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ABSTRACT: For sets of vertices, we consider a form of generalized degree based on neighborhood
urions. Bounding this generalized degree from below, we obtain results about the conneciivity of a graph
as well as Dirac-type results about highly hamiltonian properties in such graphs. In particular, we
determine lower bounds on the generalized degree sufficient to imply a graph is hamiltonian-connected oz
pan yelic.

Section 1. Introduction.

For standard terms and notation not found here see [101],

Over the past few years a form of generalized degree condition for sets of vertices (where the sets
safisfy various conditions) has been used to further the study of a variety of graph properties. In (5] and
[9], hamiltcnian properties were studied using sets of independent vertices of various sizes, while in {6},
matchings and extremal path and cycle lengths were studied for the same types of sets. In [2], a Turan-type
extremal result was oblained. A survey of recent results using generalized degrees can be found in [11].

As these results have emerged, variations on the types of sets used have occurred. A natural
combiratorial choice is the collection of all f—subsets of the vertex set V of a graph G, If
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94 GENERALIZED DEGRELS, CONMECTIVITY AND ]IAM!L'I‘DN%AN PROPERTIES IN GRAPHS

§ = {v,¥a,..., ¥ ) isan arbitrary r—set of vertices in V, we define
f
deg s = ) U N 1.
i=

This definition follows those used in the above mentioned papers as well as in other related works.

Using this definition, the following generalization of the classic Hamiltonian Theorem of Dirac {1] was

shown.

Theorem A [3). If (7 is a 2—~connected graph of sufficiently large order n satisfying deg § = n/2 for
each 2-subset § = {x, y } of vertices in G, then G is hamiilonian,

For convenience, we will denote by 8,(G), the minimum of deg S, where this minimum is taken over
all distinct pairs of vertices { z, ¥y } = §in . In general then, we define 8,(G) to be the minimum deg §,
where the minimum is taken over all k—subsets § of vertices in &,

The purpose of Lhis paper is to explore connectivity and highly hamiitonian properties in graphs
satisfying lower bound degree restrictions, usnalty lower bounds cn 8 and §;.

Section 2. Connectivity

Lower bounds on a genemalized degree, unlike ordinary degree bounds, do not necessarily imply any
connectivity conditions in a graph. For gxample, suppose our choice of subset § is the collection of all
pairs of nonadjacent vertices. Then in the graph & = K, w Ky, (7 even) any pair of nonadjacent
vertices § = {x, y) satisfies deg § = n — 2, the iargest possible value for such a pair. The graph G is
clearly disconnected, and thus, nio lower bound on the generalized degres for such sets of vertices will ever
imply connecivity. However, when the type of subset in use varies, other results can ocour. We shalt now
show that a lower bound on the generalized degree for arbitrary k-sets of vertices along with a minor
minimum degree condition can produce a useful connectivity condition,

Theorem 1. If G is a graph of order a satisfying 8(G) = ¢ and §,(G) 2 ________n+r;-2—k for

(25k5t+2),thenGis(t+2—k )conngcted,

Proof, Suppose that G is not ¢ + 2 - & }connected and let C be a vertex cutset with fewer thant+2-k
vertices. Let €' be & comporent of G — € of smallest order. Clearly,

n—iC|
[VIC) 1 < ['2—J

V)| <kandx e V(C,} then
degx S bE-2+|C| Sk-241+1-k =1-1,

coniradicting the minimum degrec condition. Hence, ¢ contains at least k vertices.

Jrvo Comd. infl & Sest Sei,
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Now let§ = (X1, Xg...., % )| bean arbitrary k—subset of vertices in Cy. Then
’k -
deg S =t U NG| < [”—'5»9—'J +1CY
is
<n+|C| Sn+r+1—k
N 2 2

contradicting the minimum generalized degree condition, Hence, G mustbe (/ +2 -~ k y-connected. &

We note that even stronger connectivity coaditions imposed by generalized degrees in conjunclion with
other properties have been studied in [7] and [8].

As an example of the sharpriess of Theorem 1, consider the graphs H; formed by taking 2 copies of X,
(p =i+ 1) and identifying j vertices from each copy of K. Then | V{H) | = 2p—1i = n and further,
for a set § of k vertices selected in one copy of K, by avoiding the i identified vertices, we see that
n+i

degS =p = . This is ¢learly the minimum such degree (when p—i 2 k) and H; is clearly

i—connected, but not (i + 1y-connected. Thus, the result cannot be strengthened to imply the graph is
(i + 1y—connected.

The following Cofol]ary is immediate from Theorem 1.

Corallary 2. 1f G is a graph of order n and if for each st § = [x, y ) of distinct vertices of G,

deg § =2 1‘%5- and 8(G) 2 t, then G is r—connected,

A natural question one might ask s What connectivity can be guaranteed by just a generalized degree
condition for arbitrary k-sets of vertices, that is, without some sort of minimum degree conditicn also
being included? The answer can be seen in the graph formed by joining a vertex x o any one veriex of
K,.i. This graph satisfies 8,(G) = n -2 (the highest 8, possible in a noncomplete graph), but has
connectivity exactly 1. A minor minimem degree condition, in combination with a generalized degree
bound, can provide ample connectivity for highly hamiltonian properties. For example, hamiltonian-
connected graphs are known to be 3—connected {at least when » 2 4) and we can obtain this level of
connectivity by avoiding vertices of degree at most 2 and bounding the generalized degree from below,

Section 3. Highly Hamiltonian Properties

In this section we examine highly hamilionian properties in graphs satisfying certzin minimum
generalized degree conditions. For convenience, we define the following terminclogy. Suppose that
P:xy,..., % isapath and that x; has a chord {edge off the path) to a vertex x; on P. Then by a Posa-
rotation of the path P and edge e = x,x; we mean the creation of a new path

P,:x,,x;,...,x;,xk,xk_l aen s Xjpls

That is, we merely insert the edge x.x; and delete the edge xx;,,. In so doing, we cbtain a path on the
same vertex set, from x, 10 x;,, the successor of the end vertex of the chord e, We denote by {7, 5}, the
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96 GENERALIZED DEGREES, CONNECTIVITY AN HAMILTONIAN PROPERTIES IN GRAPHS

segment. of a path strictly between vertex r and vertex s, while [r, 5] denotes the segment of a path
including r and 5. ‘We now consider Lhe following Lemma.

Lemma 4. Let G be a graph of order n 2 6 satisfying 6,(G) = n ; 3 . If V(G) can be partitioned into
twa disjoint subsets, say A and B, which contain spanning paths

Pix=x;,%X3,..., % =# whichspansd4 and

Pyv=x,,,..., % =y which spans B,

with the praperties that
INW A VE) | 22 and NG A VPl 22

then & contains an (x — y)>-hamiltonian path.

Proof, Suppose G sadsfies the given conditions but has no (x— y)y-hamiitonian path, Then
V(G)=V(P,) u V(P,) partitions V(G as described, and also each of & and v have at least one cherd to
. a vertex on their respective paths.

Since u has a chord to a vertex on Py, say «’, we note that if u; = &'+ 1 (the successor of 4’ on P}

has a chord in the segment ( @’, 1 ), then this chord is "shorter” than that of u. Hence, we can perform a
Posa-rotation, to obtain an x —u, path on the same vertex set with endvertices x and u,, where the

endvertex has a shorter chord. We can repeat this procedure a finite number of times to obtain a path on
the same vertex set, beginning with x and ending with a vertex, say 4, having the shortest possible chord
from w. That is, u has a chord to say & and both 4, = &’ + 1 and & have no chords in the segment (o', u}. A
simitar procedure could be applied to P, to obtain v and its predecessor v,. Thus, we may assume that P
and P, were chosen with this property.

Note that x and u, are not adjacent 10 v or v, or an {x — y)}-hamiltonian path is immediate. We now
consider two cases.

CASE 1: Suppose that u is not adjacent to &, on P, and v is not adjacent to v; on Py, (That is, the end
cherds of the paths do not form triangies.)

1F u (or 4,) is adjacent to a vertex w € (vy, y), the segment of P, strictly between the vertices v; and y,
then both v and v; are not adjacent to w + 1, the successor of w along P 5, or'else

Lx+l, o, uww-1, v wrliwt2, oy

would be an (x — y)-hamiltonian path in G. Simitar paths can be found if v, is adjacenttow + i orif u is
adjacent to w, and either of v or v, is adjacent to w + 1. We also note that by our choice of v and ', both v
and v, have no chords in the segment (v, v, ). Hence, their only adjacencies in [ v, viare o v + 1,V and
v; — 1. Butrecall that & and u, are not adjacent to either v of v, in this interval,

Hence, the adjaceﬁcics of u and u, define certain nonadjacencies of v and v; (with the possible
exceptions of v + 1 and v, — 1) which we can describe with the 11 and onto function ‘

Fa VP = (vivy) = VIPD = [vv, V)

where fo{w) = w+ 1ifw € [V, y)and fo(w) = wifw € (v, v;).

Jr. Comb., Inf. & Syst. Sci.




R.J. FAUDREE, R.J. GOULD, M8, JACOBSON, L. LESNIAK 97

A similar argument shows that for each adjacency w of w or uy in [x, ), the vertex w+ 1 is not
adjacent (o v or vi. The adjacencies of u and i, thus define certain nonadjacencies of v and v, described
by the 1-1 and onto function

fuVP) - (W, u) - VP - (xu,u)
defined by fi{w) = w+1ifw e [x, ' )and fi(w) = wifw € (uy, )

Since v and v, are nonadjacent and both are not adjacent to 1 and i, and since for each adjacency of u
or u; {with the possible exception of &', 1y + 1, u— L,y + 1, v; — 1 and y), there i3 a nonadjacency of v
and v, as described by the functions £ and f; we see that
deg {vivi) S (n—4) - [deg (u,u, } - 6]

n+1

<
77

a contradiction to the generalized degree condition,
CASE 2. Suppose u is adjacent to &, on P but v is not adjacent to v, on £ .

Then an argument similar to that of Case 1 shows that
fuViPy ~ (wuy,ul - VP - (o, u)

defined as

Filw) = w+1ifw e [x, uyand
FaVP ~ [vovy] = VP = (vovy v

defined as
fofw) = w+lifw e [V, y)and
falw) = wifw € (v, v))
are I~} and onie. Further, f; and f; map possitle adjacencies of 4 and ¥, 10 nonadjacencies of v and v;

{with the possible exceptions of &, &y, 4, v + 1, v; — 1 and ¥, Hence,

deg {v, vy ) S (n—4) - [deg [, u;} — 61}
L htl _

2
again contradicting the generalized degree condition,

If 1 is not adjacent o x, on 7 but v is adjacent Lo vy on P, or if v is adjacent 10 v; on P; and u is
adjacent to 4 on P |, then in both situations ’
deg I, vy ) S (n—2D)—[deg (u, 4] —4]

n+1
3 i

1A

a contradiction,

In all cases a contradiction is reached and hence, the graph contains an {x — y)—hamiltonian path. H
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Theorem 5. If G is a graph of sufficiently large order p such that &8(G) 2 ntd and 8(G) 2 3, then G
¥ 2

is hamiltonian-connected.

Proof. Suppose the result fzils to hold and further, suppose that G is a maximal counterexarnple. That is,
suppose the result fails on G, but does hold on G + ¢ where e is any edge not in G.

Since G ig not hamiltonian-connected, there exists a pair of vertices, say x and y, not joined by a

HIB. If deg x=n—1,then

hamiltonian path in &, Without loss of generality, we may assume degx 2

consider-the graph /1 = G —x, By Carollary 2, G is 3—connecied, thus H is 2—connected, But now, by
Theorem A, we see that 4 is hamiltonian. If C is a hamiltonian cycle in A, then in G, the vertex x is
adjacent to each vertex of C and an {x — y»~hamilionian path is easily found.

Thus, we may assume that deg x < n— 1. Since Gisa maximal counterexample, G + x4 CONLAINS an

{x — y)>-hamiltonian path, for any edge xu where u ¢ Ngix). Let
Pix=v, u=Vg, P3,0.s V=Y

be such an x — y path in G +xu. Then in G, we ses that z, along with the vertices v ..., v, spans V(G)
and we denote by P, the subpath of P fram v o v,. We now consider two cases.

CASE 1: Suppose there exists a shoriest chord from u {to say u") on Py, with 4’ prior to all but at most
cne neighbor of x on Py,

‘Without loss of generality, we may assure that uu’ is a shortest chord in this interval (or else we apply
Posa-rotations). Let 1, be the predecessor of &’ along P and fet X, and x, be wo neighbors of x along P,

beyond u’ and prior 1o y (this is possible since deg x> nt3 and » is sufficiently large), Further, suppose

3 and n is large,

that y; and y are the successors of x; and x; along P, respectively, Since deg.x nt

xy and x, may be selected so that dist (x1, X2) 5 4.

Note that z and u are not adjacent o y; Or yz Or we can easily find an {x - y)-hamiltonian path in G,
for example, if 1 is adjacent 1oy, then

P TR T S

is such a path. Clearly, similar paths exist in the other cases. Also recall that u and u, ase not adjacent 10

X
ify, (ory,)isadjacent tow & {yz+ 1, y1, then i is not adjacent tow — 1, or else
X . ww-l, o yLww L Y

is an (x — y}-hamiltonian path in G. We note that similar paths can be found if y, is adjacent 1o w or if u,
is adjacent tow ~ 1,

For every adjacency w € (u', x;} of y, {or ¥2), the vertex w + 1 is not adjacent to 4 (or 4y} for

otherwise

Jr. Comb., Inf. & Syst. Sci.
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nxLE =1, ow+hru+l,owynith oY

is an (x — y)-hamiltonian path in G. Similar paths can be found if y5 is adjacent to w or if u, is adjacent
tow+ 1,

By our choice of & and &', bath 1 and 4, have no chords to vertices in the segment (u, u,). Thus, u and
#; have at most three adjacencies in [u, »'], namely # + 1, 2, — 1, and &', We note also that not all three
of these vertices need be distinet.

If dist (x|, x2) =4, then {x, x5) contains exactly the distinct vertices ¥;,yy +landx, —~1. 1€y ory;
is adjacent to x;—1, then u and w; are not adjacent 10 ¥; + 1 for otherwise, by Lemma 4, an
{x — y)-hamiltcnian path would exist, This can be seen using the paths

E2 THRLEI ]
Y Ly
if y, is adjacent to x5 — 1, while
Lxn Yot e -t
xa— L X, ¥z, WY

are the paths if y; is adjacent to x, — 1 and » is adjacent to y, + 1. Similar paths can be found if w4, is
adjacenttoy; + L

Under the assumption that dist(x,, x,) =4 and that &, u + 1,4 — 1 and u, are all distinct vertices,
consider the sets

R=V-{xmuu+lu-lu,u x,yny+1 x5y a+l}
and
D=V-(xuu+lu—Lou, o a'+1,y,5-Lx,¥.7 )

Define the function f: R — Das:
fwy=w-1forw € (y2+1.y]
Fwi=w+lforw € (i, x)
fiwy=wiorw e (u uy)—{u+tuy—1]and
fla=-D =y +1L
Now we see that f is 1-1 and onto and maps adjacencies of the pair y, and y; to nonadjacencies cf the pai
wand u,;.

Since we know in this case that u and u, are not adjacent to five vertices, namely x, ¥, y» and sach
other, ths remaining seven vertices are "exceptionat”, that is, they may have adjacercies to both the sets
{¥{,¥2)and [:_J,u, } simuitaneously. Thus, we see from this that

n+l
5

dep (o)) S (n-5)~(deg (y,y2} - 71%

a contradiction to the generalized degree condition. We note that if dist (x:, x2) 3, a count similar to the
one above again produces a contradiction (as the number of exceptional vertices can only decrease or
remain the same from this change).

If u is adjacent 10 4, on P and dist (x;, xz ) =4, then (since ¥ + 1= u, and u, - 1= u) there are cnly
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three vertices that we can say are not adjacent to « of u,. However, the number of exceptional vertices
also decreases to five, namely ', x;, ¥1 + 1, xz and y, + 1, Thus, in this case we see (hat

n+1
.2 l

deg (wouy] S (n-3) - [deg {yry2} - 3] %

again a contradiction. Further, if dist(x;, x3)<3, a similar argument again produces a contradiction.
While if dist (u, 1) =2, again a similar argument applies.

CASE 2: There exist at least two neighbors of x preceding u’, the first neighbor of u on P .

Suppose that x, and x, are the neighbors of x on P, and that y, and y; are the predecessors of x, and
xq, respectively, Also suppose that i) and u, are two neighbors of u beyond x; on P, and that, in this
case, z, and z, are the predecessors of 1, and i, respectively. Note that x is not adjacent 1o z, or z; or an
(x — y>-hamiltonian path is immediate. Thus, x, # zy, f 4, and u, are chosen to be the first two
adjacencies of u along P, after x,, then 2, is rot adjacent to u and z, is not adjacent 1o 4 unless 2, = u,.

Supposew € (ug,¥]isadjacent toy; (or yz), then z; {and z5) is not adjaceni 10 w — 1, for otherwise
XX, I W=l il YWY

is an {x — y)-bamiltonian path in G. A similar argument applies if w € (x3, 71) is adjacent to y; or ¥,
while if w & (u, ¥, ) is adjacent to y, of y,, we note that w -+ 1 is not adjacent to z; or z; or ¢lse an
(x — y)-hamiltonian path would exist.

Now suppose that w € (u;, z3) is adjacent to yy or yo, thenw ~1 ¢ N{z,) or N(z3) or again an
(x — y}-hamiltonian path would exist,

T, however, there is a neighbor w of y, in (x,, yz) thenclealy w + 1 ¢ N(z;) (or N (2,)) orelse
E A P UL S 2T ATTER 1R T SO
is an (x - y)-hamiltonian path in G. Ifw € (xy, ¥,) isin N (y(), then note that the paths
Quix, Xz, 002, W+, 000, ¥

along with the chord from ¥ to x; and the path

C2iW oy Pl reeas ly Hy ooy ¥
along with the chord from w to ¥, satisfy the conditions of Lemma 4. Hence, an (x - yhamiltonian path
exists in &7, again a contradiction. A similar argument applies when z; is adjacent o w + 1.
Thus, we have defined a function
iV = Yy X ¥ X, 21, By 2,8, ) = YV - {4 n, u+1,x,,x1+l.z;—1,zl,z2—l,z2,'y 1

defined as
fw) =w-1forw & (U2, y] U (uy, 22) U (x3,2)) and
Fw) = w+llorw € {4, 3} v (x,y2)
that is 1-1 and onto. ‘The function f maps possible adjacencies of y; and y; to ndnadjacencies of vy and
Va.

Jr. Comb., Inf. & Syst. Sei.
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"Since zy and 75 are not adjacent to x, ¥, ¥, or 4 {we assume z, was selected that way for now), we
again see that the exceptional vertices are potentially xy, X, z,, #,, 2o and «,. Thus, we have that -

deg {2(,2;) € (n—4) = [deg {(y1,¥2) ~ 6] = 1’...%’...!.

If however, 11y =z, (that is, #; and u, arc adjacent on P and so we select 11y = z,), then we note that y;
and y, cannot be adjacent to 4, or a hamiltonian x — y path is easily found.” Thus, in this case we see that

deg (21,12)  (n=3) - [deg (3} - 51 5 51

Thus, a contradiction is again reached and hence, we conclude that G is hamiltonian-conrected. B

As an example of the sharpness of this result, consider the graph G formed by taking two copies of X,
and jdentifying two vertices from the first copy with two vertices of the second copy. Then G has order

n=%~2ad 5(G) = p = 232

is no hamiltonian path between the pair of identified vertices, Thus, the value of 8, cannot be lowered in
Theorem § without some other assumptions,

. However, his graph is cléarly not hamiltonian-connected as there

The graph H = K4 + 3K; also satisfies the generalized degree cundilion 8 25 and.,since H has order
n=9, thisisa d, = A+l

2
n+l if n is sufficiently L';rge and if the connectivity of the graph is assumed to be three or more, We

simsation. Hence, it is possible that the bound in Thecrem 5 can be reduced o

conjecture that this is true. However, this cannot be attained from our degree and generalized degree
conditions.

In what follows, the graph H of Figure 1 will be helpful.

I
z2 3

a b

Figure 1. The graph H with vertices as labeled.

n+35
2

Lemma 6. I G is a graph of order n = 6 with SZ(G).' 2 , then H is a subgraph of G.

Proof. If G is complete (or lacks only one edge) the result is immediate, and for 7 =6, 7, 8, the lower
bound on 3, implies that G is complete. Thus, we may assume that n > 9 and that G is not complete. We

now show that C, is a subgraph of G, Suppose that xy ¢ E(G). Then, without loss of generality, we may
n+5
4

assume that deg x = (24 since 1 29). Note that N(x) can induce at most a matching, for

otherwise C, is contained in G. Let x;,i=1, 2, 3, 4 be ncighbors of x with x; not adjacent 10 x;,,

Vol, 16, No, 1 (1991)




102 GENERALIZED DEGREES, CONNECTIVITY AND HAMILTONIAN PROPERTIES IN GRAPHS

(i =1,3) and suppose that N'(x;) = N (x) ~ (N x) w{x } ). Further, let n;=§ N}, for 12i<4, If
n+5 .

N'(x) " N'(x;) # ¢, then C, is clearly contained in G. Otherwise, we see that ny +n2+3 2 5 and

+5 " .
n , Hence, ny +ng+Ha+ny 2 n~1,acontmdiction. Thus, Cy is a subgraph of G.

2

ny+ng+3 2

Now suppose that a, b, c, d, a is a C4 in G. If either ac or bd is an edge of G, then Ky —¢ is a
subgraph of G. Suppose not, then

|(¥@ U NE) - (hd) |2 2 g (2225

and similarly,

(n—4)+5

J(NB) UN@) - [ac)] 2 5

Thus, in the n — 4 vertices of V — ( @, &, ¢, d}, the vertex pairs (g, ¢} and (b, d) have at least 5 common
neighbors (hence, neighbors off the C4). Then one of the adjacent pairs (a, b}, (b, ¢), (e, 4) or (d, a) has
at least 2 common neighbors off the C4. Hence, K4 ¢ isa subgraph of G (although it may not be
tnduced).

. Suppose that x; and x are the (possibly) nonadjacent vertices in the Ky —¢ while y, and y, are the

other two vertices of K4 —e. Then

| (NG O NG - (ruxaynyn) |2 252 - g = (2020

and
| (V6D U NOD) = (xnxaynya) | 2 LA

Thus, in the n — 4 vertices of V — { x;, x2, ¥1, ¥2 }, one of the adjacent pairs (1, 240 &1 Y2 (¥2: X2),
ar (xz, ¥) has a common neighbor outside of K —e. But, then H is clearly a subgraph of G. M

Theorem 7. If G is a graph of sufficiently large order # with 8;(G} = %—é— and 3(G) 2 3, then G is

pancyclic,

Proof. Suppose G satisfies the hypothesis of the Theorem. By Theorem B, G is hamiltonian. If G is not
pancyclic, then let ¢ be the largest integer {421 <n)such that for all 5 2¢, an s—cycle is contained inG,
but there is no {t - I<cycle in G. Singe G is hamiltonian but not pancyclic; such a't must exist.  Also,
from Theorem A and Corollary 2, it is easy to see that G — x is hamiltonian forany x € V(G). By again
using Theorem A, or-the structure of H =G - {x,y)}ifH is 1-connected, we can also show that His
hamiltonian, hence t €1 — 2. - i

By Lemma 6, H is a subgraph of G. Hence, 3, 4 and 5 cycles are contdined in G, thius, ¢ 2 7. Let thé
vertices oF H be a, b, 21, 22, 2 2s labeled in Figure 1. Our next goal is to show that G contains a path

Pl oy ee, @ I 01 25, By Yy, Vg

Jr. Comb., Inf. & Syst. Sci.
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containing exactly ¢ + I vertices where at least two distinct vertices of P precede a and two more distinct
vertices succeed b.

To see that such a path exists in G, consider the graph F = (G - {2,273, 23 ) }+x If §Fz3,

then since | V(F) | =n -2 and 5,(F) 2 ";5 —341= (n—§)+3

the fact that F is hamiltonian-connected. Thus, there exists an @ —b hamiltonian path P* in F. 1f we
siraply choose vertices u; and u, and vy and v, along this path so that the segments from uy, 4z ..., @
and vy, vg, ..., b contain ¢ - 2 vertices in all, then link these two segments with the path 2, 71, 23, we
get the desired path. This is always possible, even if x is adjacent to a or # or at distance two from z or b
along the path P*. In such a case we use an edge from a to the path beyond x and the segment of the path
P* from that point back towards x (see Figure 2). Such an edge exists since degr a > 3.

, we ¢an apply Theorem 5 to obtain

If 8F) < 3, then there is only one vertex in F with degree less than three, for otherwise the generalized
degree condition would be violated, Let y be the vertex with dege ¥ < 3 and consider the following cases,

If degr y =0, then we form F* = F — . Since y was only adjacent with the vertices z;, /=1, 2,3inG,
wey ses that 5"} 2 3, and By(F) 2 ﬁﬂgﬁl —34i= ﬁ’l:%)li and so F is hamiltonian-connected by
Theorem 5. Thus, an argument similar to that above produces the desired path P.

Finally, if degry=1 or 2, then we form F’=G-{z;,23 255} Then, B(F)23 and
(n+5) ,_{(n-4+1
B2 4=

s0 F” + x is hamiltonian-connected and we proceed as before to find the path P, If £ is only 1-connccted
(it must be commected from the degree conditions) then since 8(F 23, it must be of the form
2K (s _syz + w. Further, the edge ab must lie in one of the two copies 0f Ky _s5y2. [t is now easy (since n
is large) to find the desired path P, Thus, in all cases the path P can be produced.

. Thus, if F* is 2-connected, then it is hamiltonian by Theorem A and

SUpPOSE 1y, Uy 4. .., &y T2y 21, 23, B .10 ., V2, v, is the desired path P. We now consider the distinct
pairs 4, and &, and v; and v;.

For each adjacency w e (uy, a] of st or uz, the vertex w — 1 is not adjacent to v, or vz or elsc a
(t = 1}-cycle would be contained in G. This is easily seen since if u, is adjacent to wand v, is adjacent 1
w— 1,2 (¢ + 1)cycle is formed using these edges and P.- Now replacing z, and z; by the edge from z; to
b forms a (¢ - 1)y—cycle, contradicting our assumption that no (¢ - 1}-cycle exists, Similar (¢ - 1)}—cycles
can be formed if u, is adjacent to w or if v, is adjacent to w — 1 by omitting 0, 1 or 2 vertices from 2y, 22
and z;. Also, similar arguments apply if w € (b, v,].

If uy or uy is adjacent to z ¢ V(P), then both v, and v, are not adjacent to z. If this were not the
case, then one of a (¢ + 2)—cycle, (7 + 1)~cycle, or 1—cycle would be formed from P and the edges from
u; (i=10r2)tozand from zto v; (j =1 or 2). But then replacing the path a, z,, z(, 23,0 by the proper
subpath from a to & forms a {t ~ 1)-cycle, contradicting our assumption,

Finally, if u (or u5) is adjacent to z,, then neither v, or v, can be adjucent to g or & ¢ — 1 cycle can be
found,

Thus, the function

FiV=lzpan by} = V—{z,2222,v2)
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defined by
fwy=w-1lifw e (u,ajorw € (&, vo)
f(z) =zifz ¢ V{P)and
) =a
is 1-1-and onto, Further, this function maps possible adjacencies of the pair 4, and 4, onto nonadjacencies
of the pair v, and v, {with the possible excepiions of u,z;, z3 and b}, Thus,

deg {v1,va} € n = (deg (up,uz} — 4)

Sn—-%s—+4
n+3

)

contradicting the generalized degres condition.

Thus, a contradiction is reached and hence, G is pancyclic, B

Figure 2 Reshaping to get the path P, -

Many open questions remain, For example, will higher connectivity assumptions in conjunction with
lower generalized degree bounds produce the same conclusions? Another natural problem is o extend
these resulis to 8;, & > 2. Other variations involve changing the type of sat § selected. In [4], similar
results were found for independent pairs of vertices.
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