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Abstract

Faudree, R.J., R.J. Gould and L.M. Lesniak, Neighborhood conditions and edge-disjoint
perfect matchings, Discrete Mathematics 91 (1991) 33-43.

A graph G satisfies the neighborhood condition ANC(G) = m if, for all pairs of vertices of G,
the union of their neighborhoods has at least m vertices. For a fixed positive integer k, let G be
a graph of even order n which satisfies the following conditions: 6(G) =k + 1; ¥,(G) = k; and
ANC(G) = n/2. It is shown that if n is sufficiently large then G contains k edge-disjoint perfect
matchings.

A matching in a graph is a set of edges of which no two have a common
incident vertex. An s-matching is a matching with s edges and a perfect matching
in a graph of order n is a matching with n/2 edges. The classic theorem of Tutte
[8] characterizing those graphs with perfect matchings states that a nontrivial
graph G has a perfect matching if and only if, for every proper subset S of V(G),
the number of components of G — § with an odd number of vertices is at most
|S|. Anderson’s proof of Tutte’s Theorem [1] employs Hall’s Theorem [5], one
form of which can be stated as: Let G be a bipartite graph with partite sets V; and
V., where |Vy| = |V,|. Then G contains a perfect matching if and only if for every
subset S of V;,

ING(S)| =151,
where Ns(S) denotes the set of all vertices adjacent to at least one vertex of S.
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Recently, a number of ‘neighborhood conditions’ guaranteeing s-matchings in
graphs have been obtained. For a vertex x of a graph G, let Ng(x) denote
Ng({x}). In [2] it was shown that if [Ng(x) U Ng(y)| is sufficiently large for every
pair x,y of non-adjacent vertices of G, then G contains an s-matching.
(‘Sufficiently large’ is a function of s and the number of vertices of G.) Later in
[3], a related result gave a condition on neighborhood unions of pairs of
nonadjacent vertices that guarantees many edge-disjoint perfect matchings in a
graph. In [4], it was shown that if G is a connected graph of order n and
ING(x) UNg(y)|=s for all pairs x,y of vertices of G, 1<s<n/2, then G
contains an s-matching. In particular, if G is connected and |Ng(x) U Ng(y)| =
n/2 for all pairs x, y of vertices of GG, then G has a perfect matching. Here we
extend this result.

A graph G satisfies the all pairs neighborhood condition ANC(G) = m if, for
each pair x, y of vertices of G, we have

INg(x) U Ng(y)|=m.

Theorem 1. Let k be a positive integer and G a graph of even order n which
satisfies the following conditions:

the minimum degree 6(G) of G is at least k +1; 1)
the edge-connectivity ¥,(G) is at least k; and )
ANC(G)=n/2. 3)

Then if n is sufficiently large, G contains k edge-disjoint perfect matchings.

The following examples illustrate that each of conditions (1), (2), and (3) is
necessary for G to contain k edge-disjoint perfect matchings. If G is the complete
bipartite graph K(n/2—1, n/2+1), then for n sufficiently large G satisfies
conditions (1) and (2), but not (3). In this case, G contains no perfect matchings.
Next, let G be the graph obtained by adding k — 1 edges between two disjoint
copies of the complete graph K, ,,. Then for n =2 (mod 4) and » sufficiently large,
G satisfies (1) and (3) but not (2), and the maximum number of edge-disjoint
perfect matchings in G is kK —1. Finally, let G be any graph obtained by
identifying one vertex of a copy of K,, with one vertex of another copy of K,
and then adding a vertex x of degree & so that in the resulting graph, x is adjacent
to the only vertex of degree n — 1. Then for n =0 (mod 4) and r sufficiently large,
G satisfies (2) and (3) but not (1), and the maximum number of edge-disjoint
perfect matchings in G is k — 1.

The following results will be useful in the proof of Theorem 1.

Theorem A [4]. If G is a 2-connected graph of order n sufficiently large which
satisfies ANC(G) = n/2, then G is hamiltonian.
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Theorem B [7]. If ex(n, K(s, s)) denotes the maximum number of edges in a
graph of order n which does not contain the complete bipartite graph K(s, s), then

ex(n, K(s, 5)) < 3i(s — D¥n@ " + O(n).

Theorem C [6]. If G is a spanning subgraph of the complete bipartite graph
K(n/2, n/2) and 6(G) = n/4, then G has a perfect matching.

Lemma 1. Let k be a fixed positive integer and G a graph of odd order n which

satisfies ANC(G)= (n—1)/2+42k. Then for any sequence u,, u,,...,u; of
vertices of G (where the u;’s are not necessarily distinct), there are k edge-disjoint
matchings M, M,, . . ., My such that fori=1,2, ..., k, M;is a perfect matching
Of G - u,~.

Proof. We first observe that G — u; has order n — 1 and satisfies ANC(G — u,) =
(n—1)/2+4+2k~1=(n—1)/2+ 1. This implies that G — u, is connected and, as
indicated earlier, that G — u; has a perfect matching. Assume now that for some
t, 1=t<k, we have constructed the desired matchings M, M,,..., M,.
Consider

G =G- (L’J Mi) Uit
i=1

Then G' has order n — 1 and satisfies
ANC(G)=z(n—-1)/2+2k-2t+1)=(n—-1)2+2k—(2(k—1)+1)
=z(n-1/2+1.

Again, this implies that G’ has a perfect matching M,,; and the proof is
complete. O

Lemma 2. Let t and k be positive integers and let G be a graph of order n
satisfying ANC(G)=t. Then for n sufficiently large, G contains k edge-disjoint
t-matchings.

Proof. Since ANC(G) =t it follows, of course that |Ng(x) U Ng(y)| =t for every
pair x, y of non-adjacent vertices of G. It follows from Theorem 1(a) and (b) of
[2] that for n sufficiently large, G contains at least one t-matching M,. Suppose,
then, that edge-disjoint ¢-matchings M;, M,, ..., M, have been constructed,
p<k,andlet G'=G —_F_, M,. Let F be a maximum matching in G’. We wish
to show that |F| =t Suppose, to the contrary, that |[F| <t Let W be the set of
vertices of G’ incident with no edge of F. Then, by the maximality of F, no two
vertices of W are adjacent in G'. Now, since at most 2tp vertices of W are
incident (in G) to edges in (_}_, M,, it follows that for n sufficiently large there
are at least four vertices in W incident with none of the edges in |_}_; M;. Let W'
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be the set of these vertices. Thus |Ng(4) U Ng-(v)| =t for every u, v in W'. This
implies, however, that for some edge e =xy in F and some u, v in W’, both ux
and vy are edges of G'. But then F — {xy} U {ux, vy} is a matching in G’, which
contradicts the maximality of F. O

Proof of Theorem 1. Assume first that G has a cutvertex v. Then, since G
satisfies ANC(G)=n/2, we must have that G —uv consists of exactly two
complete components A and B, one of order n/2 — 1 and the other of order n/2.
Since ¥#,(G) = k, if follows that in G the vertex v is adjacent to at least k vertices
of A and k vertices of B. Certainly, for n sufficiently large, G has k edge-disjoint
perfect matchings. Thus we may assume that G is 2-connected. By Theorem A,
the graph G is hamiltonian and so contains at least two edge-disjoint perfect
matchings. Thus if the result fails to hold, k = 3 and we may assume that G is an
edge-maximal counterexample.

Let x, y be non-adjacent vertices of G. The maximality of G implies that the
graph G + xy contains k edge-disjoint perfect matchings M,, M,, ..., M, with
xy € M,. Furthermore, if H is the graph obtained from G by removing
M, M, ... M,_,, then H contains an (n/2 — 1)-matching but no perfect match-
ing. It follows, from Tutte’s Theorem and the maximality of G, that there is a
proper subset S of V(H) such that H — S has exactly s +2 odd components,
where s = |§| =0 and x and y are in different components of H — S. Furthermore,
degyz =degsz — (k — 1) for every vertex z of H. In particular, if u and v are any
two vertices of H, then |Ny(u) U Ny(v)| =n/2 —-2(k — 1), i.e., ANC(H)=n/2 -
2(k—1).

Assume first that s = 0. Thus H has exactly two odd components and, perhaps,
some even components. Since d(G) =k + 1, it follows that (H) =2 and so each
component of H has at least three vertices. Let C be any component of H and let
u, v be two vertices in C. Since ANC(H) = n/2 — 2(k — 1), it follows that C has at
least n/2 —2(k — 1) vertices. This implies, for n sufficiently large, that H has
exactly two components C; and C,, each of odd order at most n/2 +2(k — 1),
and ANC(C;) =n/2—2(k — 1) for i =1, 2. Thus, for n sufficiently large,

ANC(C)=n/2— 2k — 1) = (n/2 + 2(k — 1) — 1)/2 + 2k,

and so Lemma 1 applies to each of C, and C,. Finally, since %,(G) = k, there are
at least k edges in G between the vertices of C, and C,. This, however, together
with Lemma 1, implies that G has k edge-disjoint perfect matchings, producing a
contradiction. Thus, s = 1.

Let C,,C,, ..., C,., be the odd components of H — S, where n;=|C;| for
1=1,2,...,5s+2, and n,<n,<---=n, .,

We first show that n; = 1. Assume, to the contrary, that n, = 3. Then

s+2

n?Zn,—+s>3(s+2)+s,
i=1
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implying that s <n/4. Now, let u, v e V(C,). Since
INg() UNg(W)| 2 n/2 -2k - 1)
and
Ny(u)UNy(v) s V(CHUS,
it follows that n, + s =n/2 — 2(k — 1). Furthermore, since C, is the smallest odd

component of H — S, necessarily n; < (n —5)/(s + 2). Consequently,

(n—ys) >___ B
(s+2)+ 2 2(k—1).

Simplifying, we find that
ns <25+ 2s + 4(k — 1)(s +2).
Since s = 1, have

4k —1(s+2)
B

ns2s+2+

Since s <n/4, for n sufficiently large,

2s+2+w<n,
N

and we reach a contradiction. Thus, n, = 1.
Now, consider the case n,>1. We first show that s =1. Assume, to the
contrary, that n,=3 and s = 2. Since n, =1 and n, =3, we have

s+2
n=zy n+s=3(+1)+s+1,
i=1
implying that s <#n/4. Choose u, v € V(C,). Since
Nu(u) UNy(v) s V(C)U S
and
INg(W) U Ny (v)| = n/2 - 2(k — 1),

we have n,+s=n/2 - 2(k —1). Also, since n,<n;<---<n_,,, it follows that
n,<(n—1-ys)/(s +1). Thus,

n—1-s)

n
+sz-—-2k-1
Grn TFFpT kD,

and so

nis—1)<s2s -2+ 4k —1)(s +1).
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Since s =2, we have

@72 4k~ 1)(s+1)
"Teo1) G-1)

As before, s <n/4 implies that for n sufficiently large,

(25°—2) 4k—1D(s+1)
G-D -1

Thus, if n, > 1, then s = 1. But then in H, the single vertex z of C, has degree at
most one, so that degsz < k. This contradicts 6(G)=k + 1. We conclude that
n,=1.

Thus n;=n,=1. Let u, v be the vertices in C; and C,. Then |Ny(u)U
Ny()|=zn/2-2(k—1) and Ny(u)UNy(v)<S, so that s=n/2—-2(k—1).
Furthermore, since H — S has at least s + 2 vertices, we have s <n/2.

We may assume then that for every pair x, y of non-adjacent vertices of G there
are k — 1 perfect matchings M;, M,, . . . , M;_, whose removal from G results in a
graph H with the following properties:

(i) there is a set S of s vertices of H whose removal results in a graph with
exactly s + 2 odd components;
(i) n/2-2(k—-1)<ss<n/2;

(iii) x and y belong to different components of H — .

For each such pair x, y choose one such graph and denote it by H, , and let S, ,
denote the corresponding set S.
We next observe that

xy ¢ E(G) = |Ng(x) UNg(y)I<n/2+4(k—1). 4)
This follows by considering H =H, , and S =S, ,. Then

[NG(x) UNg(y)| <2(k — 1) + [Ny(x) U Ny(y)l.

Also, if C, is the component of H — § containing x and C, is the component of
H — § containing y, then

INu(x) UNg(p)l <s +1C| +1C)| —2.

However, |C,| + |C,| <n — 2s and, since s =n/2 — 2(k — 1), it follows that
(Nt()UNg(W<=n/2+2(k—-1)-2.

Thus,
INc(x) UNg(¥)|<n/2+4(k —1).

Select non-adjacent vertices u, v of G and consider H=H, ,. Let A=S§, ..
Then n/2—-2(k —1)<|A|<n/2. Furthermore, H—A has |A|+2 odd com-
ponents. Suppose that m of these odd components contain three or more vertices.
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Then
n=3m+ (|A|+2—m)+|A]|,
so that
m=s(n-2|A|-2)2<@k-1)-2)/2=2(k-1)— 1.
Thus H — A has at least |[A| + 2 — m isolated vertices, where
Al+2—m=n2-2(k—-1)+2-2(k—-1)+1
=n/2—-4(k—-1)+3.

Let B be the set of isolated vertices in H — A that have degree at least n/4 in G.
Since ANC(G) = n/2, at most one vertex of G has degree less than n/4. Thus

[B|=n/2—4(k — 1) +2.

We conclude that G has k — 1 edge-disjoint perfect matchings whose removal

results in a graph H with disjoint sets A and B of vertices such that:
(i) n/2-2(k—-1)<|A|<n/2;

@ii) |Bl=n/2-4(k—-1)+2;

(iii) in H, each vertex of B is adjacent only to vertices of A; and

(iv) in H, each vertex of B is adjacent to at least n/4 — (k — 1) vertices of A.

Now, let G(A, B) denote the bipartite graph with vertex set AU B and edge
set {ab|aeA,beB, and ab ¢ E(G)}. Then K(2(k—1),2(k—1)) is not a
subgraph of G(A, B); otherwise, select two vertices x and y of B that are vertices
in the copy of K(2(k — 1), 2(k — 1)) in G(A, B). Then, by (i) and (iii) above,

INu(x) U Nu(p)| <n/2=2(k = 1),

which contradicts ANC(G) = n/2.

Thus, an application of Theorem B yields that G(A, B) has fewer than
¢ n? VCKk=) edges, where c, is a constant depending on k.

Let x be a vertex of A which is adjacent, in G, to at least n/4+5(k —1)
vertices of B, and let y be any vertex of B. Then

ING(x) U Na(y)1 = [N (x) U Nu(y)l

n n
== 45k —1)+-—(k—1
G SUe=D+T- (k=1

n
=~+4(k - 1).

SHak—1)
By (4), it follows that xy € E(G). Thus, in G, if a vertex of A is adjacent to at
least n/4 + 5(k — 1) vertices of B, then it is adjacent to every vertex of B.

Let m denote the number of vertices of A which are adjacent in G to fewer
than n/4 + 5(k — 1) vertices of B. Thus, in G(A, B), each of these vertices of A is
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adjacent to more than n/4 — 9(k — 1) + 2 vertices of B, so that G(A, B) contains
more than m(n/4—9(k —1)+2) edges. However, G(A, B) has fewer than
c,n*~VCE=) edges. Thus, m < cin!~VC* 1) where ¢/ is a constant depending
only on k. Let A" denote the vertices in A which are adjacent in G to all vertices
of B. Then |A'|=n/2—dn'~VC* =) where d, is a constant depending only on
k, |B|=n/2—4(k—1)+2, and, in G, every vertex of A’ is adjacent to every
vertex of B. Consider any vertex x € V(G) — (A’ U B) with degsx =n/4. Then x
is adjacent in G to at least n/48 vertices of A’ or n/48 vertices of B for n
sufficiently large. This follows from the fact that [A’UB|=n/3+n/2 - 4(k -
1) + 2 for n sufficiently large. Thus |V(G) — (A4’ U B)|<n/6 + 4(k — 1) — 2. Since
degsx =n/4, it must be that x is adjacent to at least

nl4—(n/6+4(k —1)—2)=n/12— 4(k — 1) + 2 > n/24

vertices of A’U B. If x is adjacent to at least n/48 vertices of A’, then x is
adjacent to every vertex of A'; otherwise, there is a vertex z in A’ which is not
adjacent to x in G but for which

n n n
ING(0) U NG(2)| 2 2 +5 =4k — 1) +2= 7+ d(k — 1),

for n sufficiently large, contradicting (4). Similarly, if x is adjacent to n/48
vertices of B, then x is adjacent to every vertex of B. Inductively, we conclude
that there are disjoint sets A” and B” of vertices of G such that:
(i) n—1=<|A"UB"|<n;
(ii) in G, every vertex of A” is adjacent to every vertex of B”; and
(iii) n/2—dn'" " "D < 4" < |B").
Note that there may be adjacent vertices of B".

We next show that A” and B” can be chosen satisfying (i), (ii) and (iii) and
satisfying |B"| — |A"| < 12k. Suppose, to the contrary, that for all disjoint sets A"
and B” of vertices satisfying (i), (ii) and (iii), we also have |B"|— |A"|= 12k.
Choose one such pair A”, B"” for which |B"| —|A"| is minimum. Since |B"|—
|A"| = 12k and n is even, it follows that |B"| = n/2 + 6k. Now, the subgraph of G
induced by A", denoted (A");, is complete; otherwise there are non-adjacent
vertices x, y in A” for which

INg(x) U Ng(»)| = |B"| = n/2 + 6k,

which contradicts (4). Furthermore, by the minimality of |B"| — |A”|, no vertex y
in B” is adjacent to every other vertex of B”; otherwise, y could be added to A".
This implies that each vertex of B” is adjacent to fewer than d,n!~V@¢<=1) 4
4(k — 1) vertices of B"; otherwise, there are nonadjacent vertices x and y of B”
for which

'NG(X) ) NG(y)| = n/2 _ dknl—I/(Z(k—l)) + dknl—ll(Z(k—l)) + 4(k _ 1),

which contradicts (4).
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Now, let x and y be nonadjacent vertices of B”, and consider the graph
H=H,, with corresponding set §=3S,,. Since n/2—2(k —1)=<|$|<n/2 and
H — S has at least |S| +2 components, it follows that each component of H — §
has at most 4(k — 1) — 1 vertices. Consequently, for each vertex z in V(H) -,
we have deg,z <n/2+ 4(k — 1). However, in G, each vertex of A” has degree at
least n — 2 since {(A") is complete and |[A"U B"{=n — 1, so that every vertex of
A" has degree at least (n —2)—(k—1) in H. Since, for n sufficiently large,
(n—2)—(k—1)>n/2+4(k — 1), we conclude that A" c S. Furthermore, since
|S|=n/2—2(k — 1), it follows that |V(H) — S| <n/2+2(k —1). But |B"|=n/2 +
6k. Thus, |B" N S| = 4k. Choose 4k vertices of B" N §; call this set D.

We now count the number of edges in G between D and V(G)—S. As
observed, each vertex of B” is adjacent in G to fewer than d,n'~V* =) 4+ 4(k —
1) other vertices of B”. Since A" c S, it follows that the number of edges in G
between D and V(G) — S is at most

(4k)(den'~VCED) 4 4(k —1)).

Furthermore, for n sufficiently large,
(4k)(dyn'~VE=D) 4 4(k — 1)) sg ~1.

However, |V(G)— S| =n/2+4 1. Thus there are two vertices z, w of V(G)—§
which are adjacent, in G, to none of the vertices of D. But then

NH(W) U NH(Z) = (S - D) U V(Cw) U V(Cz);

where C,, and C, are the components of H containing w and z, respectively.
(Note that we may have C,, = C,.) Then

INt(WYU Ng(2)| < |S| -4k +|C,UC,|<|S| -4k +(n—2|S))

=n—|S|—4ksn—<g—2(k—1))—4k

n
< - — -1).

This, however, contradicts ANC(G) = n/2. Thus, G has disjoint sets A” and B” of
vertices satisfying (i), (ii), (iii) and |B"| — |A"| <12k.

Assume first that |A”U B"| =n. Then |A"|=n/2—1t and |B"|=n/2+t, where
t <6k. Since ANC(G) = n/2, it follows that ANC({B”)s) =t. Since ¢ is bounded
by 6k, we may apply an argument like that given in Lemma 2 to conclude that
(B")s contains k edge-disjoint t-matchings Ny, N,, ..., Ni. Let V;, V5, ..., V,
be the sets of vertices of B” incident with edges in N;, N,, . . ., N, respectively.
Note that these sets of vertices are not necessarily disjoint. Consider the complete
bipartite subgraph G; of G with partite sets B” — V; and A". Certainly, G, has a
perfect matching M,, which together with N; produces a perfect matching M; of
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G. Consider now G — Mj, and the bipartite subgraph G, of G — M{ with partite
sets B” — V, and A”. Although G, is not a complete bipartite graph, it is true that
for every w e V(G;) we have deg;,w =|A"| —1=n/2—~t— 1. However, G, has
order n —2¢, and n/2 —t— 1= (n —2t)/4 for n sufficiently large. Thus, G, has a
perfect matching M, by Theorem C, and then M;= M, U N, is a perfect matching
of G, disjoint from M;. We continue in this fashion to produce edge-disjoint
perfect matchings of G. Suppose M{, M, ..., M,, have been constructed, where
p <k. Consider G —_F_; M;, and the bipartite subgraph G,.; of G —(_f_, M/
with partite sets B”"—V,,, and A". Then degg,, K w=n/2—t—p for every
weV(G,.,1). Again, G,., has order n —2t and n/2—t—p=(n—2t)/4 for n
sufficiently large, so that G,., has a perfect matching M,,,. Then M,,, =
M, UN,., is a perfect matching of G, disjoint from M{, M;, ..., M,. Thus G
contains k edge-disjoint perfect matchings, contradicting our assumption that no
such matchings exist. It follows that, necessarily, |A"UB"|=n — 1.

Since |A"UB"|=n—1 and |B"| —|A"| <12k we have that |B"|=n/2+¢ and
[A"l=n/2 —t—1 where t<6k. Let x be the vertex of G not in A”U B”. Then
k<degsx<n/4. Leta,,...,an, byi1, ..., by be k vertices of G adjacent to x
where each a;€ A” and each b, e B". Since ANC(G)=n/2, it follows that
ANC((B"U {x})s)=t+ 1. Since ¢ is bounded by 6k and degsx <n/4 we may
apply an argument like that given in Lemma 2 to conclude that (B"U {x})¢s

contains k edge-disjoint (¢ + 1)-matchings N,, N,, ..., N,, none of which con-
tains an edge incident with x. Let V|, V,, ..., V, be the sets of vertices in B”
incident with the edges in Ny, N,, ..., N, respectively. Consider the complete

bipartite graph G, of G with partite sets B"—V, and A"~ {a,}. Then G; has a
perfect matching M; which together with N, U {xa,} is a perfect matching M; of
G. Suppose edge-disjoint perfect matchings M, M;, ..., M, have been con-
structed, where p <m. Consider the bipartite subgraph G,.; of G —_}_, M;
with partite sets B"—V,,,, and A" — {a,,,}. Then deg;,, ,w=n/2—t—2—p for
every vertex w of G,,,. Also, G, has order n — 2t — 4 and

nf2—t—2—-p=(n-2t—4)/4

for n sufficiently large, so that G,., has a perfect matching M,,,. Then

M,,;=M,,;UN,, U {xa,.,} is a perfect matching of G disjoint from
Mi,M;,...,M,. Thus G contains edge-disjoint perfect matchings
M, M, ..., M), where xa,e M/ fori=1,...,m.

Fori=m+1,...,k, let N/ be a t-matching contained in N, such that no edge

of N/ is incident with b; and let V; be the vertices incident with the edges in N;.
Consider the bipartite subgraph G, ,; of G —{ %, M| with partite sets B" —
{bpms+1} = Vims1 and A”. Then degg,, w=n/2—t—1—m for every w in G, ;.
Also, G,,., has order n —2¢ — 2 and

nf2—t—1—-m=(n-2t-2)/4
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for n sufficiently large. Thus G,,,, has a perfect matching M,,,, and M,, ., =
M, .1 UN,, . U{xb,, .} is a perfect matching of G disjoint from
M{,M,, ..., M. Clearly we can continue to construct k edge-disjoint perfect
matchings of G. Thus our assumption that a maximal counterexample exists leads
us to a contradiction and the proof is complete. [
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