chen’s bound for pairs of independent
vertices can be generalized to sets of t (¢ > 2) independent vertices. How-
ever, our general argument is not sharp enough to determine the best pos-
sible bound for each value of t. We conjecture the following:

Conjecture 1 If G is a t-connected graph of order n, and if for each set
S = {z1,..., Tt} of t independent vertices,

tdeg(S) + deg(z1) + ...+ deg(zy) >tn—(t—1),
then G is hamiltonian.
An example to show that this conjectured bound is sharp is the following:
G=(+ I)K'ﬁ + K;.
Thatis, t + 1 copies of K =t joined to a K.
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7  Appendix

We now must prove Theorem 3, that when G is type II, Bsolo(Y) is a
C-isolated set with the non-crossing property and Bioo( Y) U {z}is
C-isolated. While we believe there should exist an elegant proof of this,
our current proof is simply a decomposition into a series of cases, each one
checked separately.

Unless otherwise specified, Bqlo refers to Byoo (V). For convenience,
we define the following additional notation.
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e Forv € By — Y, let g, (v) and y_(v) be vertices of Y such that
[y+(v),y—(v)] is the smallest interval containing v and there exist
edges (v+ 1) y+(v) and (v—1)y_(v). That s, these are the vertices

s and s’ respectively in the definition of set B.
Corollary 4 If v € Bsolo — Y, then y+(v) € [y—_(v),v].

Proof: By definition of Bsolo, Wehave v € [y (v),y—(v) ], s0 y+ (v),
v, and y_(v) appear in order around the cycle. (]

Lemma 10 Bsqo U {z} is a C-isolated set.

Proof: First, there can be no C-disjoint path between any v € Byolo—Y
and z, because this would imply a C-disjoint path between v and z; for
y; = y-(v), and the argument in the proof of Proposition 1 holds.

Now, let v and w be two vertices of Bsglo and suppose for contradiction
that there exists a C-disjoint path v — w. So, certainly not both v and w
areinY.

If one of the two vertices (say vertex v) belongs to Y, then we just
use the fact that either y_(w) € [w,v] orelse y+(w) € [v,w]. Let y;
be y_(w) or y,(w) respectively. Then, vertices v and y; violate the non-
crossing property if we extend the definition to include paths of vertices
not on C (in particular the path v — w) as well as edges; the proof of
Proposition 3 holds for this extended definition.

We now consider the situation where v,;w € Bsolo — Y. First, suppose
that y_(v) € [v, w], and let y; = y_(v). We now have three cases:

1. y_(w) € [w,v]. Lety; = y_(w). We then have the cycle larger

than C of:

(z = =zj,zi+1,...,v—-1y,us—1,...,

v = w,...,y;— Ly, w—-1,...,5;+ 1,3y = 2).
(See figure 3.)

2. y_(w) € [v,y;]. Lety; = y_(w). We then have the cycle:

(z - zpz+ 1, w—1,y;,y;, —1,...,

v - w,w+1,...,'0_I,yl:;yl'_l)"’)xj—’z)'
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Figure 3.

3. y_(w) € [y;, w]. Corollary 4 tells us that y, (w) is also in [ y;, w].
Let y; = y.(w). So, we get the cycle:

(z = zyzi+ 1, ,y,w+l,w+2,... ,v—-1,y,55—-1,...,

v —» ww-—1,...,3; > 2).

These three cases apply when y_(v) € [v, w], or (by switching the labels
of v and w), to the case where y_(w) € [w, v]. The only additional case
to consider is:

4. y_(v) € [w,v] and y_(w) € [v,w]. In this case (letting y; =
y—(v) and y; = y_(w)) we have:

(z = zz;+1,...,w—1,y5,y;—1,...,

v - ww+l,...,yv—1,...,3 > 2).

Lemma 11 B, satisfies the non-crossing property.

Proof: Again, let v and w be two vertices of Bselo, and let us suppose
for contradiction that there are edges from v to ¢ and wto b where b = o+ 1
ifoe[w,vl]andb=a—1ifa € [v,w].

We may reduce the number of cases to consider with the following two
observations.

&2



Observation 1. Suppose we we wouldhaveacycle(z,...,v - w,...,2)
longer than C if v and w were in fact connected by a C-disjoint path.
Then if a and b are adjacent in order from left to right in this cy-

cle, we get the longer path of either: (z,...,a,v,...,b,w,...,2) or
(2,...,v,a,...,w,b,...,2), depending on the position of o and b.

Observation 2. Suppose that were v and w connected by a C-disjoint
path, we would then have two disjoint cycles together containing all
the vertices of V (C) U{z}, with v and w in one cycle. Then, if ¢ and
b appear adjacent in the other cycle, we can connect the two cycles
together into a single cycle containing V(C) U {z}.

Since Y has the non-crossing property, we may assume not both of v
and w belong to Y, and let us first consider the case where in fact neither
v nor w belongsto Y.

e First, case 1 in the proof of Lemma 10 is completely covered by
observation 1.

e For case 2 in the proof of Lemma 10, the only difficulty isif a, b €
[y—(v), w — 1]. We now look at the position of y. (v). If y.(v) €
[y—(w), w], then observation 2 holds. For example, if y; = y+(v),
y; = y—(w), and y; € [y;, b], we get the cycle:

(z > zj,...,0,vF], . y,w=1 .. 0,v,...,w,b,...,3; — 2).

On the other hand, if y, (v) € [w,v], then observation 1 holds. (If
we had a path v — w, we would get the cycle: (2 — z;,..., v, w,
v+ oy w—1,0,35 > 2).)

e For case 3 in the proof of Lemma 10, observation 1 applies unless
a,b € [y—(v),y+(w)]. We now look at y; = y_(w). Ify; €
[w, v], then we have case 1, with the labels on v and w reversed. If
y; € [y—(v),w], we use observation 2.

e Case 4 of the proof of Lemma 10 is again completely covered by
observation 1. ’ '

The final situation to consider is where one of v, w belongs to set Y, and is
handled analogously. (]

Thus, we have proved Theorem 3.



