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Abstract. The following has become known as the Ascending Subgraph Decomposi-
tion Problem: Given a graph (7 of size ”;1 , does there exists a sequence of nonempty
edge disjoint subgraphs &1,G42, ..., Gy such that for each i, 1 < { < n— 1, the graph
G is isomorphic to a proper subgraph of G417 In this paper we obtain a lower bound
on the length of such a sequence of subgraphs and by modifying the problem slightly
we also obtdin an upper bound on the number of graphs necessary in a decomposition
in which G is isomorphic 1o a subgraph (possibly the graph itself) of (%11,

L. Introduction

For standard terms and notation not found here see [G]. Decomposition problems,
that is, problems dealing with partitioning the edge set of a graph into subgraphs
with specified properties, have been widely studicd. A common theme has been
to partition the edge set 5o that the induced subgraphs are isomorphic. However,
in [ABC], a problem that is in some sense the opposite of this type of question
was considered.

A graph G of order p and size ¢, with ("'} < ¢ < (™?), is said to have
an Ascending Subgraph Decomposition (or an ASD) if the edge sct of & can be
decomposed into nonempty subgraphs Gy, G, ..., Gy such that G is isomorphic
to a proper subgraph of Gj,1,1 < i < n— 1. Note that if ¢ = (™}'), then this
implies that |[E(G;)| = £, 1 < = Further, it was shown that no matter what the
value of ¢, if ¢ has an ASD, then it has an ASD in which G; has size 4,1 < n. We
call the graphs G, Gy, ..., G, the ascending sequence of subgraphs.

In [ABC], it was conjectured that every graph has an ascending subgraph de-
composition. Several papers have provided classes of graphs which satisfy the
ASD property. The following are examples of such resullts.
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Theorem A. [F1. If G is a graph with (') edges and A(G) < %, then G
has an ascending subgraph decomposition in which each graph in the ascending
sequence is 8 matching.

“This result was extended in [FGJL], where the graphs used in the decomposi-
tion were the union of short paths.

Theorem B. [FGIL). If G isagraph with A(G) < (2 — V2)n, then G has an
ascending subgraph decomposition,

Another large special class is also known to have ASD’s
Theorem C. [FG). Every forest F has an ascending subgraph decomposition,

In this paper we shall investigate the maximum length of an ascending sequence
that one can insure exists in an arbitrary graph. In order to do this we construct
ascending sequences G1,G?, ..., G, and examine the ratio I (which we call the
sequence ratio). We define sr(G) = max 2, where this maximum is taken over
all ascending sequences G, . .., Gy of subgraphs in G. Clearly, if an ASD can be
found, then sr{ &) = 1. However, if no ASD exists, then s7(G) < 1.

‘We also consider the following variation of the original problem: Given a graph
(; with size ¢, we say the sequence of subgraphs Gy, Gz, ..., Gy is a weak ASD
if the edge set of & can be decomposed into these k& subgraphs such that G; is
isomorphic to a subgraph (possibly the graph itself) of Gyy1, for 1 <4 < k —
1 and each (3, has size at most 4. Clearly, a weak ASD might fail to maintain
the growth in size between consecutive subgraphs, hence, there may be many
more than = terms in a weak ascending sequence. We investigate weak ASD’s
for arbitrary graphs and find a bound on the number of graphs necessary for a
weak decomposition to exist. In this case we call % the weak ratio and denote by
wr(G) = min ﬁ, where this minimum is taken over all weak ascending sequences
of subgraphs G, ..., G of G. In a sense, this parameter can be thought of as an
upper bound on the number of graphs necessary to obtain a sequence of subgraphs
that maintains the decomposition property (but not necessarily the regular growth
in size).

We note that both the ratio and the weak ratio are well defined, since the graphit-
self provides an ascending sequence and the sequence of subgraphs obtained from
each of the individual edges of the graph provides a weak ascending sequence.
Clearly, our objective is to maximize the sequence ratio and minimize the weak
ratio. A restatement of the Ascending Subgraph Decomposition Conjecture in
these terms would be: For every graph G, of size (%' ), sr(G) = wr(G) = 1.

The following notation will be useful. The complete bipartite graph Ky ., is
called an m-star and also denoted S,,.
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2. Lower Bounds

We know from Fu’s Theorem (Theorem A) that if A (G) < 7, then G not only
has an ASD, but in fact, each graph in the scquence is a matching. This result
and several others led to the following extension of the ASD conjecture. This
conjecture also remains open.

Conjecture. (Faudree, Gyarfas, Schelp [FGS]) Let G be a graph with ("5
edges, then G has an ASD in which each member of the ascending sequence is a
star forest.

We begin our investigation by examining the length of an ascending sequence
that we can construct maintaining the star forest property, that is, each graph in the
sequence will induce a star forest. Suppose that G has size (4" ). Further, suppose
that A(G) > %, (or else we would apply Fu’s Theorem to find an ASD in which
each graph is a matching, hence a star forest). Suppose that we can decompose a
portion of E(&) into stars

i = Sig-eyme1, H2 = Stg-eym2, ..., Hen = Spn

where Gn > [B(H)| > 7 for each 4. We continue this star decomposition as
long as possible. The graph A = G — U™ E(H;) has A(GQ) < {8 — e)nand

size
n+ 1 mEH _fn+1 en+ 1
( ) )—éii ( f)l—( ” )—[(ﬂ—s)mn+( 5 )],

and hence,

(em)?
7
We now remove edges from the stars H;, 1 < { < en, to form smaller stars

2
[ECH)] > "= — () (en) +

Sl'Szl"']SS'ﬁ.)

We temporarily hold these removed edges in reserve. Our goal is to find ( B—e)n
disjoint matchings of size Bn in H, the graph that remained after the initial stars
~were removed, This will be possible provided :

1 + 82 9 >
(5"—5;5 7)”1 > B —e)n,

or equivalently, provided

1
ﬁ2—5S52-
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However, this inequality is clearly true when § < 32@ Thus, we form these
matchings of size fn and call them M7, My, ..., M(g..c)n-

In this case we now form an ascending sequence of subgraphs as follows: For
each star §;, 1 < 1 < gn, form the upion §; U M;. Since M; is a matching and
the size of S;is 4 (1 < 1 < en), at most i edges of M; (1 < 1 < ew) are incident
with vertices of S;. Thus, for each subgraph S; U M, (1 < 1 < en), it is possible
to remove en edges from M; (call these removed cdges M) and insure that

V(8) NV (M; — M{) = 0.
The subgraphs thus constructed will be called

Gig-eyne 1, Gg-eym2 - Ggn

and are an ascending sequence of subgraphs with sizes (3 —¢e)n+ 1,(f —&e)n+
2,..., Bnrespectively.

To complete the construction of our ascending sequence, we let Gi(en+ 1 <
i < (B — &)n) consist of 7 independent edges from the matching M;. Since
each M; has size (8 — &)=, this is clearly possible. Finally, the subgraphs G;,
1 < j < en, will consist of j independent edges removed from the matching
M;. Since en edges were removed from each of those en malchings, this is also
possible. :

The sequence G, Gz, ..., Gg. thus constructed is an ascending sequence of
subgraphs with sr(G} = 32@ . We summarize this in the following result. We
note that these graphs are always star forests, which lends support to the Faudree,
Gydrfas, Schelp Conjectare.

Theorem 1. IfG is a graph of size ("} ), then G has an ascending scquence of
subgraphs Gy,..., Gy with s7(G) > %i

Proof: IfA(G) < 7, then we apply Fu’s Theorem 1o obtain a sequence with ratio
1. Otherwise, the above construction provides a sequence of subgraphs achieving
the lower bound. I

3. Upper Bounds

We now tumn our attention to weak ascending sequences. We will find the fol-
lowing notation uscful. Given a positive integer m, Jot 7 denote [ %] and let m
denote [ 2.

Lemma 1. Let (31 and 3y be subgraphs of a graph G satisfying the properties
that Q1 = K, with cenler at vertex = and Gy = mKy and the verlex x ¢
V(GL). If misevenor m < § — 1 then there exists subgraphs Hy and Hy in
G with the following propertics:
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1. BE(H) NE(H) =,
2, HHUH; =G UG;.
3. Hi=K\zUTK, and Hy = Ky wUmHKo (where both unions are disjoint).

Proof: Let H = G U 2. For convenience we consider the edges of ¢, and G2
as partitioned into three scts as follows.
The edges of (2 incident with two edges of 1 will be denoted

Ay = {e1,e3,...,e,}. The edges of G incident with one edge of &y will be
denoted B2 = {f1, f2,..., fu}. The edges of G, incident with no edges of G
will be denoted G2 = {g1,92,...,9.}. Hence, E(G1) = A, U B UG, Now
let Ay = {a1,a2,...,a2,} be the sct of edges of ) incident with edges of A; .
Alsolet By = {#1,52,..., 5} be the edges of 7 incident with one edge of G5 .
Finally, let Cy = {v1,72,...,74} be the edges of 1 incident with no edges of
G5 . Without loss of génerality, suppose that e; is incident with «va;_; and o ; and
f; is incident with ;.

O o
gy 8
O O

Figure 1. The graph H = G U G

Case 1. Suppose m is even and a is even.
Subcase i. Suppose b is odd or b is even and d is cven.

Here we form I, and H; as subgraphs of H as follows:

Hy = 8'uM?and H; = §* UM,
where ' = K ibed and §% = K aapsd and M! = (g + b+ o) K» and
M? = (a+ b+7%) K. Further,
E(H) ={e1,e2,...,ea, 1, f2,0oe, £5,81,82, 4,05 Casl, v+, 02,
Burty ooy Boyya, -y val
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and
E(HZ) = {e_lf_l_+11"'Jeﬂl.fﬁ"'lx'")fbig_ﬁli"':gclali"'laal

ﬁl:"'sﬁﬁsr¥¢+ll"':’)‘d}'

Since a is even and m = a + b + ¢ is also even, we see that b and ¢ must have
the same parity. Then, in fact,

Next note that

provided b is odd or both b is even and d is even. The graphs H; and H, thus
satisfy all the propertics 1-3 and by the way the star edges were partitioned, these
are disjoint unions. This completes the proof in this subcase.

Subcase ii. Suppose b is even and d is odd.

Again, H; = 8" UM? and H, = §* UM!. We proceed as in the previous case
cxcept that
S'= K, 5.z and S = Kigipeg
while B
Mi=(8+b+0) Ky and M2 = (a+ b+ K;.
Here we see that _
A=a+b+d>a+h+d=n

while, since m, a and b are even, clearly c is also even and hence,

3
=

=@+b+c=a+bh+E=
Further,

E(H) = {e1,€2,...,85, f1, f2,-- ., f5, 91,92, .- - , 95 Clar1, - - ., Q20
6&*’1:"':)65!'711"'1'7&'}

and
E(H?-) = {eg+1:"'|€unfk+1)“':f!ng_cﬂ-s";ngalx"',aaa

}61:"':16@7&4.1:-“1’7d}'
Once again, this partition of the edges is disjoint and completes this subcase.
Case 2. If m is even and a is odd.

Note that a similar consiruction applies in this case.
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Case 3. Suppose m isoddand m < & — 1.

‘We note that this implies that ¢ > 2. Then H and H» can again be formed in
a manner analogous to the first case, |

‘We now present an upper bound on wr(G), the ratio of a weak ascending se-
quence of subgraphs in G

Theorem2. Suppose that G has (“;1) edges, then wr(G) < %\/2_ .

Proof: Let ¢ have the indicated number of edges. Also, let §1,82,..., 8" bea
sequence of stars from &, each containing at least lgin edges selected as follows:

Choose a vertex of maximum degrec A in G IFA < lzgn, then we are done (i.c.,
no stars are selected). Otherwise.

2 2
A =(—2\/:-n)t+‘r where 0 gfr<§n.

Let 3'2@71 = z and we select the stars as
Sl=8=...=28"1=8, 8=5,,.

We continue removing large stars and partitioning them in this manner until it is no
longer possible, that is, until A < Jéz:n. At this time we will have an ascending
sequence of stars (by relabeling if necessary) S, ..., S¢*, each of size at least
L,

From the remaining edges, we form matchings. Since there are at most ( ;7 -
3?5) n edges remaining, and the maximum degree is less than izé n, we can form
3,_@11 matchings with at most { %2: — e)nedges each, Since g £ %Zn, we select
gn matchings of even order (removing an edge if necessary),

Now with each star 8 and corresponding matching M* we apply Lemma 1, (o
obtain two subgraphs partitioned as the disjoint union of a star of size at least {gn
and a matching of size %( 525 — g)n. Do this for cach i, 1 < 1 < en, and then
arrange the resuiting graphs in descending order. This can be accomplished by
Lemma 1,

Each of the remaining ( %—Z — eynmatchings M can now be paritioned into two
maichings with P%l‘l and l“{—l J edges respectively. These matchings can casily

be arranged into the next 2( 32£ — g)n graphs in the descending sequence.
Thus, we now have

2en+ 2(? —&)n=v2n
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graphs in this descending sequence, To complete our task we need to modify the
initial Ss@" graphs in our present sequence (each is a matching of gize 5—( -"zé —&n)
and thus does not yet satisfy our size restriction). This is done by removing one -
edge from the top matching (i.e. matching Bgén) and making this edge the first
graph of our ascending sequence. Then remove two edges from the next smallest
matching and make this the second graph of the ascending sequence. Continue
in this fashion for the 38@1@ matchings and we cbtain an ascending sequence of
subgraphs with %2 n graphs, now satisfying the size resirictions. There are still
possibly # edges unaccounted for. These may afl be placed in the top graph which
has at most er—fn edges. Thus, we have constructed the desired weak ascending
sequence. E
Again it is worth noting that these graphs are star forests except for the largest

graph,

4 Conclusions

We have succeeded in bounding the ascending subgraph sequence length from
below and the weak ascending sequence length from above. This does not an-
swer the original conjecture, however, it does lends some support to its possible
truth. Extending either of these bounds would be interesting. Can one improve the
bounds given in Theorems 1 and 2 by restricting consideration to special classes
of graphs, in a manner similar to [F] and [FGJL]?
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