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| Abstract

Paul Seymour conjectured that for any posiltive inteizor k that any graph G

3

of order n and minimum degree at least %+ ] contains the Kt power of ax.

Hamittonian eyele, We will give some evidence 1o support this conjecture
by showing for k =2 that for any £ > {, there is a € » € (©) such that if ¢

i

has order 1 and minimum degree at least QL?-S—H +C, then G has a square

of a Hamiltonian cycle. In fact, we will show that betiveen each pair of
vertices of the graph G there s a square of a path of length f for cach 3 =7
<. A corresponding result for general ks also given - for any givene > 0,
there is a C = C (g,4) such that if G has order n and minimal degree at

{1+6)(2k-1)n
2

least + C, then G conlalns the ki power of a path of

length j between cach pair of vertices for cachk+1 i<,
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1. Introduction
Let C, denote a cycle with n vertices. A chord of length k in
- Cy is an edge between two vertices that are at a distance k in C,
Lot C: denote the graph obtained from C,, by adding all chords

of length at most k. Thus in C’;, which we will call the kt*

power of C,, a pair of vertices are adjacent if and only if the
distance between them on the cycle is at most k. If a graph G of

order n contains a copy of a Cf‘, we will say that G contains the
kb power of a Hamiltonian cycle.

The following was conjectured by Paul Seymour [3].
Conjecture (Seymour), If G is a graph of order n with minimum

degree 8 (G) ekk+n1 for some positive integer k, then G contains

the k' power of a Hamillonian cycle.

Lot K,,]' Py veor i, denote the complete r-partite graph with

vertices in part 4. Thus, K,,], Mgy oo A, is a graph with n '_'@/7, +Hy Lo+ ﬂr‘
vertices, and if ny Sny 5., < m,, then the minimum degree is
n-n, Any cycle Cin K,ll #y, ..., n 0 Which all of the chords of

’ s oena Thy

length at most 7 - 1 of the cycle C are in the graph Ku.. g vons )

must have no pair of vertices from the same part within a

distance less than 7 on the cycle. Thus in the cycle C every<rt .
vertex will come from the same part. It follows that the longest :

(r - 1) power of a cycle in K isrmy W"‘_{\O

An immediate consequence of the previous observations is
that any complete (k + 1)-partite graph conlains the kt power
of a Hamiltonian cycle if and only if cach of the parts have
precisely the same number of vertices, Thus, any complete

ﬂl, nz, ing ﬂr

(k + 1)-partite graph with minimum degrec less than Ek:l—] will
not contain the k** power of a Hamiltonian cycle. Thus, if the

Conjecture of Seymour is true, it is the best possible result of this
type.

The special case of the Seymour Conjecture when k =1 is that
any graph of order # and minimum degree atm/g_gfnﬁ containsa  [eest

]
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Hamiltonian cycle. This is, of course, the well known result of
Dirac [1].

" Closely related to the existence of Hamiltonian cycles in a
graph are other Hamiltonian properties, such as Hamiltonian
connected (the existence of a Hamiltonian path between ecach
pair of vertices of the graph), and pancyclic (the existence of
cycles of each length). With the objective in mind of
investigating other Hamiltonian properties related to kt*
powers, we describe the following specialized notation,
Notation not specifically defined will follow that of [2].

e
If P, is a path with n vertices, then Pz will denote the @f—@

power of P, which means that a pair of vertices are adjacent if
and only if their distance in P, is at most k. By a k-path of
length I between a pair of vertices  and v in a graph G, we will
L;XI N mealgggpm&%éstarﬁng at # and ending at v. A graph G of
Lo order n is k-panconnected if for each pair of vertices of G, there

is a k-path of length I for cach k + 1</ < n, and it is k-
Hamiltonian connected (k-Hamiltonian) if 1t contains a k-path

of length n - 1 between cach pair of vertices (a C‘ﬁ). Agraph G is
k-pancyclic if it contains a Cf foreach3<!<n.

We will prove the following results. The first deals with

the case of squares of paths and cycles in graphs,

L Y
~

Theorem A, For anye > 0, there is a C = C (e} such that if Gis a

graph of order n 2 3 with minimum degree 8 (G) » (—1—*‘—:)—3& +C,
then G is 2-Hamiltonian connected, 2-panconnected,
2-Hamiltonian, and 2-pancyclic.

The previous result is a special case of the following more
general result,

Theorem B. For any positive integer k 2 3, and any € > 0, there is
a C =C (e, k) such that if G is a graph of ordern 2 k + 1 with
“minimum degree 8 (G) 2 (Lt e) (22:— Dn + C,then G is

k-Hamiltonian connecled, k-panconnected, k-Hamiltonian, and
k-pancyclic.




5, ;‘\I.S,
o
L

R.J. Faudree et at], Seymour’s Conjecture 165

2. Results '

Before starting the proof of Theorem A, we introduce one
additional item of terminology that will be needed. By a 2-
path of length I between a pair of edges uv and xy in a graph G,
we will mean a copy of a P!2 such that the first two vertices of

the path are u and v respectively, and the last two vertices are
x and y respectively. Of course, if there isuZ-path of the length |
between v and xy, there is certainly such a 2-path of length [
between # and y. We will say that a graph G of order n is edge 2-
. panconnected if there is a 2-path of length [ between cach pair
of independent edges of the graph for cach 5 < 1< n -1, We are
now prepared to prove the following,

Theorem 1, For anye > 0, there is a C = C (e) such that ifGisa
Vo 1

graph of order n 2 4 with minimum degree 5 (G) 2 (_ii)_3’}. +C,

then G is edge 2-panconnected. Thus, G is 2-Hamiltonian

connecled, 2-panconnected, 2-Hamiltonian, and 2-pancyclic,

Proof. The proof will be by induction on 1 the order of the graph.
Note that if n g -1-4%2-, then the graph G is a complete graph,
~and the result follows trivially. Therefore, we can assume that

"1 3 e

Assume G does not have the required property, but the
addition of any edge will give the property. Let uyu; and vyvs be
a pair of independent edges for which for some f there is no 2-
path of length t connecting them, We will show that ¢ > 4C, but
first we will show that there is a 2-path of length 5. Because of
the minimum degree, we can select a vertex w that is adjacent
to uy, up and vy and distinct from v,. Again, using the minimum
degree, we can find an additional vertex w, that is adjacent to
#3, wy, vy and v;. This gives a 2-path of length 5. Now using the
edges 1wy and vyv;, one can repeat the procedure avoiding the
vertex uq to obtain a path of length 6, This procedure can be
continued until a 2-path of length at least 4C is obtained, since

8(G) > 3n/4 + C implies that any four vertices have more than C
common neighbors,
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Let P be a 2-path of maximal length, say with m vertices,
between uju; and vyvy such that all shorter paths exist. We can
assume that m > 4C, Let H be the subgraph of order n - m
obtained from G by deleting the vertices of P. The maximality
of P implies that no vertex of H can be adjacent to 4 consecutive
vertices of P, Therefore, each vertex of H has at most

3 +i-(-r%1§-) = 3 (m + 1)/4 adjacencies on the path P, Thus, 8(H)

230 +em/4+C-3(m+1)/423 (1 +e){n-m)/4 + C, since

m>4C ::--:: . This implies, by the induction hypothesis, that the
graph H is edge 2 - panconnected.

To complete the proof we will need to consider three cases,
that depend on the magnitude of m.

Casel.m<s(n+3)/2.

~ Select a vertex u3 in H that is adjacent to both u; and u,.
Since u, has less than /4 nonadjacencies in H, and uj has less
than (n - m)/4 nonadjacencies, there is a vertex u, that is
adjacent to both u; and 5. By the same reasoning, there are vy
and vy in H such that v; is adjacent to v,, v, and vy, and vy is
adjacent to vy, Also, all of these vertices are distinct, This gives
two “links” between u;u, and v;v, and the graph H.

In the graph H there are 2-paths from u,u; to vav, of cach
length from 5 to n— m ~ 1. Thus, using the “links” just described,
there are 2 - paths from uyu, to v,v, of each length from 9 to

n—-m+ 3. Hence, n—m + 3 <m, and so we can assume that m 2
{(n+3)/2.

Case 2,{n+3)/2<m=2n/3.

We will count the number of edges of G between H and the
path P. Each vertex of H has degree at most (1 - e)n/4 - C in G,
so there are at most (1 —m) ((1 - e)n/4 ~ C) < (11 - m) n/4-0)
edges in G between Hand P.

Just as in Case 1, we next consider the possibility of “links”
using pairs of consecutive vertices of P and adjacent vertices of
H. If there are two such “links” using two pairs of vertices that
are a distance less than n - m, then we can, just as in Case 1,
generate 2 - paths between ;4 and vyv, longer than m. Thus, we
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can assume that the number of pairs of consccutive vertices that

support such “links” is small, in fact no more than two disjoint
_ones can exist,

If a vertex w of P is adjacent to more than t = (1 - £)n/4 —C) +
((1-¢) (n~m)/4 - C) vertices of H, then there is a “link” using w
and either of the vertices on the path adjacent to w. Thus, we
can assume (with at most two exceptions) that w is nonadjacent
toatleast n—m — > (2n~3m)/4 + 2C vertices of H. If a pair of
consecutive vertices of P have no common adjacency in H, then as
a pair they will have at least n ~ m nonadjacencies in H. If they
have a common adjacency, then there will be a “link” unless one
of them has n ~m - ((1-¢e) (n-m)/4-C) >3 (n —m)/4 + C
nonadjacencies, Therefore, if there is no “link” associated with
the pair, they will have at least 3 (n-m)/4 + C +Q2n-3m)/4 +

2C = (51— 6m)/4 + 3C edgdof G in to H. Therefore, using the &

upper and lower bounds on the number of edges in G between P
and H, we have the following inequality :

m 5n - 6m n
(—2-—2)( 3 +30)<{n-m) (4-—C).

This is equivalent to the incquality :

%(Zri =3m) 2m—-n)<(Bn-6m)/2—{n-m+ 6)CZ——“M{ @

However, for n/2 <m < 2n/3, the left hand side of the above
inequality is nonnegative and the right hand side is negative

for C large. This gives a contradiction, so we can assume that
> 2n/3.

Case3.m>2n/3,

Each vertex in H is adjacent to at most 3 (n + 1)/4 vortices of
P, therefore we have

(HI )3(1:s)n+c\ﬂ‘@(nz+l).

This gives that 1H! >3 [HI/4 + 3 (en -1/4 + C, and so
IHI >4@En-1)/4+C) 23en+4C-1.

As in the previous cases, the number of edges in G between H
and Pis at most (n ~m) (1 -€) n/4 - C) < (r—m) (n/4-C). Also,
as in the previous case, we consider the “links” between P and
H. If there are two “links” using pairs of vertices closer than

N
-
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2 —m, then the value of m is not maximal, Therefore, the number
of pairs of vertices for which there are “links” is at most
m/{n—m)+1<n/(3en) = 1/3e. For any pair of consecutive
vertices on P for which there are no more than (1 —m) - ({1 - ¢)
(n=m)/4 - C} nonadjacencies in H, there will be a “link”, Hence

we can assume that there are at least (m ~ 1§)/ 2 pairs of vertices
on P incident to at least (n—m) - (1 -e) (n~m)/4 - C) > 3 (n -

m)}/4 edges of G into H. Therefore, the number of edges of G

-1/(3
between P and H is at least ("4°2) (3 (4 ~ m)/4). This gives

the following inequality involving the upper and lower bounds

onthe number of edges of Gbetween Hand P |
m=-1/@3e), 3(n-m)

( 2 ) ( 7 ) <-m@n/4-0).

[

However, this is equivalent to the following inequalit){.}'—/\ P

%(3m—2n)(n—m)<(n-—m)(é1;—C).

Each factor in the left hand side of the above inequality is
nonnegative for 2n/3 £ m <n, and the term on the right is
negative. This gives a contradiction, which completes the proof
of this case and the fact G is edge 2-panconnccted.

All that remains is to prove the existence of the appropriate
2-cycles in G. Since the minimum degree condition implies*that
G contains a complete graph Kg (sce {4]), there are the
appropriate cycles of length at most 5. To obtain the longer
cycles, note that if the initial vertices u,, u,, vy, vy form a
complete graph Ky, then the 2-path from uy u, to v; v, with m

vertices is also a 2-cycle of length m, This completes the proof of
Theorem 1. O

Il one is only interested in 2-Hamiltonian paths and cycles in
G, and not paths and cycles of cach possible length, the proof
techniques used in Theorem 1 can be used to prove a slightly
stronger result, With a considerable increase in tedious
arithmetic and an extended case analysis, the minimum degree
condition of Theorem 1 can be reduced to just 8(G) 2 3n/4 to get2-
Hamiltonian paths and cycles, However, this still exceeds the
conjectured value of Seymour of 8 (G) 22n/3.
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Before discussing the proof of Theorem B, we need an
additional item of terminology. By a k-path of length I between
a pair of disjoint complete subgraphs A = {a,, y, ..., @) and B =
{by, by, ..., by} with k vertices in a graph G, we will mean a copy
ofa P:‘ such that the first k vertices of the path are a4, ay, ..., a;

respectively, and the last k vertices are by, by, ..., b,
respectively. Of course, if there is a k-path of length [ between
A and B, there is certainly such a k-path of length | between g,
and by, We will say that a graph G of order n is Ky k-
panconnected if there is a k-path of length ! between each pair
of disjoint complete subgraphs of the graph for cach 2k~ 1< <
n—1. We are now prepared to discuss the following,

Theorem 2. For any positive integer k > 3, and for anye > Q,

there is a C = C (e, k) such that if G is a graph of ordern z 4
1 2k~ 1

with minimum: degree 8 (G) 2( A a)z(kk AL +C, then G is K,

k-panconnected. Thus, G is k-Hamiltonign connected, k-

panconnected, k-Hamiltonian, and k-pancyclic.

The proof of Theorem 2 has the same outline as that of
Theorem 1. Only the arithmetic is different. Let P be a maximal
length k-path in a graph G between two complete subgraphs for
which there are not k-paths of every possible length, and let H
be the subgraph induced by the remaining vertices of G. The
graph H can be shown to satisfy the same minimum degree
condition as G. Let m be the length of this 1naximal length path
P. In this gencral situation, there are also three cases to be
considered. When m <n/2, “links” are built between the two
complete subgraphs at either end of the path P and the graph
H. Then the panconnected properties of the graph H are used, In
the last two cases, n/2 < m < kn/(2k - 1), and m 2 kn/(2k — 1),
* cither there exists appropriate “links” between H and two
pairs of k consecutive vertices of P that are sufficiently close on
P, or a count on the number of edges of G botween Pand Hgives a
contradiction. Because of the similar naturc of this proof to that

of Theorem 1, we do not include the details here, but leave them
to the reador.
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3, Questions

The question left by the Conjecture of Seymour is still open,
since the lower bounds on minimum degree used here exceed the
conjectured bounds. Related to the Conjecture of Seymour, is the
question of the minimum degree needed to insure that a graphis

k-panconnected or k-pancyclic, In particular, is it true that a
graph G of order n and minimum degree § (G) zkI:-nl + C is%k-

panconnected and k-pancyclic? It is possible that C = 0 will
suffice for the k-pancyclic property,
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