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Abstract

Faudree, R.J., R.J. Gould, M.S. Jacobson, L.M, Lesniak and T.E, Lindquester, On
independent generalized degrees and independence numbers in K(1, m)-free graphs, Discrete
Mathematics 103 (1992) 17-24,

In this paper we use independent generalized degree conditions imposed on K(1, m)-free
graphs (for an integer m=3) to obtain resulits involving B(G). the vertex independence
number of G. We determine that in a K(1, m)-free graph G of order # if the cardinality of the
neighborhood union of pairs of non-adjacent vertices is a positive fraction of n, then B(G) is
bounded and independent of . In particular, we show that if G is a K(1, m)-free graph of
order n such that the cardinality of the neighborhood union of pairs of non-adjacent vertices is
at least r, then B(G)=<s, where s is the larger solution to rs(s — 1) = {n — s)(m — 1)(2s — m).
We also explore the relationship between B(G) and 8(G) (the minimum degree) in
K(1, m)-free graphs and provide a generalization for degree sums of sets of more than one
vertex.
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1. Introduction

In recent years, many results have been obtained involving adjacency condi-
tions in graphs that do not contain a copy of K(1, 3} as an induced subgraph. In ’
(9], for example, Matthews and Sumner utilized a lower bound on the minimum
degree of a graph to obtain several types of hamiltonian results. In [6],
restrictions on the cardinality of the neighborhood union of pairs of non-adjacent
vertices were used to get similar properties. These bounds were improved slightly
in [1]. Here we use a form of a generalized degree condition [3] imposed on
graphs which do not contain a copy of K(1, m), for an integer m =3, as an
induced subgraph. We use this condition on these K(1, m)-free graphs to obtain
results involving B((7), the vertex independence number of G. In particular, we
prove the following.

Theorem A. If G is a K(1, m)-free graph of order n (with m =3) such that the
cardinality of the neighborhood union of pairs of non-adjacent vertices is at least r,
then B(G)<=s where s is the larger solution to

rs(s —1y=(n~s)(m —1)(2s —m).

For example, when m =3 and r =n/3+ ¢ (where c¢ is some small constant),
then B(G)=11. In [4], this fact is used to obtain hamiltonian and hamiltonian
related properties in K(1, 3)-free graphs with specified connectivity and neigh-
borhood conditions.

Note that when r is a positive fraction of n, f(G) is bounded and independent
of n. Clearly this is not the case when the K(1, m)-free restriction is dropped. For
instance, consider the complete bipartite graph K (7, ¢), ¢ = m, in which K(1, m)'s
abound,

We also explore the relationship between S(G) and 6(G) (the minimum
degree} in K(1, m)-free graphs, and provide a generalization for degree sums of
sets of more than one vertex.

Theorem B. If G is a K(1, m)-free graph of order n such that
min(E deg(v)) = px
vel

where the sum is taken over all independent sets P = V(G) such that |P| = p, then

(m—1)n
x+m-—1’

B(G) =

For clarification of undefined notation and terms used in this paper see [7].
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2. Resulis
We first prove some preliminary results,

Lemma 1. Given integers a, b and ¢ with a<c<b, then

fo=5)=clo-3)

Proof. Since b =c¢ and & <c certainly b = (¢ + a}/2. Then

(C_a)ba(c—a)z(c+a),

which implies that

a c
——J=clb—-=). O
a(b 2) C( 2)
We are concerned with outcomes involving the generalized degree of sets of

independent vertices of a graph G. I S={v,, v,,..., v} is a k-set of
independent vertices of V, we define

k
deg S = |l N(v.)
i=1

Then we denote by .(G), the minimum deg S, where the minimum is taken over
all k-subsets of independent vertices in G. In this paper we will primarily be
concerned with lower bound restrictions on the independent generalized degree
of pairs of non-adjacent vertices. Thus L(G) will be our main consideration.

Theorem 2. If G is a K(1, m)-free graph of order n (with m = 3) such that
B(GYyz=m and L(G)=r,

then B(G) <s, where s is the larger solution to
sz —1)=(n—s)(m — 1)(2‘?w —mh

Proof. Suppose B(G)=+t Let T be a set containing the maximum number of
independent vertices. Then |T| = t. Denote by S the set containing the remaining
n —t vertices.

We obtain cur result by counting the number of edges between the sets T and
S, and by applying Lemma 1.

We first count edges by considering pairs of vertices in 7. Since there are ¢
vertices in 7, then there are (;) distinct pairs of vertices in 7. With L(G) = r, we
see that there are at Ieast

(t) r+ > (deg:r(v)) _ [2 deg‘T(U)] (t—2)

2 veSs 2 vesS
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edges out of T, where degy(v) counts all edges from v into 7 for v e V(S). We
arrive at this expression for the following reasons: Since L(G)=r, (5)r counts
the minimum number of adjacencies for each pair of vertices in 7. This number,
however, does not include edges that exist from overlapping neighborhoods of
vertices in 7. Thus

D (degT(U))
ves 2
counts those edges. Moreover, for each vertex u in 7, deg(u) is counted a total of
t—1 times, thus we compensate by subtracting the excess we have counted for
each vertex.

Secondly, the number of edges from § to T is just ¥, s degy(v). Hence,

0+ 5 (550) - (5 o)< S
which gives

(o)r=Z s —,= 5]

Since G is K(1, m)-free and T is an independent set of vertices, deg,(v) =
m — 1. Also from the hypothesis, f(G) = m. Applying Lemma 1, let 2 = deg;(v),
b=t—1% andc=m—1. Then

S R )

which gives

UEesdegrf('u)(rm%md;cgim) =(n—t){m— 1)(!—%— (m2- 1)) .

Therefore,

(;)rs(n — (m —1)(:—%—(’"2“1))

and

rt(t — 1) <= (n — H)(m — )2t — m).
Note that any ¢ that satisfies the previous inequality certainly satisfies = s, since ¢
must lie between the smaller and larger roots of the quadratic expression.
Therefore, we have shown that 8(G) =t <s where

rs(s — D)= (n—s)m—1)(25s —m). O

The sharpness of the result is illustrated by considering for m = ¢ the following
graph G,,, of order n (where n =1 is chosen such that n — ¢ is divisible by (},_,)),
for n sufficiently large:

V(G,..)=AU{A; lstiy<<ip<<eo-<i, =t}

[ECTZERR ] |
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where A = {x, x5, ..., x,} and the sets A, , . ...,  are disjoint sets with
n—t
IAiliziil"'im—l‘ = P .
(m - 1)

We define the edge set with the following conditions:
(i} Each of A;;,...;, , is complete.
(ii) Forx, €A, x,veEifandonlyifye A

(iii} We have vze Eifand onlyif y € A
for some p and q.

To see that G, , is K(1, m)-free, for any k, 1<k <t, the neighborhood of x, is
complete by condition (iii). Thus, x, cannot be the root of a K(1, m). Also for
any yeA,;,...;,_,, ¥ is adjacent to only m — 1 vertices in A. In addition, for any
other set A; ;,...; | which contains a vertex z € N(y), then i, =, for some p and
g, which implies x; € N(z) by adjacency condition (ii). Lastly, note that y is
adjacent to vertices in only m — 1 other A,.../’s which do not have overlapping
subscripts. Thus there are only m — 1 of these disjoint sets that do not have edges
between them. Hence, G, , is K(1, m)-free.

Also note that

iig iy Where I, = k for some j.

and z € A; where i, =j,

R AR ] Fij2 1

(m—Dr—02t—m)
t(t—1)
In order to see this, we consider two cases:

Case 1: Consider x,, x; € A.

Observe that the number of (m — 1)-sets of ¢ labels containing i is (,,_%). In
counting these sets for both i and j, we must then compensate for the duplicate
counting that occurs due to the intersection of the neighborhoods of x; and x;. But
there are (4~%), (m — 1)-sets containing both i and j, thus the number of sets to
which x; and x; are adjacent is 2(,;7%) — (., _%). Since there are (n —1)/(,,1:)
vertices in each set, we see that

o[- ()75

" (mt—l).
Since (55 =(," 1) (m — 1)/t we have
ZM( t )W(m—l)m( t )} n—t

t m—1 m—1 ( t )
m—1

IZ(Gm,:) =

INGE) UNGoI = s

_(m=-D(r-n2t—m)
h Hr—1)

Case 2: Consider yeA;;,...; ..
Then N(x;) UN(x;,) c(N(y)U{y})— {x:, x;,}. This implies that [N(x,)U
N(x,)| <IN(y)|. From Case 1 we see that N(y) satisfies the independent
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generalized degree condition, hence any pair of non-adjacent vertices in V(G,, )
satisfies the condition for L{G,, ).

Clearly (G) =t for G,,,, thus the result is sharp.

We next offer in Theorem 3 a result that gives an upper bound on B(G) in
terms of 3(G) in a K(1, m)-free graph. This theorem is a special case of the more
general result in Theorem 4 that provides a condition involving degree sums.

Theorem 3. If F is a K(1, m)-free graph of order n with minimum degree 6(G),
then
(m—1)mn

A= @6y em—1

The bound in Theorem 3 is sharp for sufficiently large n. Let G be a graph of
order n with 8(G) = (m — 1){(n — £)/t defined as follows: Let

V(G)=AU{A;|i=0,1,...,¢—1},
where |A;| = (n — )/t for each {, and A = {x,, x5, ..., x,}. Also let
(Ai—l U UAi+m—3>

be complete for each i, with x; adjacent to each vertex in each of
Aiwb o Ai+m73 (modulo t)'
Certainly B(G) =t and G is K(1, m)-free. Since B(G) =(m — 1)(n —t)/t, then

(m—1n
(B(G)+m 1)
Thus the result is sharp.

We now consider a generalization of this result to p-sets of independent
vertices, 1 = p = {G). We define

o, = min(z deg(v)),

veP

pG)=1=

where the minimum is taken over all independent sets P = V(G) such that
|P|=p.

Theorem 4. If G is a K(1, m)-free graph of order n such that o, = px, for some p
with 1< p = 8(G), then
(m—1)m

B(G)Sx+m—1'

Proof. Let 8{G) =1t As before, let T be a set containing the maximum number
of independent vertices, and let S contain the remaining vertices. Then
|§| = — . We will enumerate edges between the sets T and S by using the p-sets
of vertices,
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Since T is an independent set, the total number of edges out counting by p-sets
is at least (,,) px. But the degree of each vertex in 7' is counted an additional
»—3)—1 times since each vertex appears in (_}) p-sets. Thus since G is

K(1, m)-free,

(or=[(1 1) -1)(S es) ==

But )i, .rdeg(v) < (n — t}(m — 1), which gives

(Yoe-[(* 1) = 1] -00m - 1= m -1

P pr—1
Whence,
t) (t—l)
xs=(n—t}m—1 .
() pe==nom-('~
Simplifying,
t(t—l) (t—l)
- x<=s(n—t{m—1
lpo1/P (n—2)( )p_l

which gives
x=m-1)n-s(m-Dn—(m—1)x

so that
g M=
x+m—1
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