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Absh:act

The rotation number h (D) of a dlgraph D of order p-is the minimuam- .
number of arcs in a digraph F of order p such that for every vertexx of D .
and eévery vertex y of F, there ‘exists an embedding of D in F with x at ¥
- ‘The rotation number is determined for all asymmetric digraphs ‘whose:
-underlying graph is-a star and studied for. tournamients as well .as for
_ asymmetric digraphs whose underlying graph is a cycle.

1. Intro ductmn ,

For a graph G of order p rooted at a vertex x, the- rotatwn.
number h (G, x) of this rooted graph is the minimum size of a
graph F of order p such that for every vertex y of F, there exists
an embedding of G in F with x at y. The notation k in h (G, x)
indicates that-G.can be homogeneously embedded in F.
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This concept was introduced in 1980 by Cockayne and Lorimer
[5] and emanates from a problem in broadcasting. Rotation
numbers have been investigated for complete bipartite graphs
[1, 5], unions of cycles [2, 3], unions of stars [7], a class of rooted
graphs [8], generalized stars [6] and unicyclic graphs containing
exactly one bridge [4].

For a graph G of order p that is not rooted, the refation
number h (G) of G is the minimum size of a graph I' of order p
such that for every vertex x of G and cvery vertex y of F, there
exists an embedding of G in F with x al y. For example, h (G) =9
for the graph G of Figure 1. The unique graph I of size 9 in
which G can be homogeneously embedded is also shown in
Figure 1.

GY F;@

) Figure1
Rotation numbers for digraphs can be defined similarly. Let
D be a digraph of order p rooted at a vertex x. A homogencous
superdigraph of D is a digraph H of order p such that for every
vertex y of H, there exists an embedding of I} in H with xaty. A

homogeneous superdigraph of minimum size {s called an

optimal digraph for the rooted digraph ID. The rotation number
h (D, x) of this rooted digraph D is then defined as the size of
an optimal digraph for D. For example, if D is the digraph of
Figure 2, then h (D, x3) = 4 while h (D, x,) = 6. Oplimal
digraphs F; and F, for D at x| and 1y, respectively, are also
" shown in Figure 2.
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In the case of a digraph D of order p that is not rooted,
homogeneous superdigraphs and optimal digraphs for D are
defined similarly. Then the rotation number h (D) is the size of
an optimal digraph for D. For the digraph D of Figure 2, it
follows that h (D) = 6.

If D is a vertex-transitive digraph, then h (D) equals the
size ¢ (D) of D. We define the rotation ratio r (D) of a digraph
h (D)

D bym - Then r (D} 2 1 for every digraph D, and r (D) = 1 if

and only if D is vertex-transitive. Thus, r (D) provides a
measure of the symmetry of D, with the more symmetric
digraphs having a rotation ratio close to 1.

2. Rotation Numbers for Stars

When we refer to a star in digraph theory, we mean an
asymmetric digraph whose underlying graph is a star. We
write S, (m) to indicate a star with n arcs, m of which are
directed outwardly from the central vertex (see Figure 3).

Sp{m}

Figure3
In what follows, the following two well-known theorems
from graph theory will be useful (see [9, pp. 216-217]).
Theorem A.Ifp (2 3) is odd, then the complete graph K, can be .
factored into E;;_;—1}mr;ru'ltom'.un cycles.

Theorem B, If p (22) is even, then the complete graph K, can be -
- p-2
factored into Lz-ham-iltonian cycles and a 1-factor.
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Theorem 1, Let D=5, (m) where n = 1. 1f x is the central veriex
of D, then '

HD, = [rriax (m,n-m}l (n+1).

Proof. Assume, without loss of generality, that m2n—~-m. We
show that & (D, x) =m ( + 1). Let H be:an optimal digraph for
this rooted digraph. Because D has order n + 1, so does H. Since
for every vertex y of H, there exists an embedding of D in H
with x at y, the outdegree of each vertex of H must be at least m.
Thus, H has at least m (n + Darcs;s0 h (D, x)zm (n +1). To
complete the proof, we show that there exists an optimal
digraph F for D containing exactly m (n + 1) arcs. This is
accomplished by showing that there exists an m-regular
digraph D (every vertex has outdegree and indegree m) of order
n+l ' ‘ L

Since m 2 n —m, it follows that m 2 % Suppose first that » is
even. Since 1 + 1 is odd, the complete graph K, , 1 can be factored

" .
into 5 hamiltonian cycles Cy, C, +-s Chy. For eachi=1,2, ..., g, let

2
C/ be a directed cycle obtained by cyclically directing the edges
of C;, and let C{’ be the directed cycle whose arcs are directed
oppositely to that of C/. Thus the complete symmetric digraph

K ; ,qcanbe factored into the cydles Cy', Gy, ..o) Cs Cy" G v
2
C,". The digraph F consisting of m of these cycles is m-regular

z
and is therefore optimal for D.

Next, suppose that nis odd. By Theorem B, the complete

. -1 .
graph K, , 1 can be factored into P—z—- hamiltonian cycles
Cy, Ca, - Cu—1 and a I-factor F;. Let C/ and C;” (1<isg E%l-)

2 R
be as defined above. Define F to be that digraph consisting of m
of the cydles Cy’, Co's +es Cu-1"s Cy”"Cy"s s Cp1” ifm <,

] 7
while define F to be the complete symmetric digraph K, if

m=n. : D

We now consider 2 (S, (m), x), W.

Theorem 2.Let D 25, (m), where
outdegree 0, then -
K(D,0= |
Proaf. First we show that h(D,>
digraph for D. Then F contains 2 |
S, (m). Letcbe the centre of H. Tht -
where m > 1 —m. Since D can been :
exists a subdigraph Hi= S, (m) .
centre of Hy by ¢1. Thus (cy.c)isan .-
Suppose that (¢, ¢q) is an arc
vertices of F (different from¢) adja
vertices (including ¢} adjacent frc .
jeast  arcs that do not belong toF
Suppose now that (c,cy)is T
contain at least n — 1 arcs that do
additional arcs directed away fr
toward ¢;. If, however, these wel
embedded in F with x at ¢y, ther
available for the centre in this

one more arc must be added to pr
That h (D, x) = 2n follows

homogeneously embedded in th

Figure 4. ‘




Advances in Graph Theory

" G. Chartrand et al, On Rotation Numbers for Digraphs 107
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We now consider k (S,, (m), x), where x is not a'central vertex.

Theorem 2.Let D =S, (m), wherem >n —m. If x is a vertex of

outdegree 0, then

h(D, x) = 2n.
Proof. First we show that k (D, x) = 2n. Let F be an optimal
digraph for D. Then F contains a subdigraph H isomorphic to
S, (m). Let c be the centre of H. Thus odyc =m and idyc =1 —m,
where m > n —m. Since D can be embedded in F with x at ¢, there

_exists a subdigraph Hy = S, (m) of F with x at'c. Denote the

centre of Hy by ¢;. Thus (c;, ¢} is an arc of F.

Suppose that (c, cq) is an arc of H. There must be n —m A

vertices of F (different from c) adjacent to ¢y, and there must be m
vertices (including ¢) adjacent from cq. Thus, F miust contain at
least n arcs that do not belong to H;soh (D, x) 2 2n.

Suppose now that (¢, ¢7) is not an arc-of H. Then F must
contain at least n — 1 arcs that do not belong to H, namely m - 1
additional arcs directed away from ¢ and n — arcs- directed
toward cy. If, however, these were the only arcs of F and D was
embedded in F with x at ¢, then there is no in-neighbour of ¢
available for the centre in this embedding. Therefore, at least
one more arc must be added to produce F, so h (D, x)22n

That k (D, x) = 2n follows by observing that D can be
homogeneously embedded in the digraph F of size 2n shown in
Figure 4. O

Figure 4
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Coroliary. Let D = S, (m), where n—m > m. If x is a verfex of
indegree 0,-then
h (D, x) = 2n.

Theorem 3, Let D= Sy (m), wheren -m 2m. If x is a verfex of
-outdegree O then : :

h(D, ) =3n-2m+1.

Proof. First-we show that h (D, x) 231 — 2m + 1. Let F be an
optimal digraph for D. Then F contains a. subdigraph H
isomorphic to S, {m). Let ¢ be the centre of H and let § be the set
of vertices of H ad]acent to ¢. Thus 151 = n —n. By hypothems,
‘can be embedded in F with x atc. Let H; = S, (m) be a
subdigraph of F with x ate. Denote the centre of Hl by c1- -

.. Suppose, first, that (c,.c1) is an arc of H. Thus, ¢y & ,,S .InF

there must be m arcs directed away from ¢y, one of which is -

directed toward ¢, and n —m ares directed toward ¢;.

Letk. be the number of vertices of § that are ad]acent to €1 in

H. Thus, n -2m +1sksn-m.IfDis embedded in F with
x placed at any of these k vertices of S, then an additional arc
directed toward it is required. Thus, the size of F is at least

2n + k. ‘Since k = n — 2n + 1, it follows that the size of Fis at .

least 2n'+ (n =2m+ 1) =3n - 2m+1thatxs,h(D x23n- 2m+1

Next, suppose that {cy, ¢) is an arc of H, thatis, ¢y € 5. In F
there must be m arcs directed away from ¢j, including (c4, ¢), and
n —m arcs directed toward c;. -

Agam let k be the number of vertices of S that are adjacent
to ¢jin H. Thus, n.—2m + 1 Sk < n-m. 1f D is embedded in F with
x placed at any of these k vertices of S, then an additional arc
directed toward it is needed. "“Thus, the size of F is atleast 2n — 1
+ k. Suppose D is embedded in F with x at ¢y, and let H, =
with x at ¢;. At least one additional arc is required for th1s
embedding, so that the size of F is at least 2n + k. Here too then,
hD,x)23n- 2m+ 1.

That h (D, x) = 3n - 2m + 1 follows from the fact that there
exists a homogeneous superdigraph H for D of size 3n =2m + 1
- (see Figure 5). O
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Corollary. Let D = §,, (m), where n—-m <m.lf x is a vertex of
indegree 0, then
h(D,x)=3n-2m+1.

Combining all the foregcﬁng {ésu]ts, we have the following.
Theorem 4.1f D = §,, (m), where n 2 3, then
h (D} = [max (m, n —m)] (n + 1),

According to Theorem 4 then, if D is a star of size n, then the
Totation ratio r (D) satisfies the inequalities

n+1l
2

< r(D)<n+l,

3. Rotation Numbers for Cycles

We call an asymmetric digraph a cycle if its underlymg
graph is a cycle. A directed cycle of order n will be denoted by
n° ‘

Although normally we consider rotation numbers for rooted
and unrooted d:graphs, the following observation shows that
only the rooted version is interesting.

Theorem 5. Lef a digraph D be a cycle of order n. Then h (D) = n
ifD= ?n, and h (D) = 2n, otherwise.
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Proof. If D = ?n, then D itself serves as an optimal digraph.

If D is not isomorphic to 8,,, then D has a vertex of outdegree
2. Therefore, an optimal digraph has at least 2n arcs, and h (D)
> 2. On the other hand, the symmetric cycle C; is an optimal

digraph for D of size 2n, so h (D) < 2n. [l

By Theorem 5, if D isa cycle then either r (DY =1or? (D)=2.

In the same manner; one can show that for the rooted version,
h (D, x) = 2n whenever x has indegree or outdegree equal to 2.
Consequently, we henceforth consider cycles rooted at x with
od x = id x = 1. For such cycles, the following notation will be
useful. Starting from the selected vertex %, while proceeding
around the cycle in some direction, we denote each arc by “w”
(with) if it is consistent with the direction of the travel, or by
“g” (against), otherwise. For example, the pattern (wwawaw)
denotes the cycle D in Figure 6. :

D: (wwawaw)

Figure 6

In general, if D is a cycle not isomorphic to E’,,, thenn+1<
h (D, x) € 2n. However, for some special patterns, a better lower
bound is possible. :

Theorem 6. If D is a rooted cycle of order n with the pattern
twa ... w)or (w ... aw) at the vertex x, then h (D, x) 2 T

Proof. Let F be an optimal digraph for D. For every vertex v of F,
we have od v 21 and id v 2 1. Suppose that there is a vertex v in
F such that od v = 1 and id v = 1. Assume, without loss of
generality, that the pattern for D at x is (wa ... w). Therefore, if
X =g, Uy, U er Dpog are the vertices of the cycle D, then

G. Chartrand et al, On Rotation Nur |

: (0,1, %), (x, vp) and (02, v,) are arcs

by y and z the unique vertices of F
(see Figure 7).

V2
V0=X

v

n-1

Figure

Suppose that thete exists an en
The vertex v, _ 1 cannot correspory
cEMand(w, ek (F). Theref
Then, however, Uy musf corresp
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From the above observation,

v of F,odv+idv23 and, consequ

The lower bound given by Th
us consider a 4-cycle D given by
8). Its optimal digraph F has siz

D: (waaw)
X

Fig

In general, for a 4k-cycle D
(waawwaaw ... waaw), kK rej
" digraph has size 6k and may b
arc for every second arc of the
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igraph for D. For every vertex v of F,
1. Suppose that there is a vertex v in
id » = 1. Assume, without loss of

for D at x is (wa ... w). Therefore, if

the vertices of the cycle D, then

(w,_1, %), (x, v) and (vp, vq) are arcs of D (see Figure 7). Denote
by.y and z the unique vertices of F such that (y, v), (v, z}e E(F)

(see Figure 7).
. v
\ Yy Az

Figure 7
Suppose that there exists an embedding of D in F with x aty.
The vertex v, _j cannot correspond to the vertex v, since (0, _1 x)
¢ E (D) and (v, y} € E (F). Therefore, vy must correspond to v.
Then, however, v, must correspond to z, which is impossible
since (v, vy) € E (D) and (z,v) ¢ E (F).
From the above observation, it follows that for every vertex

L 3n
vof F,odv+idvz3 and, consequently, 4 (F) = > O

“The lower bound given by Theorem 6 is sharp. To see that, let
us consider a 4-cycle D given by the pattern (waaw) (see Figure
8). Its optimal digraph F has size 6.

D: (waaw) _ F:
. X

_ Figure 8

In general, for a 4k-cycle D (k = 1,2,3, ...) given by a pattern

(wagwwaaw ... waaw), k repetitions of waaw, an optimal

" digraph has size 6k and may be obtained by adding the reverse
arc for every second arc of the digraph D.
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Finding the exact value of a rotation number for a cycle seems
to be quite difficult, even for cycles with only one arc reversed.
For small values of n,a computer search has been performed and
the results are summarized in the following table.

sizeof D pattern of D h(D, 2} number of optimal
digraphs
5 (wawww) | 10 22
5 (wwaww) 9 . 5 (all isomorphic}
6 (wawwww) 12 37
6 (wwawww) 12 34
7 (wawwwww) 14 ?
7 (wwawwww) 14 ?
7 (wwwawww) 13 7 (all isomorphic}

Table. Rotation number for cycles with one arc reversed

We believe that the following conjecture is true.

 Conjecture. Let D be a cycle of length n obtained from a directed
cycle by reversing one arc. Let D be rooted at a vertex T with

odv=idv=1L
(a) If nis even, then h (D, x) = 2n.

(b) Ifnis odd, then h (D, x) =21 — 1 whenever the. reversed
arc lies opposite to X, and h (D, x) =2n, otherwise.

Moreover, the only optimal digraphs for the case. with
h (D, x) = 2n — 1 are digraphs obtained by removing one arc from

the symmetric cycle C;.

4. Rotation Number for Tournaments

" A tournament is a digraph obtained by orienting the edges of
a complete graph. If T is a tournament of order p, then its

rotation number h (T) must lie betweet. lz-p (p-Dandpp-D- A

natural question arises : What are the possible values for
rotation numbers of tournaments ? :

Theorem 7. If k and p are positive integers such that rL;—l'—l <

k<p-1 then there exists a tournament T of order p with
h (T) = kp.

G. Chartrand et al, On Rotation Num

Proof. Assume first that p is odd. Su
tournament with V (T = o v1, -

E (T if and only it 0 < (j -1 (mod
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vertices {(see Figure 9, where only
vertex ¥ are shown). Since Tg ¥

optimal digraph for itself. Thus h (

.Flgm
-1
Suppose next that k =E—2“

.|
Vg Vp-1r that is, T is obtained frc

of the arc (Tp _1/ pg). Since od

h(Tpz %p (p +1). On the ott
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e Vp =10 Y0 is a homogeneous &

1 1
"z-p(p—l)+p=—2'p(prr1)=pk.
For higher values of kwet
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obtained by orienting the edges of
1 tournament of order p, then its

» betweer. %p (p-Dandp@p-1. A

vhat are the possible values for
ots ?

sitive infegers such that I—L;—l-] <

a tournament T of order p with

' -1
Proof. Assume first that p is odd. Suppose k =}72_ -LetTpbea
tournament with V (Tg) = {vg, vy, .-, 5 _ 1) a;\'d where (v;, ) €
E (Tg) if and only if 0 < j 1) (mod p) <P5= Therefore, Ty is
-1
vertex-transitive and each vertex is adjacent to and from P_z__

vertices (see Figure 9, where only the arcs incident with one
vertex v, are shown). Since Ty is vertex transitive, it is the

1
optimal digraph for itself. Thus & (Tg) =5p {p - 1) = pk.

Figure 9

-1 ) ‘
Suppose next that k = Ez— +1. Define Ty 2Tg-v, 1%+
U V,_y thatis, Ty is obtained from T by reversing the direction

+ 1 :
of the arc (v _ 1, vp) Since od vy = PT- , the rotation number

h (TP z %p (p + 1). On the other hand, a digraph F obtained

from T by adding the reverse arc for each arc on the cycle vy, vg,

Uy -1, V0 is a homogeneous superdigraph for T1, and hgs size

1 1
splp-D+p=5pp+D=pk

For higher values of k we use a similar method, namely for
k= L;—I + 7, we reverse the last r arcs incident to the vertex .

Then the outdegree of vy forces the rotation number of the
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Eg'l} r |. An optimal

digraph for T, can be obtained from Ty by adding to each arc of
the form (v, v]-), when 1 € (i —j) (mod p) <7, its reverse arc. Such

obtained digraph T, to be at least p

1
a digraph has also size 5 p (p-1) +rp=pk
For p even we use a slight modification of the previous

-1
construction. If k = I_'U—z—_l =§ then the tournament T h_asg

vertices of outdegreeg {namely vg, v, V3, ..., Vp
F-1

-

e

vertices of outdegree 5 — 1 (namely vg_, c+s Ty _1)- On the “main
diagonals” we have arcs (vg, v,), (01,0, ), .., (U 0, _q)-
2 3l z-1
Other arcs are directed in the same manner as for the case with
p odd. An optimal digraph for T is obtaingd by adding “main
diagonal” arcs, that.is, the arcs (v, vg), (wg'+ e Uy wens (U 1
2 2

vp ). Therefore,
7-1

1
h(TY=5p@-D+5 = p-L=pk
For larger values of k we construct the corresponding
digraphs from T as in the case with p odd.

By Theorem 7, the rotation ratio of every tournament lies,
between 1 and 2. In fact, every rational number in the interval
{1, 2] is the rotation ratio of some tournament. In order to see

this, let r be a rational number such that 1<+ <2. Thenr=1 +bE’

where b is a positive integer and 4 is an integer such that
0<a<bh. Definek=a+bandp=2b + 1, and observe that

-1 ‘
I—%.-l <k <p - 1. By Theorem 7, there exists a tournament.T .

of order p such that 4 (T) = kp. Thus,
h(D) _2%p 2k 2a+2b
(g) “plp-1) " p-1" 2b

r{(T) =

=1+b£=r.

)and%_

It is natural to ask whether s
mentioned in Theorem 7 are attair
tournaments. The next example
possible.

&

Figur

Let T be a tournament of order !

of orders 4 and 3, where every V¢
order 4 is adjacent to each vert
order 3. Figure 10 illustrates th
guarantees. that the numbers
‘numbers of some tournaments
tournament T of Figure 10, k (T} :

Recall that the vertex set
partitoned into subsets such
induced by each subset is strong ;
property of being strong. Thest ;
can be ordered in such a way t |
vertex in $; is adjacent to each v |

We now examine when a 1
maximum outdegree (indegrer
E(T)=p (@ - 2). The |
characterization of such tourna
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-1 .
at least p(Lz—& r) . An optimal

:.i from T by adding to each arc of
7} (mod p) <7, its reverse arc. Such
-1} +rp =pk.

rht modification of the previous

= g then the tournament Tolhasg

nely vg, v1, v3, ..., Up ) and g _
z~1 2

-

imely Vpr o Uy 15 On the “main
B

v, (W, vy ), . (0, 0
R S G NP p-1-
same manner as for the case with

" Ty is obtained by adding 2 “main

cs ('og, vg), (v%”,vi), ...,'(vp_l.,

E_
-1)+2 = pg:pk.
'e construct the corresponding
¢ with p odd.

n ratio of every tournament lies,
'y rational number in the interval
'ome tournament, In order to see
a
'b_;
r and 4 is an integer such that
W p=2b + 1, and observe that

suchthat 17 <2. Thenr=1+

‘em 7, there exists a tournament. 7

It is natural to ask whether some values other than those
mentioned in Theorem 7 are attainable by a rotation number for
tournaments. The next example shows that this indeed is

possible.

T:

Figure 10

Let T be a tournament of order 7 having two strong components
of orders 4 and 3, where every vertex in the strong component of
order 4 is adjacent fo each vertex in the strong component of
order 3. Figure 10 illustrates the construction of T. Theorem 7
guarantees that the numbers 21, 28, 35, and 42 are rotation
numbers of some tournaments of order 7. However, for the
tournament T of Figure 10, h (T) = 36.

Recall that the vertex set of every tournament can be
partitoned into subsets such that the digraph (tournament)
induced by each subset is strong and maximal with respect to the
property of being strong. These strong components 51, Sg, .-, Sk
can be ordered in such a way that whenever 1 <i< j<k, every
vertex in §; is adjacent to each vertex from 5.

We now cxamine when a tournament T of order p having
maximum outdegree (indegree) p — 2 has the rotation number
h(T)=p (p - 2). The following theorem gives a
characterization of such tournaments.
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Thearem 8. Let T be a fournament of order p, maximum outdegree
(or indegree) p — 2, and strong components S1, Sg, wous Sy Of orders
P1s P2 - Pies respectively. The rotation number h (TY =p (p -2}
if and only if the following two conditions are satisfied:

(1) There exist -integers vy, 72, -« Tn (r} > 3) and positive
integers b; G=1,2.,mi=1 2, ..., k) such that for every

i=12, ..k ,
n

= i,

p; = Zb]r].
j=1

(2) Ifp;= bi 12 b;rz + o +bi‘rn, then for every vertex u of 5;
and for every number r; the disjoint union

bi?r-l+ h;?r; ...+bi€

of cycles is a subdigraph of S; where the vertex u lies on
some rfcycle.

Tn

Proof. Suppose that h (T) =p (p - 2) and F is an optimal digraph
for T. Then F is (p — 2)-regular and its complement F is 1-regular,
which means that F is a disjoint union of directed cycles. The
fact that for every x e V (T)and-everyy € V(F) the tournament
T is embeddable in F with x aty’ is equivalent to F being
embeddable in T with y at x. Since T is obtained from T by
reversing all arcs, T has the strong components. of the same order
as T has, namely the components'Sl, Sy ees S Moreover, two
corresponding strong components, S; from T and S, from T, have
the same cycle structure. S "
The above facts force the following sequence of statements :
(1) All vertices from any cycle in F correspond to vertices
‘ from only one strong component in T. ' :

(2) Vertices of each strong component of T (or T) can be
decomposed into subsets forming directed cycles. The
. union.of all these. cycles for-all strong components is

isomorphic to F.Thusp; = _b{ i+ b; ra . b:‘ 1, fOr some

integers b;

G. Chartrand et al, On Rotation T |

(3) Since any vertex y of F can |
of T—,_b; > 1 and in the afo
carl be placed on a direc |
TR TR I .

On the other hand, if the cor
we define - °

Then F is a homogeneous su
so F is an optimal digraph for T

For tournaments of order
indegree) p - 2, the following .
from Theorem 8. '
Corollary 1. If T has a str
KD >pp-2) ' :
Corollary 2. If T is a strong tot
Corollary 3.If T has strong ¢ -
thenh (D =pp =2 i

The application of Theore
when the condition (1) is nc
immediate answers (niamely
with the following orders of st

{(a) 3and5

{(b) 5and?

{c) 6and 10

(d) 8, 11and 15, and so on.

In the case when the con«
it is necessary to investig:
components. Consider, for e
presented in Figure 11. Both ]
order 6 and 3 and therefore
3 = 1:3. However, the vertice
T4 can be partitioned into t
vg, v4 Which is not possible
h (T,) > 63 (in fact h(Tp) = ¢€
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(3) Since any vertex y of F can be identified with any vertex x
of T, b' 2 1 and in the afore mentioned decomposmon x
can be placed on a directed cycle of any of the lengths
.‘r], T,

On the other hand if the condmons (1) and (2) are satlsfled
we define -

—_ n
F= U(b}+b? ..+b‘-‘) ? .
- j=1 -
Then Fis a homogeneous superdigraph for T of sizep (p - 2);
so F is an optimal digraph for T. )

For tournaments of order p and maximum outdegree (or -
indegree} p - 2, the following corollaries can be easily derived
from Theorem 8.

Corollary 1. If T has a strong component of order 1, then
h(T>pp-2) .

" Corollary 2. If T is a strong tournament, then h(T) = p (p - 2). .

Corollary 3. If T has strong components of the same order e 3)
then h () =p (p - 2)

The apphcatlon of Theorem 8 is especially stralghtforward
when the condition (1) is not satisfied. For example, it gives
immediate answers (namely & (T) > p (p - 2)) for tournaments
with the following orders of strong cofnponents :

(a) 3and5

(b} 5and 9

{c) 6and 10

(d) 8, 11and 15, andsoon.

In the case when the condition (1) of Theorem 8 is satisfied,
it is necessary to investigate the cycle structure of strong
components. Consider, for example, two tournaments T; and T,
presented in Figure 11. Both T; and T; have strong components of
order 6 and 3 and therefore we have decomposition 6 = 23 and
3 = 1.3. However, the vertices of the larger strong component of
T, can be partitioned into two 3-cycles: vy, v3, U3, ¥y and vy, vg,
v, v, which is not possible for Tp. Thus h (T1) = 9-7 = 63 while
h (T,) > 63 {in fact k (T;) = 65).
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Figure 11 o .
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