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Neighborhood Intersections and a Generalization of
Ore’s Theorem

Ronald J. Gould*
Michael S. Jacobsont

ABSTRACT: For sets of vertices, we consider a form of generalized degree based on neighborhood
unions. In particular, for a graph G, the degrec of theset § = {x;,..., x, ] is defined to be,

k
deg § = | _glN(xl-) |

where § is a set of k vertices in G and N (x) denotes the neighborhood of the vertex x. Clearly, for
singletons, this is the ordinary degree of a vertex. Many authors have studied what bounds on generalized
degrees force a graph to have a given property. In particular, hamiltonian and other path length problems
have been extensively studied.

In this paper, we introduce an added restriction involving neighborhood intersections. Let IC,(G) 2 1,
mean that for all pairs of nonadjacent vertices, the intersection of their neighborhoods contains at least ¢
vertices. We show for a given generalized degree sum and intersection condition, various path and cycle
properties are implied. In particular, we obtain a generalization of the well-known hamiltonian result of
Ore. In addition, we consider similar questions for graphs  containing no induced subgraph isomorphic to
K s
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Section 1. Introduction.

For standard terms and notation not found here see [11].

The study of cycle and path lengths in graphs has been one of the fundamental problems in graph
theory since its inception. Degree conditions have been fundamental to this study, Over the last five years
a new approach has been introduced, beginning with the work in {7]. Rather than considering degree sums
of pairs (or sets) of nonadjacent vertices, it was proposed to study the effects of bounds on the order of the
neighborhood union of pairs (or sets) of nonadjacent vertices and relate this parameter to various cycie and
path problems. Several other papers followed [1, 3, 6, 8, 9], suggesting a connection between
neighborhood unions and other properties of graphs. Most recently, the study of neighborhood unions has
evolved into a generalization of the concept of degree. The combination of generalized degree conditions
with other graph propertics seems capable of producing generalizations of many fundamental theorerns
involving ordinary degrees, as well as producing new types of results. ‘This paper continues this line of

investigation.

Several forms of generalized degree for sets of vertices (where the sets considered satisfy various
conditions) have been used to further the study of a variety of graph properties. In [5] and [7], hamiltonian
properties were studied using sets of independent vertices-of various sizes and a form of generalized
(independent) degree. These generalized degrees were also used in [6] to study matchings and extremal
path and cycle lengths. In [31, a Turan-type extremal result was obtained. A survey of recent resulls using
several types of generalized degrees (neighborhood unions) can be found in [12].

In the above mentioned papers, as well as in other related works, the following definition is central,
We define the degree of a set S as,

degS =] w NW L
vel
For convenience, when the set is a singleton, we will abbreviate this notation with deg x, the standard
notation for the degree of a vertex.

Two of the most fundamental results on hamiltonian graphs are due to Dirac [2] and Ore [13].

Theorem A[2]. If G is a graph of order p 23 such that deg x = -gv for each vertex x € V(G), then G i3

hamiltonian,

Theorem B [13]. If G isa graph of order p = 3 such that for each pair of nenadjacent vertices x and y
degx + degy zp

then G is hamiltonian.

Using the idea of generalized degrees, the following generalizations of Dirac’s Theorem [2] were
shown, Theorem C uses all 2—sets of vertices in the graph, while Theorem D> uses all independent 2-sets.

Theorem C [4]. If G is a 2—connected graph of sufficiently large order p satisfying deg § = pi2 for
each 2-set § of vertices, then G is hamiltonian.

, for each 2—set S of

Theorem D.[7] If G is a 2-connected graph of order n such that deg § 2 r 3_ L

independent vertices in G, then & is hamiltonian,
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In [5], it was shown that similar properties of G can be ascertained under weaker degree conditions by
including additional structural conditions. A graph & is said to be H—free if H is not an induced subgraph
of G. The following was shown in [5].

-~

Theorem E [5]. I Gis a K 3—{ree graph of order p such that

deg § 2 + 1

w =

for all 2—sets § of vertices in (5, then & is hamiltonian,

Finally, when discussing cycles and/or paths we will refer to a closed segment, denoted [a, 5] (or open
segment denoted (a, b)) as the subpath of vertices on the cycle or path between ¢ and b, inclusive of ¢ and
b (exclusive of a and b).

Main Results.

Implicit in the hypothesis of Ore’s Theorem is the fact that any two independent vertices have at least
two common neighbors. In this paper we explore the effects of this neighborhood intersection condition.
To say that G satisfies IC,{G) = k means that for any set of ¢ independent verlices, x1,x2,..., X,

¢
| N NG| 2k
i=

As above, IC, 2 k will be used when the context is clear. In the next section we give several results that
combine independent degree conditions with an intersection condition to attain hamiltonian results.

We begin with a few simple observations concerning the intersection condition, First, observe that if
IC{G) = k, then IC(G) = k, for any 5 <4 Also note that if JC»(G) 2 1, then G is connected and has
diametcr at most two. We next turn our attention to connectivity.

Proposition 1, If/C,(G) =k (k = 1), then G is k—connected.

Proof, Clearly G must be connected. Any cutset of G partitions the remaining vertices into at least two
disjoint components, If there is a cutset wilth fewer than & vertices, then there exists a pair of independent
vertices whose neighborhoods intersect in fewer than & vertices, contradicting the fact that JC,(G)=*%.
Hence, G must be k—comected. B

This result can be seen to be sharp by considering the class of graphs obtained by identifying two
complete graphs at & — 1 vertices. The next result shows an Ore-type (Theorem B) relationship between
these conditions and hamiltonian graphs. We denote as A, , an independent set of ¢; vertices, Wc 'say a
collection of sets 4, ,..., A, where | A, | = iy, are distinct independent seis if for each i, A, is an

independent set of vertices and the intersection of any two is empty.

Theorem 2. Let G be a graph of order p satisfying /C»(G) = k 2 2. If for some pair ¢;, ¢, of positive

2
integers satisfying 2 < 3’ < k + 1, each pair of distinct independent sets A, , A,, salisfies
=1
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deg A, + deg A, 2 p,

then (7 is hamiltonian,

Proof. Since G is k—connected (k =2), G must contain a cycle. Let C be a longest cycle in & and
suppose C does not span V{G). Choose some x € V{G)— V(C) which is adjacent to some vertex, say vy,
on C. Let py {also denoted v, - 1) and 5, {also denoted v, + 1) be the predecessor and successor of vy on
¢ with respect to some fixed ordering of the vertices of C. Clearly, x is not adjacent to either p; or 5y, for
then a cycle longer than C would result. Since IC, = k, the pair x and s, must have & — 1 more (v, is
already adjacent to both) common neighbors. If any of these common neighbors is off C, a cycle longer
than C is immediate. Thus, all common neighbors of x and 5, are on C.

Letva, va,..., ¥i € V(C) be k — 1 other common neighbors of x and s, given in order with respect to
the orientation of C. Also, let pz, pa,.... Py, and s2,..., 5 be the corresponding predecessors and
successors of vo, vy, ..., Vi

Note that x is not adjacent to any of the vertices p; or 5; (14, § < k) or a cycle longer than C results.
Also note that s; and s; (i # J) (as well as p; and p;) must be nonadjacent, for otherwise, assuming i < f

X, V1. 1 .,...,Sj,S,‘,...,Vj,S] sy Yiy X
would be a cycle longer than C.

‘We now consider the independent sets

A, = [x!p2=""Pf1} and

Arz = f-5'q+la---s-§'z,}

(Note thatif ¢, + ¢, = k+ 1, then we begin 4, with vertex s, instead.) We proceed by showing that for
every vertex in N(4,,), there is a distinct veriex not in N (4,). To do this we consider each adjacency, say
z, of an arbitrary vertex 5; € A,,. We show that corresponding to each such z, there is a distinct vertex
that cannot be in N (A,,). Using this fact, we obtain a contradiction (o the degree sum condition. Thus,

suppose that s; is an arbitrary member of A, .

Figure 1. The adjacency situation.
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CASE1. Supposethatz € N{s;)—V(C)
We claim that z ¢ N(A,,). Clearly, x is not adjacent to z. or a cycle longer than C'is immediate, If z is

adjacent to some p,, € 4, r V(C), then

xavlsp]1---:Sj-:z:pmsw--yslavmv'-v,vj;x

is a cycle longer than C, producing a contradiction. Hence, in either situation, z ¢ N(A,). Thus, we may
suppose that if z is in N(4,,), thenz € V(C).

CASE2. Supposethatz € N{s;) n V(C).
Subcase Ia.  Suppose thatz € (s, v¢].
Then consider the predecessor z — 1 of z along C. If p, € A, n V(C) (for some m, 2<m<1y) is

adjacent to z — 1, then
E VL P1se e rn B8 ey 2= L Py §5aVmae ey Vi X
would be a cycle longer than C, a contradiction. If x is adjacent to z ~ 1, then again we sec that
2=l 82, Ve, Vi X

is a cycle longer than C, a contradiction. Hence,z ~1 € N(4,).

Subcase 1b.  Supposethatz € [v,, v;].
Again consider the predecessor z — 1 of z along C, and suppose that z — 1 is adjacent to an arbitrary
Pm € A;, (Pm#x). Then we sec that

XoVivee s SjaZy youns Vi 51 werey P21, i Ve X

is a cycle longer than €, a contradiction. Similarly, if x is adjacent to z — 1, then
Xoz—t, o, S Y D B, Vin X

is a cycle longer than C. Thus, we again see thatz — 1 ¢ N(A4,).
Subcase Ic.  Suppose thatz € (vq, vy).
Then if p,, € N{A;) (pn #x }is adjacent to z — 1 we see that

X, Vq ,...,sj,z,...,p,,,,z—l,..., SV Y X
would be a cycle longer than C, a contradiction. If x is adjacent to z — 1, then

z-l, ., Vi, o 82,0 VX

is a cycle longer than ¢, again a contradiction. Thus, we again see that z — 1 is notin N (4, ).

Thus, in all cases, there is a distinct vertex not in N (4,,) for every vertex in N(4,,). We summarize
his relationship with the function f: N(4,,) — N{A,,) (the complement of N (4,,}) defined as

F@) =z ifze N(4,) - V() and

f@=z-1 ifz e [N{4,) N V().

Thus, f maps adjacencies of vertices in A,, to nonadjacencies of vertices in A, . Since the map fis 1-1, we

conclude that
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deg Ay £ p—1 — deg A,,.
Further, since ¢; = 1, we see that
deg A, + degA, S p - 1,

contradicting our hypothesis. Therefore, G must contain a hamiltonian cycle. W

Next we show that the bounds on these patameters, both the deg and IC cannot be reduced. First
consider the complete bipartite graph G = K, ,..1. This graph has

deg Sy + deg§, =2n—2= | V(G) -1

for distinct arbitrary independent sets S; and 5, (subsets of the larger partite set)., It also satisfies the
condition

_ V@ 1-1

1C, :

However, G is not hamiltonian, Hence, even reducing the degree sum condition while increasing the
intersection condition will not maintain the hamiltonian property.

With Theorem 2 established, we now point out several natural corollaries. The first is of course Ore's
Theorem, and hence Dirac’s Theorem as well.

Corollary 3.(Ore[13]) If G is a graph of order p such that for each pair of nonadjacent vertices x and y,
degx + degy 2 p,

then G is hamiltonian,
Proof. Lett; = lands, = 1andrecall thatiC, 2 2 (sce observations before Theorem 2). W

Corollary 4. If G is a graph of order p which satisfies

degAZ% and IC; 2 k,

for each independent vertex set 4 where (1< 141 S _};— ), then G is hamiltonian.

Corollary 5. (Dirac[2]) If G is a graph of order p satisfying degx = % for each vertex x, then G is

hamiltonian.
Corollary 6. If G is a graph of order p satisfying IC; 2 k-1 and if for each pair of distinct
independent sets A; and A with | A, | + [Aa | S k&,
deg A, + degA, 2 p—1 and
then G is traceable.

Proof. Let G have order p and satisfy the stated hypotheses. Consider the graph /= G +x, with order

)
p+1, If A and A, are two distinct independent sets of vertices in H, then ¥, deg A; 2 p+1 and

i=1
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IC,(H) = k. Hence, H is hamiltonian by Theorem 2. Now simply remove x from a hamiltonian cycle of
H to obtain a hamiltonian path in G. Therefore, G is traccable. B

These corollaries are also sharp. This can be scen by considering examples similar to those used to

show the sharpness of Theorem 2,

In [10], Ky s—free graphs and their relation to hamiltonian results were studied. In particular, the

following was shown.

Theorem F ([10]}, If G is a 2-connecled, K j—free graph with diameter at most 2, then G is
hamiltonian.

This result can be restated in our present terminology as follows.

Theorem G ([10]). If G is a 2—connected, K1, 3—free graph with IC»(G) 2 1, then & is hamiltonian,

We now extend this result, but first we give the following definition. A graph G of order p is paacyclic
if G contains cycles of all lengths m, 3<m <p.

Theorem 7, If G has order p > 5 and is K| 5—free with IC, = 2, then G is pancyclic.

Proof. If G is complete, then G is pancyclic. Hence, we assume that w, and w, are independent vertices
in G. Since IC, = 2, there exist vertices w, and w, that are common neighbors of w and w, (hence, a
4—cycle exists). Since G is connected and p 25, there exists a vertex ws adjacent to one of w;,
i=1,2, 3,4 Without loss of generality assume w5 is adjacent to w,. But now wy, ws, wy, ws induces a
K 3 unless one of the edges wawy, waws or wews is in G. In any case, a triangle is formed.

Let C be any nonhamiltonian cycle of length { > 4 and suppose that no cycle of length [ 4 1 exists in G,
Further, suppose that x ¢ V(C) but that x is adjacent to at least one vertex on C. Suppose thaty € V(C)
and that x is adjacent to y. Further, let y — 1 be the predecessor of y along C. If x were adjacenttoy— 1, a
cycle exactly one vertex longer than € would result. Thus, x and y — 1 are not adjacent, Since IC, = 2,x
and y — 1 must have an additional neighbor, say z, in common.

CASE 1. Suppose thatz € V(C).
Let z -+ 1 and z — 1 be the successor and predecessor of z along C respectively. Since Gis K, s—free, z + 1
and z — 1 must be adjacent. But this implies that

xzy-1,...,z+Lz-1,,.., %%

is a cycle exactly one vertex longer than C, a contradiction.

CASE 2, Supposethatz ¢ V(C).

In this case we need to also consider the symmetric case of the neighborhood intersection between x and
¥ + 1, where y + 1 is the successor of y along C. If x and y + 1 have a common neighbor on C, than Case 1
applies, so we may assume they have a common neighbor, say z', off C, Suppose that z # z*, Neither z nor
2’ is adjacent to y, for than a cycle exactly one vertex longer than C would result. But since G is K| y—free,
z must be adjacent 10 z’, This implies that
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2z, y+L,y+2,...,y-1,z

is a cycle exactly one vertex longer than C, as we have removed y and added z and z’. Now suppose that
z =2, Then since G is K, 3—free, one of the edges yz, (y +2)z or y(y +2) must be in G. In any case, a
cycle one vertex longer than C is easily found,

Hence, cycles of all possible lengths must exist and so G is pancyclic. B

To say that a graph has property P, 4 means that between every pair of vertices there arc at least m
vertex disjoint paths of length at most d. Graphs that satisfy property P, 4 for some m and d arc said to
have a Menger Path System. In [5], the existence of a Menger Path System in relation to neighborhood
unions was stadied. We close with a result on Menger Systems using our intersection condition.

Theorem 8, If Ghasorderp >k + 1and /C, 2 &, then G has Py 5.

Proof. We will show that for every pair of vertices, there are k paths of length at most 3. Choose
x, ¥y € V(G). If x is not adjacent 1o y, then since FCp 2 k, there are in fact £ paths of length 2 between x
and y,

Suppose that x is adjacent to y. Since G containg af least & -+ 1 vertices, if x and y are adjacent to all
other vertices, there would be at least & — 1 paths of length 2 and one path of length 1. We may assumc
that there exists z € V(G so that z is not adjacent 1o y. By the hypothesis, z and y have at least £ common
neighbors, Since x may be one of these common neighbors, we will only consider the £ —1 others, say
Y1, ¥2 2005 Ye—1- We partition them into two sets,

A={y!lxeEG) and B = {y;| »; ¢ EG)).

For each clement y; in B, there is a set of vertices B;, with at least as many clements as B, that is a common
neighbor of x and y;, and distinct from A, We can find a set of distinct representatives from this set system.
Thus, between x and v (here is a path of length 1, | A | paths of length 2 and | B | paths of length 3.
Consequently, there are k vertex disjoint paths of length at most 3 from x Lo y, regardless of the situation.
Thus, (7 has property Pp, 4. W

Note that although we cannot assure that the intersection condition gives more than %—connectivity
(recall Proposition 1), this last result does give a "stronger” form of connectivity condition,

Conclusion. This paper is only a start at investigating the significance of neighborhood interscction
conditions. Other properties of graphs can be considered, as has been done with degrees and generalized
degrees of several types. Such conditions include matchings, (nonhamilionian) path and cycle lengths and
chromatic number just to mention a few. Additionally, as has been done for generalized degrees, there is
no Teason (o restrict attention to just nonadjacent vertices.
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