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Abstract 

Faudree, R.J., R.J. Gould, M.S. Jacobson and L.M. Lesniak, Neighborhood unions and a 

generalization of Dirac’s theorem, Discrete Mathematics 105 (1992) 61-71. 

Dirac proved that if each vertex of a graph G of order n 23 has degree at least n/2, then the 

graph is Hamiltonian. This result will be generalized by showing that if the union of the 

neighborhoods of each pair of vertices of a 2connected graph G of sufficiently large order n 

has at least n/2 vertices, then G is Hamiltonian. Other results that are based on neighborhood 

unions of pairs of vertices will be proved that give the existence of cycles, paths and matchings. 

Also, Hamiltonian results will be considered that use the union of neighborhoods of more than 

2 vertices. 

1. Introduction 

Dirac [2] proved that if the neighborhood of each vertex of a graph of order IZ 

has at least n/2 vertices then the graph is Hamiltonian. Numerous generaliza- 

tions have followed this fundamental result of Dirac. Conditions on the sum of 

degrees of non-adjacent vertices such as Ore’s [12], conditions using connectivity 

and minimal degree [9], and degree conditions on all pairs of vertices a distance 
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two apart [3] are examples of such extensions. We will generalize the Dirac result 
by showing that if the union of the neighborhoods of each pair of vertices in a 
graph of order n has at least n/2 vertices, then the graph is Hamiltonian. Other 
properties of graphs that follow from similar neighborhood union conditions will 
be investigated. Recently, there have been several papers (see [4-8,111) that use 
neighborhood conditions on independent sets of vertices to insure the existence of 
special subgraphs such as paths and cycles. A survey of neighborhood unions and 
graphical properties can be found in [lo]. 

We start by defining the neighborhood conditions we will use. Given an integer 
f > 0, a graph G satisfies property NC,(G) > s, if for each set X of t vertices of G, 

where N(x) is the set of vertices of G adjacent to x, (neighborhood of x). 
Therefore, NC(G) 2 s just means that each vertex has degree at least s. We will 
deal mainly with the case t = 2, and so NC,(G) will usually be written as just 
NC(G). 

In Section 2, we will investigate the cycles, paths, and matchings in a graph G 
that are implied by the neighborhood condition NC(G). In particular, we will 
prove the following result, where P, and C,,, denote paths and cycles, respec- 
tively, with m vertices, and mK, denotes a matching with m edges. 

Theorem A. Let G be a 2-connected graph of order n with NC(G) 2 s for some 
3 s s s n/2. Then, G contains a Pa, sK2, and a C, for t 2 2s - 2. 

Similar results for connected graphs or graphs with no connectivity conditions 

will be proved. 
In Section 3 the neighborhood condition NC,(G) needed to insure that the 

graph G has a Hamiltonian cycle will be studied. The following two theorems 
will be proved. 

Theorem B. Let t > 2 be an integer, and let G be a graph of order n with 6(G) 2 t 
that satisfies NC,(G) 3 n/2 + c for some c = c(t). Then, for n suficiently large, G 
is Hamiltonian. 

When t = 2, a sharp result can be proved. 

Theorem C. Let G be a 2-connected graph of order n that satisfies NC(G) 2 n/2. 
Then, for n suflciently large, G is Hamiltonian. 

2. Cycles, paths, and matchings 

Before proving the results of this section, we will introduce some frequently 
used notation. Notation not specifically mentioned will follow that in [l]. We 
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denote the edge between vertices u and v as uv, and for simplicity denote its 
existence as uv E G. A path P with m vertices {x1, x2, . . . , x,} will be expressed 

as (x1, x2, . . . , x,), and the cycle C with the same vertices (and same order) will 
be written as (x1, x2, . . . , x,, x1). In the path P an edge xlxi &xi) is called an 
endchord of the path, and the endchords xlxi and XmXj are said to overlap if j < i. 

For a vertex Xi on the path, the predecessor xi-1 and the successor xi+1 along the 
path will be denoted by x; and XT respectively. If S is a collection of vertices of 
P-x1, then S- will be the set of predecessors of the vertices of S. Also, the 
successor set St of S is defined in an analogous way. 

Theorem 1. Let G be a graph of order n with NC(G) 2 s for some 3 <s s n. 

Then, G contains a P,, [s/2] KZ, and a C, for some t 3 s. The result is sharp in the 

sense that longer paths, or cycles are not implied by the conditions. 

Proof. A graph that is the disjoint union of complete graphs KS verifies that the 
conclusion of Theorem 1 cannot be strengthened for paths or cycles. 

The existence of a cycle C, for t 3 s implies that [s/2] K, c G, and P, c G. 

Thus, it is sufficient to prove that G contains a cycle of length at least s. Let 
P=(x,,xz,. . . , x,) be a maximal length path in G. Then, all of the adjacencies 
of x1 and x, are on P. Both of the endvertices of P cannot have degree 1, so we 
assume, with no loss of generality, that xlxk E G for k > 2. Note that xk-r is also 
an endvertex of a maximum length path, and all of its adjacencies are also on P. 

Since JN(x,) U N(x~_& Ss, we can assume (without loss of generality) that 
xlxj E G for some j 2 s. This gives the desired cycle, and completes the proof of 
Theorem 1. 0 

If more is known about the connectivity of G, then more can be said about the 
paths, cycles, and matchings implied by the neighborhood condition NC(G) 3s. 
The following theorem gives this. 

Theorem 2. Let G be a 2-connected graph of order n with NC(G) > s for some 

3 s s s n/2. Then, G contains a C, for some d 2 2s - 2. For s s (n + 4)/3, the 

result is sharp in the sense that longer cycles are not implied by the conditions. 

Proof. For 3 =S s s (n + 4)/3, consider the graph H = K2 + t, KS_*, with n = t,(s - 

2) + 2 and t, 2 3. The graph H is 2-connected, satisfies NC(H) = s, and contains a 
C2r_-2, but no longer cycle. This verifies that Theorem 1 is sharp. 

Let P = (xl, x2, . . . , x,) be a path of maximum length in G. The maximality 
of m implies that no endvertex of a path of length m is adjacent to a vertex not on 
the path. Let x1x, be the shortest endchord from x, and let x,xI be the shortest 
endchord from x,. 

The proof of the existence of a large cycle will be broken into several cases that 
depend on the nature of endchords of maximal length paths. 
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Case 1: A path in which all endchords overlap. 
By assumption t < r, and we can assume that r - t is minimal over all possible 

choices of maximum length paths and shortest endchords. Note that there is a 
maximal length path from xr+, to x,__~ that uses these shortest chords. The 
minimality of r - t implies that neither x~+~ nor x,-r is adjacent to a vertex xk with 
t < k < r. Consider the cycle 

which contains all of the vertices of P except for those between x, and x,. We will 
show that C contains at least 2s vertices. 

Let xlxI be the longest endchord from x1 (note that 1 Zm), and let x =x1, 

x’ =x1+1, Y =&?I, and y’ =x,-1. Let N = N(y) U N(y’). It is easily seen that each 
vertex of N is contained in C, since y’ can have no adjacencies between x, and x,. 
(For otherwise, the minimality of r - t would be contradicted.) Let 

M = {x~-~: k #r, and xxk or xl& E G} U {y}. 

The set M has the same number of elements as N(x) U N(x’), and M is contained 
in C. It is straightforward to verify that if M fl N # 0, then there is a cycle 
containing all of the vertices of P. For example, if Xj E M n N, with xxi+1 E G, 
then (by assumption Y’Xj E G) 

(x, xj+l, xj+2, . . * 9 Y, xt, xt+1, . . . 9 xj, Y’, . . . P x2~ x> 

is such a cycle. Similar cycles exist for the other cases of vertices in M fl N. The 
maximality of P implies that any cycle of length m must be a Hamiltonian cycle in 
G, which would complete the proof. Hence, we assume M n N = 0. Thus, C 
contains two disjoint sets each with at least s vertices, which completes the proof 
of this case. 

Case 2: A path with both overlapping and nonoverlapping chords. 
In this case we can assume that r s t, and that some endchord from x, overlaps 

someendchordfromx,. Letx=x,,x’=x,_,,y=x,, andy’=x,+,.Notethatx’ 
and y’ are endvertices of a maximum length path of G. We can assume, with no 
loss of generality, that there exists an I with 1< r such that x,x! E G, and no 

vertex between xl and x, on P is adjacent to x, y or y’. Also, x’ has only one 
adjacency between xI and x,, namely x,_~. Both of these observations follow from 
the minimality of r and the maximality of t. 

Consider the cycle 

C = (x1, x,, &+1, . . . > x,7 XI, XI-17 . . . , Xl), 

which contains all of the vertices of P except for those between x1 and x,. We will 

show that C contains at least 2s - 2 vertices in the same way as it was done in 

Case 1. Let N = N(y) U N(y ‘). It is easily seen that each vertex of N is contained 
in C. Let 

M={xk_,:k#r-l,k#l andxxk orx’x,EG}. 
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The set M has as many as IN(x) U N(x’)J - 2 elements, and M is contained in C. 
It is straightforward to verify that if M 17 N # 0, then there is a cycle containing all 
of the vertices of P. The maximality of P implies this would be a Hamiltonian 
cycle, which would complete the proof. Thus, M fl N = 0, and the cycle C 
contains two disjoint sets M and N with at least 2s - 2 vertices. This completes 
the proof of this case. 

Case 3: None of the endchords from {x1, x,-,} overlap endchords from 

b?l> &+,I. 
Both x,-i and x,+~ are also endvertices of a path of length m, and we are 

assuming that none of the adjacencies of {x,, x,+,} preceed, along the path P, 
any of the adjacencies of {x,, x,-i}. With no loss of generality, we can assume 
that x1x, E G and x,x, E G with 1 s u and that for 1 <j < u, xi is not adjacent to 
x,, x,-i, x,, or x,+~. Let A = {x1, x2, . . . ,. xl} and B = {xu, x,+,, . . . , x,}. 

Since G is 2-connected, there are at least two vertex disjoint paths from A to 
B, and there is the path (xl, . . . , x,). From these three paths we can generate 
two vertex disjoint paths Q and Q’ from A to B (only endvertices are in A or B) 
such that the endvertices in A of the two paths are xi, x, and the endvertices in B 
are x,, xi for i <I and u <j. It can easily be shown that in A there is a path R 
from xi to x[ that contains all of the vertices of N(x,) U N(x,_,). For example, if 
i < k, xlxk E G, and there is no vertex of N(x,) U N(x,_,) between xi and xk, then 

(x;, Xi-i, . . . , xl, xk, xk+l, . . . , XI) 

is such a path. Also, there is a corresponding path R’ in B from X, to xi that 
contains N(x,+J U N(x,). Each of the paths R and R’ have at least s vertices, and 
a cycle C can be constucted using the paths R, R’, Q, and Q’. If 1 <u, then 
clearly G has a cycle with at least 2s vertices. If I = u, then C has at least 2s - 1 
vertices. This completes the proof of this case and Theorem 2. 0 

Note that in the proof of Case 3 of Theorem 2 when I= u and s = n/2, the path 
P has n vertices, and the path Q is x, =xf and Q’ contains just the edge xixj. 
Under these conditions, either xi or xi is the endvertex of a Hamiltonian path with 
an overlapping chord, which implies that either Case 1 or Case 2 applies. 
Therefore, for s = n/2, either G contains a Hamiltonian cycle or Case 2 applies. 
This fact will be used in the proof of Theorem 6 of the next section. 

There are several immediate consequences to Theorem 2. It is straightforward 
to verify that if G is 2-connected graph of order n with NC(G) 2 s for some 
3 <s s n/2, then, G contains a P2, and an SK,. Note that for s =S n/2 the graph 
KS + K,_, is a s-connected graph of order n with NC(G) 2 s that does not contain 
either a Pa+2 or a (s + 1)K2. Thus, only an improvement of 1 on the length of the 
path is possible. It is also easy to verify that if G is a connected graph of order n 
with NC(G) z s for some 3 c s < n/2, then, G contains a Pzs-,, an (s - 1)K2, and 
a C, for some t 3s. This follows from the observation that H = K1 + G is a 
2-connected graph, and Theorem 2 applied to H will give the result for G. 
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3. Hamiltonian cycles 

We start with a general result about Hamiltonian cycles that uses the union of 
the neighborhoods of subsets of t vertices. 

Theorem 3. Let t 3 2 be an integer, and let G be a graph of order n with 6(G) 2 t 

that satisfies NC,(G) 2 n/2 + c for some c = c(t). Then, G is Hamiltonian. 

Proof. We will suppose that G is not Hamiltonian and c = 8t3, and show that this 
leads to a contradiction. Clearly n > 16t3, for otherwise the neighborhood 
condition would not hold. We will assume that G is edge maximal with respect to 
the property of not being Hamiltonian, so G + e is Hamiltonian for any edge 
e $ G. Thus, there is a Hamiltonian path between each pair of non-adjacent 
vertices of G. 

If x and y are non-adjacent vertices in G, then d(x) + d(y) <n. This follows 
from the fact that if P is a Hamiltonian path from x to y, then x is not adjacent to 
itself or the successor along P of any adjacency of y. Thus, d(x) s rz - 1 - d(y), 

which verifies the stated inequality. 

Claim. There exists a non-adjacent pair of vertices x, y of G with (N(x) II N(y)1 

3 2t. 

Assume this is not true. If G has 2t independent vertices, say x,, x2, . . . , xzt, 

then NC,(G) 3 n/2 + c implies 

( LQ N(xi)) n (J?, N(xi)) a 2c + 2t- 

Also, by assumption, N(Xi) fl N(Xj) s 2t - 1 for i #i, which implies 

(,+ N(xi)) n ( i=Q, N(xi)) s t2(2t - ‘). 

This implies c < t3, a contradiction, so G does not have 2t independent vertices. 
Select a maximum independent set X = {x1, x2, . . . , x,} of independent vertices, 
so 2 cm < 2t. Partition the vertices of G -X into m + 1 sets 

{A,, AZ,. . . > A,, B}, where Ai is the set of vertices adjacent to just xi, and B is 
the set of vertices adjacent to at least two vertices of X. Since N(xi) n N(xj) s 
2t - 1 for i #j, B has at most (:)(2t - 1) < 4t3 vertices. Any vertex of an Ai can 
have at most 2t - 1 adjacencies in an Aj for i #j, SO any set of t vertices of an Ai 

has at most (m - l)t(2t - 1) + 4t3 < 8t3 adjacencies outside of A;. Therefore, any 
Ai with at least t vertices, has more than n/2 + c - 8t3Sn/2 vertices. Hence, 
there is at most one A,, say AI, that has as many as t vertices, which implies that 
IAll > n - (m - 1)t - 4t3. If there are as many as t vertices not in N(x,) U {x1}, 
then clearly one of these t vertices would be adjacent to at least 2t vertices of 
N(x,). This implies d(x,) > n -t, which gives a contradiction, since d(x,) + 

d(x2) 2 It. This completes the proof of the claim. 0 
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Select non-adjacent vertices x and y such that IN(x) U N(y)1 32t. Let 
P = (x =x*, X*, . . . ) x, = y) be a Hamiltonian path from x to y. Since there are 2t 
vertices on P that are simultaneously adjacent to x and y, there are t - 1 
endchords from each of x and y such that the endvertices of the endchords from x 
preceed on P, the endvertices of the endchords from y. 

Let {xx,, , q, . . . , xx,_, } be the t - 1 shortest endchords from x with 
2<r,<r,<-.-<r,_,. Note that for any j, x’ =x; is the endvertex of a 
Hamiltonian path. If x’ has t adjacencies that precede xr,_,, then the path P can 
be replaced by a path P’ from x’ to y. This can be repeated using P’, but 
eventually this process must stop. Hence, there is no loss of generality in 
assuming that for any j, (1 <j c t - l), x; has at most t - 1 adjacencies less than 

x,,_, . Let A = {x,x;, x;, . . . , XL_,}, and let A’ be the adjacencies in 

{ x, x2, . . . , xr,_, } of vertices in A. Thus, JA’J s t2. In the same way, we can select 
the shortest endchords from y to obtain corresponding sets B = 
{y, x:, x;, . . . , xz_,} and B’ with 113’1 St’. 

Let N = lJneA N(a) -A’, N- be the predecessors of N along the path P, and 
N* = N- - B’. Hence IN*1 2 n/2 + c - 2t2 2 n/2. Let A4 = lJbsB N(b), so [MI 2 
n/2 + c. Observe that M fl N* # 0, for otherwise G would contain IN*1 + IMI > n 
vertices. Thus, assume xk E N* fl M with x,x kfl, x.lxk E G for some i and j. The 
following is a Hamiltonian cycle of G. 

( x, x2, . . . , xr,, xk+l, . . . , &,, y, X,-l, . . . , xs;, xk, . . . I xr,, x)- 

This gives a contradiction that completes the proof of Theorem 3. Cl 

Note that 6(G) 2 t is necessary in Theorem 3, because the graph G = 
&, + (& UK,_ 2r+2) has 6(G) = t - 1, satisfies NC,(G) 3 n/2 + c, but is not 
Hamiltonian. No attempt was made in Theorem 3 to find the smallest choice of c 
for which the result is true, and clearly c = 8t3 used in the proof of Theorem 3 is 
not the smallest choice. This was done since the proof technique used will not 
give the sharpest result. However, in the case when t = 2, a sharp result can be 
obtained with c = 0, which is the following theorem. 

Theorem 4. Let G be a 2-connected graph of order n that satisfies NC(G) 2 n 12. 
Then, for n suficiently large, G is Hamiltonian. 

Note that the Petersen graph P of order 10 is not Hamiltonian, but that 
NC(P) 2 5. Therefore, n > 10 is necessary in the hypothesis of Theorem 4. 
However, the proof requires that n be larger than 10. 

Proof. We will suppose that G is not Hamiltonian, and show that this leads to a 
contradiction. We can assume that the addition of any edge to G will result in a 
Hamiltonian cycle, so there is a Hamiltonian path between each pair of 
non-adjacent vertices. 
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Let P = (x1, x2, . . . , x,) be a Hamiltonian path between x =x1 and y =x,. Let 
XX, be the shortest endchord from X, and let yx, be the shortest endchord from y. 
Thus, x’ =x,-i and y’ = xs+, are also endvertices of a Hamiltonian path. With no 
loss of generality, we can assume that P is chosen, from all of the Hamiltonian 
paths of G, such that the endchords from the endvertices are as small as possible. 
Hence, x’ is not adjacent to any of the vertices on P that preceded it except for 
x,__~, and the corresponding statement is true for y’. 

The remainder of the proof is patterned after the proof of Theorem 2. If Case 2 
of Theorem 2 does not hold, then for each Hamiltonian path either all of the 
endchords overlap, or none of the endchords overlap, and so G does contain a 
Hamiltonian cycle. This follows directly from the proofs of Case 1 and Case 3 of 
Theorem 2 and the remark that followed the proof of Theorem 2. We therefore 
assume that Case 2 of Theorem 2 is satisfied. 

Note that if there is some k such that both the edges x.Q+, and yxk are in G, 
then G contains the Hamiltonian cycle 

( x, Xk+lr xk+2, . . . > y, xk, xk-1, . . . , XI* 

Similar statements can be made for x’ and y’. With this in mind we define the 
following subsets of vertices of the path P. Let 

M = N(x) u (N(x’) -x,-z), 

M- = predecessors of M along P, 

N=N(y)U(N(y’)-x,+J, and 

N+ = successors of N along P. 

Each of the sets M, M-, N, N+ has at least n/2 - 1 vertices. The above note 
implies that M- n N = 0 (and likewise, M II N+ = 0). We will use these sets to 
partition the vertices of P. 

Since, y 4 M- UN, IM- U NI = n - 1 or n - 2. Therefore, every vertex of 
P - y, with one possible exception, is in either M- or N. For some positive 
integer t, the vertices of N can be partitioned into t ‘intervals’ (consecutive 
vertices of P) on P, say {B,, BZ, . . , B,}, such that the vertices in Bi precede 
those in Bjif i<j, and BiUBi+i is not an interval. Likewise, there is a partition 
of M into sets {A,, AZ, . . . , A,}. In this case possibly Aj = 0 for some one j. 
This will occur when the number of neighborhood intervals associated with the 
two vertices y and y’ is one larger than the number of intervals associated with 
the vertices x and x’. (With no loss of generality we can assume that the number 
of intervals associated with y and y’ is at least as large as the number of intervals 
associated with x and x’.) Associated with each set Ai are the sets A; and A:, 
which are the predecessors and successors of Ai along P respectively. There are 
the corresponding sets B,: and B,? related to Bie Note, by the appropriate 
selection of the Ai, that the vertices of A; are between Bi-1 and B; on the path. 

First, consider the case when IM- U NI = n - 1, which we will call the regular 
case. Then, for each i (1 < i s t), (Ai fl Bi( = 1, and we will denote this element by 
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y. Also, there are t - 1 vertices {zI, z2, . . . , z,-~} such that Zi is the vertex of P 
between Bi and Ai+l. When (M- U N( = n - 2, which we will call the exceptional 
case, the pattern is the same, except there is some k such that either there are two 
vertices, say z; and z;, between Bk and Ak+l, or Ak II B, = 0. From this 
decomposition of the vertices of P it is clear that in the regular case that 
t s (n - 1)/2, and in the exceptional case t < (n - 2)/2. For the remainder of the 
proof, this notation will be used. 

There are two patterns for generating Hamiltonian.cycles in the graph G using 
the path P that will be useful in determining properties of the sets Ai and Bj. If 
there exist integers i s k such that the edges {Xxi, yxk, Xj_IXk+l} c G, then there 
is a Hamiltonian cycle that uses these edges and the edges of P except for Xj-lXj 
and x,&-r. Also, the existence of integers i > k with {xx,, yxk, xj-Ixk-_1} c G, 
implies that there is a Hamiltonian cycle using these edges and the edges of P 
except for Xj_lXj and xk-_1&. As a consequence of this, no vertex in A,: can be 
adjacent to any vertex in B$ for k 3j or any vertex in B; for k <j. Thus, all of 
the vertices in A,7 are non-adjacent to the same set of at least n/2 - 1 vertices. 
Therefore, no pair of vertices in A,: can be non-adjacent, for otherwise this pair 
would be non-adjacent to at least n/2 + 1 vertices, contradicting NC(G) 2 n/2. 
Hence, the vertices of each A,:, and also by symmetry each B+, form complete 
graphs. Another direct consequence of these observations is that each Zi is 
non-adjacent to all of the vertices in any Af for i > i, A,: for j 6 i, Bf for j > i, 
and B,: for i < i, and thus z, has degree at most t if IM- U N( = n - 1, and t + 1 in 
the exceptional case. 

If t > 4, then there exist distinct zi and Zj, and there will be at most t + 3 
vertices in N(zi) U N(z,) by the observations of the previous paragraph. Hence 
t 2 n/2 - 3. This implies that all but at most 4 of the Ai and Bi have at most 1 
vertex. Since n is large, we can choose z, and Zi+l such that JAiJ = JAi+lJ = 
JAi+2) = 1, and thus it is easy to verify that N(z;) U N(z,+~) has at most t vertices 
when IM- U N( = n - 1 and t + 1 vertices in the exceptional case. Thus in the 
regular case, t 3 n/2, which contradicts the previous fact that t s (n - 1)/2. In the 
exceptional case, t s n/2 - 1, which implies that t = n/2 - 1. However, in this 
case, (N(x) U N(x’)( St or (N(x) U N(x’)l s n/2 - 1, which gives a contradiction. 
Thus, we can conclude that t s 3. 

We have already considered the subcase t = 1, so the only remaining cases are 
t = 2 or 3. We start with the case t = 2, so the number of vertices between B, and 
A, will be either 1 or 2. 

We first consider the case when z1 is the single vertex in this interval. Recall 
that A; is a complete graph, so if A; has at least 3 vertices, then a Hamiltonian 
cycle can be constructed using chords XZ:, yz;, and z,z:+ and edges from P. 
Thus, (A21 ~2, and likewise IB,( c 2. If (A21 = 2, then note that z: has no 
adjacencies in B;, and any adjacency of z: in A; - {x} will give a Hamiltonian 
cycle. This implies that there are at most 6 vertices adjacent to either z1 or z:, a 
contradiction. Therefore, A2 (and also B,) has just 1 vertex. However, we can 
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assume with no loss of generality that IAll s 1B21, and so (AI1 s (n - 5)/2. On the 
other hand, IN(X) U iV(z,)l c IA,( + 2 < (n - 1)/2, a contradiction. 

Thus, we can assume that there are two vertices {z, z+} between B, and AZ. 
Since N(x) UN&x’) cAI UAz U {x}, JAI UAzl Z= n/2 - 1, and by the same argu- 
ment, JB1 U BZJ 3 n/2 - 1. Thus, clearly we must have equality in both cases, for 
P would have more than rr vertices otherwise. Also, N(Z) U N(z+) c B1 U A2 U 

{z, z+), so PII + I&l >n/2- 2. If IAIl 3 3 and IA21 32, then there must be an 
edge between A, f?A; and A2 n A; for, if not, the neighborhood condition 
would be contradicted for some vertex in AI rl A, paired with some vertex in 
A2 U A;. With no loss of generality, we can assume this edge is w;w;. Using this 
edge and edges {xwz, yw,}, a Hamiltonian cycle can be constructed using all but 
two of the edges of the path P. Therefore, we can assume that either JAI1 = 2 or 
lAzl = 1, and likewise lBll = 1 or (B21 = 2. By symmetry and the fact that both B1 
and AZ cannot be small, we need only consider the two subcases when (All = 2 
and either (B21 = 2 or IB1( = 1. In the first subcase, we can assume with no loss of 
generality that there is an edge between x’ and A2 IIA;, because of the 
neighborhood condition applied to {x’, y’}. This results in a Hamiltonian cycle 
like the one just generated. In the second subcase consider the pair of vertices 
{x’, z}. By the previous argument, X’ cannot be adjacent to a vertex in A2 II A; 
and, in general, z is not adjacent to a vertex in A;. This implies that z must be 
adjacent to numerous vertices in B 2, so we can assume zw: E G. This gives the 
Hamiltonian cycle 

(x1, . . * , 3, y, . . f , w:, z, . . . , 5% x1). 

This is a contradiction, which completes the proof of the t = 2 case. 
We now assume that t = 3. We have already shown that if there exists z1 and z, 

along P, then t 2 n/2 - 3. Thus, with no loss of generality, we can assume that 
there exists { wr, w,, w3}, zl, and the pair {z, z+} between B, and A3. Recall that 
zi is not adjacent to any vertex in A; UA: UA$ U B; U B: U B:. Therefore, z, 
has degree at most 3. Note also that the vertex w ; is not adjacent to any vertex in 
A: U A: U B: U B: U B$. Since IN(w;) U N(z,)( 3 n/2, we must have IAll b 
n/2 - 4. The same argument implies w: is not adjacent to any vertex in 
A; UA; UA; U B: U B: U B:, and so we must have IBJ 3 n/2 - 4. However, 
there are at least 6 vertices not in the disjoint sets AI and B3. This is a 
contradiction that completes the proof of this case and of Theorem 4. Cl 

If the 2-connected condition is deleted from the hypothesis of Theorem 4, then 
the graph is no longer insured of being Hamiltonian. However, there are only a 
few exceptional graphs, as the following Corollary 5 indicates. Let H be the 
graph obtained from K, + (KC,_1),2 U Z$_,& by deleting one edge between the 
K, and each of the KCn-1),2). 

Corollary 5. Let G be a graph of order n that satisfies NC(G) 3n/2. If n is 
sufficiently large, then either 

(1) G is Hamiltonian, 



Neighborhood unions and Dirac’s theorem 71 

Proof. If G is a 2-connected graph, then G is a Hamiltonian by Theorem 6. If G 
is not connected, then each component with at least 2 vertices, must have at least 
n/2 vertices. Hence, in the disconnected case, n is even and G = K,,,2 U K,,z, 

Therefore, we assume that G is l-connected. 
Let x be a cutvertex of G. Then, G - x has precisely two components, and each 

component has at least L(n - 1)/2] vertices. Note that any component of G -x 
with a pair of non-adjacent vertices must have order at least n/2 + 1, which 
cannot occur. Thus, each component is a complete graph. If n is odd, then each 
component of G - x is a Kcn--1j,2 with x adjacent to all of the vertices in the 
component except for possibly one vertex. This gives (2). If n is even, then one 
component is a Kc,_2j,2, 
the smaller component. 
complete. 0 

4. Question 

the other is a K,,,*, and x is adjacent to each vertex of 
Hence (3) is satisfied, and the proof of Corollary 5 is 

It would be worthwhile to sharpen some of the results in Section 2. For 
example, in a 2-connected graph G or order II > 2.s, does NC(G) > s imply that 
P,,, c G? One interesting question left from Section 3 is to determine the 
smallest value of c for which Theorem 5 is still valid. 
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