SOME RAMSEY TYPE RESULTS ON TREES VERSUS COMPLETE GRAPHS

Gary Chartrand Michigan State University and Western Michigan University

> Ronald J. Gould Emory University

ABSTRACT

For an arbitrary tree T of order m and an arbitrary positive integer n, Chvátal proved that the ramsey number $r(T, K_n) = 1 + (m-1)(n-1)$, i.e., for any coloring of the edges of $K_1 + (m-1)(n-1)$ with two colors, there exists a monochromatic tree T or a monochromatic K_n . Chvátal's theorem is extended by showing that, in certain cases, the result still follows if $K_1 + (m-1)(n-1)$ is replaced by an appropriate proper spanning subgraph of $K_1 + (m-1)(n-1)$:

For graphs G_1 and G_2 , the <u>ramsey number</u> $r(G_1, G_2)$ is the least positive integer p such that if every edge of the complete graph K_p is arbitrarily colored red or blue, then there exists either a red G_1 (a subgraph isomorphic to G_1 all of whose edges are colored red) or a blue G_2 . Equivalently, $r(G_1, G_2)$ is the least positive integer p such that if $K_p = R \oplus B$ is an arbitrary factorization of K_p (i.e., R and B have order p and $E(R) \cup E(B)$ is a partition of $E(K_p)$), then G_1 is a subgraph of G_1 (in symbols $G_1 \subseteq R$) or G_2 is a subgraph of G_1 .

PROC. 10TH S-E CONF. COMBINATORICS, GRAPH THEORY, AND COMPUTING, pp. 241-249.

 K_{1+2n} - $e \rightarrow (T_3, K_{n+1})$. Let K_{1+2n} - $e = R \oplus B$ be an arbitrary factorization and assume that $T_3 \not\subset R$. Hence there exist n pairwise nonadjacent edges $e_i = u_i v_i$, $1 \le i \le n$, such that

Assume now that

 $K_{1+(m-1)n} - e \rightarrow (T_m, K_{n+1})$ for a fixed but arbitrary $m \geq 3$. We show that $K_{1+mn} - e \rightarrow (T_{m+1}, K_{n+1}).$ Let T be an arbitrary tree of order m+1; let v be an end-vertex of T and let u be the vertex of T adjacent with v. Suppose there exists a factorization $K_{1+mn} - e = R \oplus B$, where $T \not\subset R$ and $K_{n+1} \not\subset B$. Let w_1 and w_2 be the vertices of $K_{1+mn} - e$ such that w_1w_2 is not an edge of $K_{1+mn} - e$. Let S be a set of n vertices of $K_{1+mn} - e$. Let S be a set of n vertices of $K_{1+mn} - e$ such that $\{w_1, w_2\} \subseteq S$. Then $K_{1+mn} - S$ is a complete graph H of order 1 + (m-1)n. By Theorem A, $r(T - v, K_{n+1}) = 1 + (m-1)n$ so that $T - v \subseteq R \cap H$ or $K_{n+1} \subseteq B \cap H$. Since $K_{n+1} \not\subset B$, we conclude that $T - v \subseteq R \cap H$. Furthermore, neither w_1 nor w_2 is a vertex of T - v. Now

 K_{1+mn} - e - V (T - v) \cong $K_{1+m(n-1)}$ - e. By the inductive hypothesis, $K_{1+m(n-1)}$ - e \to (T, K_n) so that

$$\mathtt{T} \subset \mathtt{R} \, \cap \, [\mathtt{K}_{1+mn} \, - \, \mathtt{e} \, - \, \mathtt{V} \, (\mathtt{T} \, - \, \mathtt{v})]$$

or

Consider the vertex u of T - v. By construction, $u \neq w_1$ and $u \neq w_2$. If any edge

at least 1 + (m - 2)(n - 1) edges of R joining V(H') and V(G) - V(H'). Therefore, there is a vertex of H' that is incident with at least

$$\frac{1 + (m - 2)(n - 1)}{n - 1} > m - 2$$

edges of R, implying that $K(1, m - 1) \subset R$, a contradiction.

We now investigate the possibility of a result similar to Theorem 1 where two adjacent edges are deleted from $K_{1+(m-1)(n-1)}$. We begin with a lemma.

In the next two results, K_p - e - f (p \geq 3) denotes the graph obtained by the removal of two arbitrary adjacent edges from K_p . Further, P_4 denotes the path of order 4.

Lemma 1. For
$$n \ge 2$$
,
 $K_{3n-2} - e - f \rightarrow (P_4, K_n)$.

 $\frac{Proof}{n}$. We proceed by induction on n, the result following immediately for n=2.

Assume that $K_{3n-2} - e - f \rightarrow (P_4, K_n)$ for a fixed but arbitrary $n \geq 2$. Let $G = K_{3n+1} - e - f$; we show that $G \rightarrow (P_4, K_{n+1})$. Let $x, y, z \in V(G)$ such that $xy, yz \notin E(G)$. Suppose that $G = R \oplus B$, where $P_4 \not\subset R$. We prove that $K_{n+1} \subset B$. Let H be a component of R having smallest order. We consider five cases.

Case 1. Suppose H has order 3. Then G - V(H) is isomorphic to K_{3n-2} , $K_{3n-2} - e$ or $K_{3n-2} - e - f$. By applying Theorem A, Theorem 1 or the inductive hypothesis, respectively, we conclude that $G - V(H) \rightarrow (P_4, K_n)$. Thus, $P_4 \subset R \cap (G - V(H))$ or $K_n \subset B \cap (G - V(H))$. Since $P_4 \not\subset R$, it follows that there exists a graph F isomorphic to K_n such that

x, y and z. These 3n - 3 vertices induce a subgraph K_{3n-3} in B. Because $n \ge 2$, $K_{n+1} < B$.

Case 5. Suppose none of Cases 1 - 4 holds, i.e., R has two or more components and each has order at least 4. This implies that n > 3. Let R_1, R_2, \ldots, R_k (k > 2) be the components of R. Necessarily $R_i \cong K(1, n_i)$ for $i = 1, 2, \ldots k$ and $n_i > 3$. Then R has at least (3n + 1) - k - 3 = 3n - 2 - k end-vertices that are none of the vertices x, y and z. Thus, these 3n - 2 - k vertices induce $K_{3n-2-k} \subset B$.

Since each component R_i has order at least 4, it follows that $k \le (3n + 1)/4$. Hence,

$$3n - 2 - k \ge 3n - 2 - \frac{3n + 1}{4} = \frac{9n - 9}{4} \ge n + 1$$

since $n \ge 3$. Therefore, $K_{n+1} \subset B$.

We are now prepared to present an analogue to Theorem 1 in which two adjacent edges are deleted from $K_{1+(m-1)(n-1)}$.

Theorem 3. For $m \ge 4$ and $n \ge 2$, $K_{1+(m-1)(n-1)} - e - f \longrightarrow (T_m, K_n).$

<u>Proof.</u> We proceed by induction on m(>4). For m=4, there are two trees T_4 , namely P_4 and K(1, 3). The result for P_4 follows by Lemma 1 while the result for K(1, 3) follows by Theorem 2.

Assume that $K_{1+(m-1)(n-1)}-e-f\to (T_m,K_n)$ for a fixed $m\geq 4$ and all $n\geq 2$. We show that $K_{1+m(n-1)}-e-f\to (T_{m+1},K_n)$ for all $n\geq 2$ by induction on n. Since $m\geq 4$, it follows immediately that $K_{m+1}-e-f\to (T_{m+1},K_2)$. Assume that

REFERENCES

- [1] G. Chartrand, R. J. Gould and A. D. Polimeni, On ramsey numbers of forests versus graphs with large clique number. Submitted for publication.
- [2] V. Chvátal, Tree-complete graph ramsey numbers.
 <u>J</u>. <u>Graph Theory</u> 1(1977) 93.