
Discrete Mathematics 91 (1991) 33-43 

North-Holland 

33 

Neighborhood conditions and 
edge-disjoint perfect matchings 

R.J. Faudree* 
Department of Mathematical Sciences, Memphis State University, Memphis, TN 381.52, USA 

R.J. Gould* 
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, 
USA 

L.M. Lesniak 
Department of Mathematics and Computer Science, Drew University, Madison, NJ 07940, USA 

Received 2 February 1988 
Revised 1 December 1989 

Abstract 

Faudree, R.J., R.J. Gould and L.M. Lesniak, Neighborhood conditions and edge-disjoint 

perfect matchings, Discrete Mathematics 91 (1991) 33-43. 

A graph G satisfies the neighborhood condition ANC(G) 2 m if, for all pairs of vertices of G, 
the union of their neighborhoods has at least m vertices. For a fixed positive integer k, let G be 

a graph of even order n which satisfies the following conditions: 6(G) 2 k + 1; x,(G) 2 k; and 

ANC(G) 2 n/2. It is shown that if n is sufficiently large then G contains k edge-disjoint perfect 

matchings. 

A matching in a graph is a set of edges of which no two have a common 
incident vertex. An s-matching is a matching with s edges and a perfect matching 
in a graph of order n is a matching with n/2 edges. The classic theorem of Tutte 
[S] characterizing those graphs with perfect matchings states that a nontrivial 
graph G has a perfect matching if and only if, for every proper subset S of V(G), 
the number of components of G - S with an odd number of vertices is at most 
ISI. Anderson’s proof of Tutte’s Theorem [I] employs Hall’s Theorem [5], one 
form of which can be stated as: Let G be a bipartite graph with partite sets VI and 
V,, where IV,1 = IV,l. Then G contains a perfect matching if and only if for every 
subset S of VI, 

INAm 2 ISI, 
where NG(S) denotes the set of all vertices adjacent to at least one vertex of S. 
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Recently, a number of ‘neighborhood conditions’ guaranteeing s-matchings in 
graphs have been obtained. For a vertex x of a graph G, let N&z) denote 

WIx]). In ]21 ‘t 1 was shown that if [N&X) U N,(y)1 is sufficiently large for every 
pair X, y of non-adjacent vertices of G, then G contains an s-matching. 
(‘Sufficiently large’ is a function of s and the number of vertices of G.) Later in 
[3], a related result gave a condition on neighborhood unions of pairs of 
nonadjacent vertices that guarantees many edge-disjoint perfect matchings in a 
graph. In [4], it was shown that if G is a connected graph of order n and 

IX&) u k(Y)1 3 s for all pairs x, y of vertices of G, 1 c s c n/2, then G 
contains an s-matching. In particular, if G is connected and ]iVG(x) U N,(y)1 2 
n/2 for all pairs X, y of vertices of G, then G has a perfect matching. Here we 
extend this result. 

A graph G satisfies the all pairs neighborhood condition ANC(G) 2 m if, for 
each pair x, y of vertices of G, we have 

NA-4 U WY)I am. 

Theorem 1. Let k be a positive integer and G a graph of even order n which 

satisfies the following conditions : 

the minimum degree 6(G) of G is at least k + 1; 
the edge-connectivity X,(G) is at least k; and 

ANC(G) 2 n/2. 

Then if n is sufficiently large, G contains k edge-disjoint perfect matchings. 

(1) 

(2) 

(3) 

The following examples illustrate that each of conditions (l), (2), and (3) is 
necessary for G to contain k edge-disjoint perfect matchings. If G is the complete 
bipartite graph K(n/2 - 1, n/2 + l), then for n sufficiently large G satisfies 
conditions (1) and (2), but not (3). In this case, G contains no perfect matchings. 
Next, let G be the graph obtained by adding k - 1 edges between two disjoint 
copies of the complete graph K,,,P Then for n = 2 (mod 4) and n sufficiently large, 
G satisfies (1) and (3) but not (2), and the maximum number of edge-disjoint 
perfect matchings in G is k - 1. Finally, let G be any graph obtained by 
identifying one vertex of a copy of Kn12 with one vertex of another copy of K,,,* 

and then adding a vertex x of degree k so that in the resulting graph, x is adjacent 
to the only vertex of degree n - 1. Then for n = 0 (mod 4) and n sufficiently large, 
G satisfies (2) and (3) but not (l), and the maximum number of edge-disjoint 
perfect matchings in G is k - 1. 

The following results will be useful in the proof of Theorem 1. 

Theorem A [4]. Zf G ZYV a 2-connected graph of order n sufficiently large which 

satisfies ANC(G) 2 n/2, then G is hamiltonian. 
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Theorem B [7]. Zf ex(n, K(s, s)) denotes the maximum number of edges in a 

graph of order n which does not contain the complete bipartite graph K(s, s), then 

ex(n, K(s, s)) s i(s - l)“%z(*-“‘) + O(n). 

Theorem C [6]. If G is a spanning subgraph of the complete bipartite graph 
K(n/2, n/2) and 6(G) > n/4, then G has a perfect matching. 

Lemma 1. Let k be a fixed positive integer and G a graph of odd order n which 
satisfies ANC(G) 3 (n - 1)/2 + 2k. Then for any sequence ul, u2, . . . , uk of 

vertices of G (where the ui’s are not necessarily distinct), there are k edge-disjoint 
matchings MI, M2, . . . , Mk such that for i = 1, 2, . . . , k, Mi is a perfect matching 

of G - Ui. 

Proof. We first observe that G - u1 has order n - 1 and satisfies ANC(G - u,) 2 

(n - 1)/2 + 2k - 13 (n - 1)/2 + 1. This implies that G - u1 is connected and, as 

indicated earlier, that G - u1 has a perfect matching. Assume now that for some 

t, 1 <t < k, we have constructed the desired matchings MI, M2, _ . . , M,. 

Consider 

Then G’ has order n - 1 and satisfies 

ANC(G’) 2 (n - 1)/2 + 2k - (2t + 1) 3 (n - 1)/2 + 2k - (2(k - 1) + 1) 

> (n - 1)/2 + 1. 

Again, this implies that G’ has a perfect matching M,,, and the proof is 

complete. 0 

Lemma 2. Let t and k be positive integers and let G be a graph of order n 
satisfying ANC(G) 5 t. Then for n sufficiently large, G contains k edge-disjoint 
t-matchings. 

Proof. Since ANC(G) 2 t it follows, of course that 1&(x) U A/,(y)1 3 t for every 

pair X, y of non-adjacent vertices of G. It follows from Theorem l(a) and (b) of 

[2] that for n sufficiently large, G contains at least one t-matching MI. Suppose, 

then, that edge-disjoint t-matchings MI, M,, . . . , M, have been constructed, 

p <k, and let G’ = G - u=, Mi. Let F be a maximum matching in G’. We wish 

to show that IFI 3 t. Suppose, to the contrary, that IFJ ct. Let W be the set of 

vertices of G’ incident with no edge of F. Then, by the maximality of F, no two 

vertices of W are adjacent in G’. Now, since at most 2tp vertices of W are 

incident (in G) to edges in &i Mi, it follows that for n sufficiently large there 

are at least four vertices in W incident with none of the edges in UC1 Mi. Let W’ 
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be the set of these vertices. Thus IN&u) U N,.(v)l 3 t for every U, v in W’. This 
implies, however, that for some edge e = xy in F and some U, TV in W’, both ux 
and vy are edges of G’. But then F - {xy} U {ax, vy} is a matching in G’, which 
contradicts the maximality of F. Cl 

Proof of Theorem 1. Assume first that G has a cutvertex u. Then, since G 
satisfies ANC(G) >n/2, we must have that G - r~ consists of exactly two 
complete components A and B, one of order n/2 - 1 and the other of order n/2. 
Since X,(G) 2 k, if follows that in G the vertex v is adjacent to at least k vertices 
of A and k vertices of B. Certainly, for n sufficiently large, G has k edge-disjoint 
perfect matchings. Thus we may assume that G is 2-connected. By Theorem A, 
the graph G is hamiltonian and so contains at least two edge-disjoint perfect 
matchings. Thus if the result fails to hold, k 3 3 and we may assume that G is an 
edge-maximal counterexample. 

Let X, y be non-adjacent vertices of G. The maximality of G implies that the 
graph G + xy contains k edge-disjoint perfect matchings M,, M2, . . . , it& with 
xy E Mk. Furthermore, if H is the graph obtained from G by removing 

W,M,,... Mk_-lr then H contains an (n/2 - l)-matching but no perfect match- 
ing. It follows, from Tutte’s Theorem and the maximality of G, that there is a 
proper subset S of V(H) such that H-S has exactly s + 2 odd components, 
where s = ISJ 2 0 and x and y are in different components of H - S. Furthermore, 
deg,z = degoz - (k - 1) for every vertex z of H. In particular, if u and Y are any 
two vertices of H, then IiVH(u) U NH(u)1 2 n/2 - 2(k - l), i.e., ANC(H) 3 n/2 - 

2(k - 1). 
Assume first that s = 0. Thus H has exactly two odd components and, perhaps, 

some even components. Since 6(G) 2 k + 1, it follows that 6(H) 2 2 and so each 
component of H has at least three vertices. Let C be any component of H and let 
U, u be two vertices in C. Since ANC(H) 2 n/2 - 2(k - l), it follows that C has at 
least n/2 - 2(k - 1) vertices. This implies, for n sufficiently large, that H has 
exactly two components C1 and Cz, each of odd order at most n/2 + 2(k - l), 
and ANC(C,) 2 n/2 - 2(k - 1) for i = 1, 2. Thus, for n sufficiently large, 

ANC(C,) Z= n/2 - 2(k - 1) 2 (n/2 + 2(k - 1) - 1)/2 + 2k, 

and so Lemma 1 applies to each of C, and C2. Finally, since Xi(G) a k, there are 
at least k edges in G between the vertices of C1 and C2. This, however, together 
with Lemma 1, implies that G has k edge-disjoint perfect matchings, producing a 
contradiction. Thus, s 3 1. 

Let C1, CZ, . . . , G+2 be the odd components of H - S, where ni = lC;( for 
1=1,2 ,..., s+2, andn,<n:!~*.*~nn,+,. 

We first show that nl = 1. Assume, to the contrary, that n1 2 3. Then 

s+2 

nSzni+sS3(s+2)+s, 
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implying that s <n/4. Now, let U, u E V(C,). Since 

IN&) u b(u)1 an/2-2(k-1) 

and 

NH(U) u N,(u) E V(G) u s, 

it follows that n, + s 3 n/2 - 2(k - 1). Furthermore, since C1 is the smallest odd 
component of H - S, necessarily n, S (n - s)/(s + 2). Consequently, 

(n -s) -+s+2(&l). 
(s +2) 

Simplifying, we find that 

Izs < 2s’ + 2s + 4(k - l)(s + 2). 

Since s 3 1, have 

<2s+2+4(k-l)(s+2) n- 
s 

Since s < n/4, for n sufficiently large, 

2s+2+4(k-l)(s+2)<_ 
7 

s 

and we reach a contradiction. Thus, n1 = 1. 
Now, consider the case n2 > 1. We first show that s = 1. Assume, to the 

contrary, that n2 2 3 and s 2 2. Since nl = 1 and n2 2 3, we have 

Sf2 
n 3 z ni + s 3 3(s + 1) + s + 1, 

implying that s <n/4. Choose u, u E V(C,). Since 

NH(U) u NH(V) c V(G) us 

and 

IN&u) u NH(U)1 2 n/2 - 2(/c - l), 

we have n2 + s 2 n/2 - 2(k - 1). Also, since n2 s It3 s * . * s ns+2, it follows that 
n2 S (n - 1 - s)/(s + 1). Thus, 

(n - 1 - s) 

(s+l) 
++-2(k-l), 

and so 

n(s - 1) G 2.s2 - 2 + 4(k - l)(S + 1). 
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Since s 2 2, we have 

It ~ (a2 - 2) + 4(k - I)@ + 1) 

(s - 1) (s-l) . 

As before, s < n/4 implies that for n sufficiently large, 

(2.s*-2)+4(k-l)(s+l)<n 

(s - 1) (s-l) . 

Thus, if n2 > 1, then s = 1. But then in H, the single vertex z of Cr has degree at 

most one, so that deg,z < k. This contradicts 6(G) 3 k + 1. We conclude that 

n*= 1. 

Thus n, = n2= 1. Let u, v be the vertices in Cr and C2. Then JNH(u) U 

NH(v)1 > n/2 - 2(k - 1) and NH(u) U NH(v) G S, so that s 2 n/2 - 2(k - 1). 

Furthermore, since H - S has at least s + 2 vertices, we have s <n/2. 

We may assume then that for every pair X, y of non-adjacent vertices of G there 

are k - 1 perfect matchings MI, M2, . . . , Mk_-l whose removal from G results in a 

graph H with the following properties: 

(i) there is a set S of s vertices of H whose removal results in a graph with 

exactly s + 2 odd components; 

(ii) n/2 - 2(k - 1) c s < n/2; 
(iii) x and y belong to different components of H - S. 

For each such pair X, y choose one such graph and denote it by Hx,y and let S,, y 

denote the corresponding set S. 

We next observe that 

xy $ E(G) + I&(x) U &(Y)I <n/2 + W - 1). 

This follows by considering H = H,,, and S = S,,,. Then 

IN&) u b(y)1 s 2(k - 1) + b%(x) U NH(Y)I. 

(4) 

Also, if C, is the component of H - S containing x and C, is the component of 

H - S containing y, then 

IN&) u N”(Y)1 ss + lC,l + lC,l - 2. 

However, IC,( + IC,( <n - 2s and, since s 2 n/2 - 2(k - l), it follows that 

IN&) U NAY )I sn/2+2(k-l)-2. 

Thus, 

IN&) U N&y)1 <n/2 + 4(k - 1). 

Select non-adjacent vertices U, 2, of G and consider H = H,,,. Let A = S,,,. 
Then n/2 - 2(k - 1) c IAl <n/2. Furthermore, H-A has IAl + 2 odd com- 

ponents. Suppose that m of these odd components contain three or more vertices. 
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Then 

so that 

m s (n - 21AI - 2)/2 s (4(k - 1) - 2)/2 = 2(k - 1) - 1. 

Thus H - A has at least IA I + 2 - m isolated vertices, where 

IAl + 2 - m 2 n/2 - 2(k - 1) + 2 - 2(k - 1) + 1 

= n/2 - 4(k - 1) + 3. 

Let B be the set of isolated vertices in H - A that have degree at least n/4 in G. 

Since ANC(G) 2 n/2, at most one vertex of G has degree less than n/4. Thus 

IBI 3 n/2 - 4(k - 1) + 2. 

We conclude that G has k - 1 edge-disjoint perfect matchings whose removal 

results in a graph H with disjoint sets A and B of vertices such that: 

(i) n/2 - 2(k - 1) s IAl <n/2; 
(ii) (BI 2 n/2 - 4(k - 1) + 2; 

(iii) in h!, each vertex of B is adjacent only to vertices of A; and 

(iv) in H, each vertex of B is adjacent to at least n/4 - (k - 1) vertices of A. 
Now, let (?(A, B) denote the bipartite graph with vertex set A U B and edge 

set {ab la~A,beB, and ab $ E(G)}. Then K(2(k - l), 2(k - 1)) is not a 

subgraph of G(A, B); otherwise, select two vertices x and y of B that are vertices 

in the copy of K(2(k - l), 2(k - 1)) in (?(A, B). Then, by (i) and (iii) above, 

IN&) U NH(y)1 <n/2 - 2(k - 11, 

which contradicts ANC( G) 2 n /2. 
Thus, an application of Theorem B yields that G(A, B) has fewer than 

ckn2-“(2(k-‘)) d e ges, where ck is a constant depending on k. 
Let x be a vertex of A which is adjacent, in G, to at least n/4 + 5(k - 1) 

vertices of B, and let y be any vertex of B. Then 

I&(x) U WY)l2= IW~) U N4o))I 

>;+5(k-l)+;-(k-1) 

=; + 4(k - 1). 

By (4), it follows that xy E E(G). Thus, in G, if a vertex of A is adjacent to at 

least n/4 + 5(k - 1) vertices of B, then it is adjacent to every vertex of B. 
Let m denote the number of vertices of A which are adjacent in G to fewer 

than n/4 + 5(k - 1) vertices of B. Thus, in G(A, B), each of these vertices of A is 
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adjacent to more than n/4 - 9(k - 1) + 2 vertices of B, so that G(A, B) contains 

more than m(n/4- 9(k - 1) +2) edges. However, G(A, B) has fewer than 
ckn2-‘0(k-‘)) edges. Thus, m c c;n’-‘@(k--l)) , where c; is a constant depending 

only on k. Let A’ denote the vertices in A which are adjacent in G to all vertices 

of B. Then iA’1 2 n/2 - d,r~-“(~(~-~)), where dk is a constant depending only on 

k, JBI 2 n/2 - 4(k - 1) + 2, and, in G, every vertex of A’ is adjacent to every 

vertex of B. Consider any vertex x E V(G) - (A’ U B) with deg,x 3 n/4. Then x 

is adjacent in G to at least n/48 vertices of A’ or n/48 vertices of B for n 

sufficiently large. This follows from the fact that IA’ U BI 3 n/3 + n/2 - 4(k - 
1) + 2 for n sufficiently large. Thus I V(G) - (A’ U B)I s n/6 + 4(k - 1) - 2. Since 

deg,x 2 n/4, it must be that x is adjacent to at least 

n/4 - (n/6 + 4(k - 1) - 2) = n/12 - 4(k - 1) + 2 > n/24 

vertices of A’ U B. If x is adjacent to at least n/48 vertices of A’, then x is 

adjacent to every vertex of A’; otherwise, there is a vertex z in A’ which is not 

adjacent to x in G but for which 

I&(x) U N&)I 2; + ; - 4(k - 1) + 2 3 5 + 4(k - l), 

for n sufficiently large, contradicting (4). Similarly, if x is adjacent to n/48 

vertices of B, then x is adjacent to every vertex of B. Inductively, we conclude 

that there are disjoint sets A” and B” of vertices of G such that: 

(i) n - 1 c IA” U B”I s n ; 
(ii) in G, every vertex of A” is adjacent to every vertex of B”; and 

(iii) n/2 - dkn’-“(2(k-‘)) c IA”1 c IB”J_ 

Note that there may be adjacent vertices of B”. 
We next show that A” and B” can be chosen satisfying (i), (ii) and (iii) and 

satisfying lB”l - [A”[ < 12k. Suppose, to the contrary, that for all disjoint sets A” 
and B” of vertices satisfying (i), (ii) and (iii), we also have lB”l - iA”1 2 12k. 

Choose one such pair A”, B” for which lB”l - IA”1 is minimum. Since IB”I - 
[A”( a 12k and n is even, it follows that lB”lz n/2 + 6k. Now, the subgraph of G 

induced by A”, denoted (A”)G, is complete; otherwise there are non-adjacent 

vertices x, y in A” for which 

IA&(x) U N,(y)1 s lB”I sn/2 + 6k, 

which contradicts (4). Furthermore, by the minimality of lB”l - IA”I, no vertex y 

in B” is adjacent to every other vertex of B”; otherwise, y could be added to A”. 
This implies that each vertex of B” is adjacent to fewer than d,n’-“(2(k-1)) + 
4(k - 1) vertices of B”; otherwise, there are nonadjacent vertices x and y of B” 
for which 

liVG(x) U N,(y)1 3 n/2 - d,n’-1’(2(k-1)) + d,n’-“(2(k-1)) + 4(k - l), 

which contradicts (4). 
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Now, let x and y be nonadjacent vertices of B”, and consider the graph 

H = Hx,y with corresponding set S = S,,,. Since n/2 - 2(k - 1) c ISI <n/2 and 

H - S has at least ISI + 2 components, it follows that each component of H - S 
has at most 4(k - 1) - 1 vertices. Consequently, for each vertex z in V(H) - S, 
we have deg,z < n/2 + 4(k - 1). However, in G, each vertex of A” has degree at 

least n - 2 since (A”)G is complete and IA” U B”( > n - 1, so that every vertex of 

A” has degree at least (n - 2) - (k - 1) in H. Since, for n sufficiently large, 

(n - 2) - (k - 1) > n/2 + 4(k - l), we conclude that A” E S. Furthermore, since 

ISI 3 n/2 - 2(k - l), it follows that IV(H) - S( s n/2 + 2(k - 1). But lB”ls n/2 + 

6k. Thus, IB” n SI a 4k. Choose 4k vertices of B” fl S; call this set D. 

We now count the number of edges in G between D and V(G) -S. As 

observed, each vertex of B” is adjacent in G to fewer than d,n’-“‘2(k-1)) + 4(k - 

1) other vertices of B”. Since A” G S, it follows that the number of edges in G 

between D and V(G) - S is at most 

(4k)(&n 1--1/(*(k--1)) + 4(k _ 1)). 

Furthermore, for n sufficiently large, 

(4k)(dkn l-l/(*(k-l)) + 4(k _ 1)) ~5 _ 1, 

However, (V(G) - SI an/2 + 1. Thus there are two vertices z, w of V(G) - S 
which are adjacent, in G, to none of the vertices of D. But then 

N,(w) u N,(z) c (S - D) u V(C,) u V(C,), 

where C, and C, are the components of H containing w and z, respectively. 

(Note that we may have C, = C,.) Then 

IN”(w) U N,(z)1 s ISI - 4k + IC, U C,I s IS( - 4k + (n - 2 ISI) 

+2(k-1). 

This, however, contradicts ANC( G) 2 n/2. Thus, G has disjoint sets A” and B” of 

vertices satisfying (i), (ii), (iii) and I B”I - IA”1 < 12k. 

Assume first that IA” U B”I = n. Then IA”1 = n/2 - t and IB”I = n/2 + t, where 

t < 6k. Since ANC(G) 3 n/2, it follows that ANC( ( B”)G) 3 t. Since t is bounded 

by 6k, we may apply an argument like that given in Lemma 2 to conclude that 

(B”)G contains k edge-disjoint t-matchings N,, N2, . . . , Nk. Let VI, V,, . . . , V, 
be the sets of vertices of B” incident with edges in N,, N2, . . . , Nk, respectively. 

Note that these sets of vertices are not necessarily disjoint. Consider the complete 

bipartite subgraph G1 of G with partite sets B” - V, and A”. Certainly, Gl has a 

perfect matching MI, which together with Nl produces a perfect matching Ml of 
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G. Consider now G - IV;, and the bipartite subgraph Gz of G - M; with partite 
sets B” - V, and A”. Although G2 is not a complete bipartite graph, it is true that 
for every w E V(GJ we have degczw 2 iA”1 - 13 n/2 - t - 1. However, G2 has 
order n - 2t, and n/2 - t - 12 (n - 2t)/4 for n sufficiently large. Thus, G2 has a 
perfect matching M2 by Theorem C, and then M; = M2 U N2 is a perfect matching 
of G, disjoint from MI. We continue in this fashion to produce edge-disjoint 
perfect matchings of G. Suppose M;, M;, . . . , ML have been constructed, where 
p <k. Consider G - uzl M/, and the bipartite subgraph G,,, of G - uzl Mi 
with partite sets B”- VP+, and A”. Then degcP+, w sn/2 - t -p for every 

w E V(G,+r). Again, G,+, has order n-2t and n/2-t-pa(n-2t)/4 for n 
sufficiently large, so that G,,, has a perfect matching M,,,. Then ML+1 = 

M,+I u &+I is a perfect matching of G, disjoint from M;, M;, . . . , M;. Thus G 
contains k edge-disjoint perfect matchings, contradicting our assumption that no 
such matchings exist. It follows that, necessarily, IA” U B”J = n - 1. 

Since IA” U B”J = n - 1 and lB”l- ]A”( < 12k we have that lB”l= n/2 + t and 
IA”1 = n/2 - t - 1 where t < 6k. Let x be the vertex of G not in A” U B”. Then 
k s deg,x <n/4. Let al, . . . , a,,,, b,,,+I, . . . , bk be k vertices of G adjacent to x 
where each ai E A” and each bi E B”. Since ANC(G) Z= n/2, it follows that 
ANC( (B” U {x} ) G) 3 t + 1. Since t is bounded by 6k and deg,x < n/4 we may 
apply an argument like that given in Lemma 2 to conclude that (B” U {x} )G 
contains k edge-disjoint (t + 1)-matchings N,, N2, . . . , Nk, none of which con- 
tains an edge incident with X. Let VI, V,, . . . , V, be the sets of vertices in B” 
incident with the edges in N,, N2, . . . , Nk, respectively. Consider the complete 
bipartite graph G1 of G with partite sets B” - V, and A” - {a,}. Then G1 has a 
perfect matching MI which together with N1 U {xa,} is a perfect matching M; of 
G. Suppose edge-disjoint perfect matchings M;, M;, . . . , Mi have been con- 
structed, where p =C m. Consider the bipartite subgraph G,,,, of G - lJ=, IV&’ 
with partite sets B”- VP+, and A” - {aP+l}. Then degcp+,w 2 n/2 - t - 2 -p for 
every vertex w of G,,,. Also, G,,, has order n - 2t - 4 and 

n/2-t - 2 -p 3 (n - 2t - 4)/4 

for n sufficiently large, so that G,,, has a perfect matching M,,,. Then 
M’ 

P+l = M,+I U Np+i U {~a~+~} is a perfect matching of G disjoint from 

M;, M;, . . . , M;. Thus G contains edge-disjoint perfect matchings 

M;, M;, . . . , MA where xUi E M; for i = 1, . . . , m. 
For i = m + 1, . . . , k, let N/ be a t-matching contained in Ni such that no edge 

of Ni is incident with b, and let vf be the vertices incident with the edges in Ni. 
Consider the bipartite subgraph G,+i of G - UEi Ml with partite sets B” - 

{b,+d - V;+I and A”. Then degcm+,w an/2-t-1-m for every w in G,+i. 

Also, G,+, has order n - 2t - 2 and 

n/2 - t - 1 - m > (n - 2t - 2)/4 
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for n sufficiently large. Thus G,,, has a perfect matching Mm+1 and ML,1 = 

M m+l UNk+r U {~b,+~} is a perfect matching of G disjoint from 

M;, M;, , . . , MA. Clearly we can continue to construct k edge-disjoint perfect 

matchings of G. Thus our assumption that a maximal counterexample exists leads 

us to a contradiction and the proof is complete. 0 
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