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ABSTRACT

We investigate several hamiltonian related properties in K(1, 3)-free graphs by
imposing a bound on the neighborhood union of pairs of nonadjacent vertices.
We show that the basic results concerning neighborhood unions and hamiltonian
properties in graphs can be improved for graphs containing no induced K(1, 3)
as a subgraph.

A graph is said to be K(I, 3)-free if it does not contain a copy of the complete
bipartite graph, K(1, 3), as an induced subgraph. There have been many results in
recent ycars dealing with K(1, 3)-free graphs. For example, see [6] and [11]. The
assumption that a graph is K(1, 3)-free is quite strong, and it provides the structure
needed to obtain some interesting results involving longest paths and cycles in graphs.
Terms not defined here can be found in [5]).

In [10], M. Matthews and D. Sumner proved that if G is a connected. K(1, 3)free
graph with 82 (p—2)/3, then G is traceable. They also showed that any 2—connected
K(1, 3)-free graph with the same minimum degree condition is hamiltonian. This
irposition of a lower bound on & accounts for a more even edge distribution in the

graph.

* Supported by O.N.R. contract No. N0O00014-88-K~0G70.
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Recently, a different approach was taken by Zhang [14]. With a lower bound on the
degree sums of sets of vertices, he was able to avoid restricting the graph with a
minimum degree condition. More specifically, he proved:

Theorem (Zhang [14)) If G isa k—connected (k22) K(1, 3)-free graph of order
D such that
Y deg(v)2p—k

vel

for any independent (k + 1)-set I, then G is hamiltonian.

To further reduce the edge density of the graph, we consider the neighborhood
unions of pairs of nonadjacent vertices in K(1, 3}-free graphs. We find the basic results
concerning neighborhood unions and hamiltonian properties in graphs [2] can be
irnproved for graphs containing no induced K(1, 3). Asin [1], we define

NC = min [N(u) W NV},
where the minimum is taken over all pairs of nonadjacent vertices u, v. The first result
is one involving traceability.

Theorem 1 If G is a 2-conrected K(1,3)-free graph of order p such that
NC 2(p-2)i2,
then G is traceable.

Proof Assume that G is not traceable. Let P : xy, X2, ..., X; be a longest path in G
with t<p—1, andlet x € V(G-P). Since G is 2—connected, there exist at least two
paths, disjoint except at x, from x to P. Let xje V(P) be the end vertex of a path,
Py, from x to P such that i is minimized. Then choose the path, P2, from x to P so
that if x; is the end vertex of Pz, i <}, there are no paths from x o P with end
vertices in  {Xj41, ..., Xj—1}. Observe that this is possbile, since x cannot be the end
vertex of two paths in V(G —P) that have consecutive end vertices on P.

Since P is a longest path in G, certainly x; and x; have no adjacencies off P.
Also since G is K(1, 3)-free, the edges xj-ixj+1 and xj.1xj+1 are in E(G). (Note
that there exists no path—disjoint from V(P — {x2, xj+2, Xi-1})}—from x to x2, Xj42,
or X1, since these paths and the forbidden subgraph property would force the existence
of the edges Xx1X3, Xj+1Xi+3, OF X;-pXq, respectively. Any of these situations would
create a path longer than P.)

We consider the following adjacencies of x;:

81 = {xk-1: Xk € N(x1) N V(P)].
We will show that §; " N(xj-1) =@ and S; N N(x) =2.
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Now for xi € N(x1),j+3<k<t—1, (observe k#j+1, j+2, and 1) we see that
xg-1 € N(xj-1), ot the path ' ‘
' Xty sees Xks X1» wery Xju1p Xkl Xk25 oons Xjs oons Ko
is longer than P. Similarly, x;_1 ¢ N(x;) or the path
Xy e Xjs Kjoly wony X1s Xkis Xkt 1y <ons Xts Xkly oes Xja 1o
is longer than P. Also for xx e N(x1), i+3<k<j-3 and 2£k<i~1, x¢ ) €
N(x¢) or the path
X; eeny Xj, very Xps Xk—=1s w+0y X15 Xks oens Xj-1-
is a path longer than P. Lastly, N(xj-1) " S1 =@ for i+3<k<j-3 and 2<k<
i—1 since the paths
Xty vars Xjs weey X3 wees Xjy eery Xk15 Xjuls oo0s Xks XI5 wors Xicls and .
Xpy coer Kjy sos Ky wony .xi, vy Kjmls XK—15 ooy X1 XKy wons Xim]s
are longer than P.
Similarly, we now consider the set Sz: _
Sa={y:ye NX-V@P)} U (XK1 :xxk € N} N V(P),j+3<k=<t-2).
Then clearly S2 N N(xj-1) =@ and S2 N N(xp =@. (Note that x is not adjacent to
xj+2.) By the choice of P1 and P there are no other adjacencies of x.

We define the function f: N(x) L N(x1) — N{x.1) UN(xg by:
f(y) =y, for y& V(P);
f(xg_1) =xg, for 2<k<t-1.
From the previous arguments, clearly f is injective; therefore, we have
FA(x) W N(x1)) N (N(xj-1) © Nixp) = 2.
- Also
FN(x) W N(xp)) W (N(xj-1) W N(xp) € V(G) - x5, xp, X}
Since NC z (p— 2)/2, this implies that
(p-2)2 +(p—-2)2 £ p-3, acontradiction.
Therefore, G is traceable. O

Figure 1 illustrates that the connectivity condition in Theorem 1 cannot be lowered.
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Figure 1 A 1-connected K(1, 3)-free graph that is not traceable.

The bipartite graph X(n, n—2) has order p = 2n - 2, while NC 2 (p - 2)/2.7
However, K(n, n-2) is not traceable since induced K(1, 3)'s abound.

‘We next present a series of lemmas which will allow us to prove analegous results
for the hamiltonian property and a "highly hamiltonian" property—pancyclicity. A graph
of order p is pancyclic if it contains a k-cycle for every k such that 3 £k <p. It was
shown in [3] thatif G isa 2-connected graph of order p such that NC 2 Q%Ll+ 2,

then G is pancyclic. We were abie to improve this bound by assuming that G contains
no induced K(1, 3).

First, it will be useful to define a related concept. A connected graph G of order p
is said 1o be panconnected if for each pair u, v of distinct vertices of G there exists a
uv—path of length t, for each t satisfying dist{u, v) <t<p-1. In {13], Williamson
proved that by restricting 8 in G, panconnectedness can be achieved.

Theorem  (Williamson [13]) If G is a graph of order p 24 such that
deg(v) 2pf2 + 1 for every vertex v of G, then G is panconnected.

First we grasp some basic structural ideas:
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Lemma 1 Let H beagraphof order p =22 with independencé number ofH) <2,
andlet G =Kj + H. Then either G is panconnected or H = K, U Ky for some
I1<r <p.

Proof If p <35, the result holds trivially, so assume p 2 6 and proceed by induction
onp+ 1, the order of G. Selecta vertex v of maximum degree in H and consider the
graph G — v which is either panconnected or H — v = Ky U Kp for some
l€sr<p-1.

If G- v is panconnected, then for any pair of vertices x and y, there are xy-paths
of each length from 2 to p— 1. Let P = (x=x1,x2, ..., Xp =Y) bean xy-path of
length p--1. Since v has maximum degree in H, deg(v) 2 3. Thus, vxj, vxje E(G)
with i<j<p. Since a(H) <2, one of the edges VXi+1, VXj+1, OF Xi+1Xj+1 € E(G),
which implies that there exists an xy—pathin G of length p.

If H-~v=K;UKp 1, then v must be adjacent, without loss of generality, to each
vertex of Kp_,-__'l, for otherwise there would be three independent vertices. If v has an
adjacency in K, it is easily verified that G is panconnected. If not, then H =
K; U Kpr, and the proof is complete. O '

Lemma 2 If G isa 2-connected K(13)-free graph of order p 211 that satisfies

NC 22X and &6) <22

 then G ispancyclic.
Proof Let v be a vertex of degree 8 =8(G), and let H=G — v — N{v). Then
8(H) = (2p—1)/3 — 8. Since 8 < (p— 53, we have

SE) = (p-8-1)/2+ 1 =HI2 +1,
so that H is panconnected by [13]. Therefore, H has cycles of each length from 3 to
p—9d—1. Let L be the graph spanned by v + N(v). Since G is K(1,3)free,
(L) 2. Because G is 2—connected, there are distinct vertices uy, up € V(L) and
vy, v2 € V(H) such that uyvie V(G) for i=1,2, FromLemma 1, we consider two
possibilities. )

If L is panconnected, then there are paths in L between 13 and uy of each length
from 2 to 8. Also, there are pathsin H of each length from 2 to p~8—2 between
v1 and v2. Using those paths, and the edges ujv) and upvy, cycles of each length
from 6 to p can be obtained which implies that G is pancyclic.

Suppose that L. is not panconnected. Then L =v + (K; U Ky with r+s=8 and
1,5 2 1. Without loss of generality, assume uj € K; and up € Kg. Again pathsin L
between uj and up exist of each length from 2 to 3. Thus, as in the previous case,
G is pancyclic. U
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As a corollary to the proof of Lemma 2, using the result of Ore [12] on
hamiltonian—connected graphs, we have the following

Corollary 1 If G isa 2-connected K{(1,3})-free graph of order p 211 that
satisfies
NC > (2p-3)/3 and
&G) s(p-5)3,
then G is hamiltonian.
Lemma 3 Let G be a 2-connected K(1,3)-free graph of order p = 14 that
satisfies
NC2(2p-1)3 and
&G) 2(p-4)3.
If G contains a Cy, for some m 2(2p + 5)/3, then G contains cycles of each length
from m to p.

Proof Select t such that G contains a C; butno Cyy; for some t=m. Let
Ci=(x1, X2, ..., X, X1} andlet H=G - C;. Notethatif ye V(H) and yxie E(Q),
then yxj_1, yxi+1 € E(G), otherwise a Cy4+1 would exist. The K(1,3)-free property
implies xj_1xj+1 € E(G). Using this, it is easy to verify that yx; € E(G) implies that
yxi+2 and yxi4z ¢ E(G), for otherwise a Cryy would existin G.

Consider the case when H contains nonadjacent vertices yj and yp. By the
previous remarks, each of y; and yz can be adjacent to at most t/4 vertices of C, so
that

Z2ol) < ING) UNGDI 12+ (p-t-2).

This implies t < (2p — 10)/3, a contradiction. Therefore H is the complete graph Kp .

If t=p~ 1, then the vertex in H has degree at most (p — 1)/4. Thus we get
(p-4)/3 <{(p- 1)/4, which is a contradiction for p =2 14. Hence, H has at least two
vetices. Each vertex of H has at least s2 (p~-4)Y/3 -~ (p-t-1)2t-2p + 1)/3
adjacencies on Cy, soclearly s2 2.

If yxje E(G) and yxje E(G) for y,y' € V(H), then j>i+p-t+2, for
otherwise G would contain a Cpy1. Using the fact that y has at least s adjacencies on
C; and that each pair of these adjacencies are at a distance at least four on i, there are at
least 4{s — 1) + 2(p — t + 2) vertices of C; that are not adjacent to y'. Since y' has s
adjacencies on C;, we have

s+4E-1D+2(p-t+2)=t.
This implies t < (4p + 5)/6, a contradiction. U

As a corollary to the proof of Lemma 3, using Corollary 1, we get the following
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Lemma 4 Let G be a 2-connected K(1,3)-free graph of order p =14 that
satisfies .
NC > (2p—3)/3 and
XG)>(p-5)3.
If G contains a Cy, for some m 2 (2p + 4)/3, then G is hamiltorian.

Lemma 5 If G isa 2—connected graph of order p 29 with a(G) < 3, then G is
pancyclic.

Proof Since the Ramsey number (K3, Cp =2t-1 (c.f. [5] pp. 272), G contains a
cycle of each length t <(p + 1)/2. Select m such that G contains a cycle of each
length from 3 to m, but no cycle of length m + 1. Let C=(x, X2, ..., Xm, X1) bea
cycle of length m andlet H=G-C.

If ye V(H) and yx;, yxje E(G), then yxi+1, yXj+1, and xi+1xj41 € E(G) or we
create a Cpe1. Since a(G) <3, each vertex of H must be adjacent to at most one
vertex of C, and H is complete.

Similarly, xjxj € E(G) unless each vertex of H is adjacent to either xj or x;.
Therefore, either C forms a complete graph Ky ora Ky —e, or there exists a vertex
x of C which is adjacent to each vertex of H, while C—x forms a complete graph.
However, in all cases, there are two disjoint subgraphs that are complete (or one has a
missing edge) that span G. Since G is 2—connected there are two independent edges
between these subgraphs. Under those conditions it is easily verified that G is
pancyclic.

With these lemmas at hand, we can now prove the main theorem.

Theorem 2 If G isa 2—connected K(I, 3)-free graph of order p 214 with
NC > (2p-2)i3,
then G is pancyclic.

" Proof Assume G is not pancyclic. By Lemma 2 we can assume that 3(G) 2
(p-4)/3 and by Lemma 5 that a(G) 2 3. -

Consider pairwise nonadjacent vertices X, y, and z and assume that deg(z) 2
deg{x) 2 deg(y). Then from the hypothesis, deg(z) = deg(x) = (2p — 1)/6. We claim that
z is adjacent to at least two vertices in N(x) or N(y). If not then,

(p-1)3+(2p-1)/6-2<p-3,
a contradiction. This proves the claim, Therefore we can assume there exist subgraphs
A and B with AnB={u, v} and with 1A UBI 2 (2p— 1)/3. Also x is adjacent to
each vertex of A and z is adjacent to each vertex of B.
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We will subsequently show that G contains cycles of each length from 3 to
[(2p +5)/3] We can then conclude that G is pancyclic from Lemma 4. To prove the
existence of these cycles we must consider the graph H spanned by A wBuU {x, y}.

Note that from Lemma 1, A + x (respectively B+ z) is panconnected or A =
A1 W Aj, where Aj and Aj are disjoint complete graphs (respectively B =
Bj W B3, where By and By are disjoint complete graphs). We now consider various
cases depending on the structure of A and B and the location of u and v, and show
the existence of the required cycles.

Case 1 Suppose A +x is panconnected or ue V(Ajp) and ve V(A3), and B +z
is panconnected or ue V(By) and ve V(B2).

In A+x {and B+ z)_ there is a path from v to v of each length from 2 o Al
(and IBl), thus H has cycles of each length from 4 to HI = (2p + 5)/3. Clearly,
A +x (and B +z) contains a triangle.

Case 2 Suppose A +x is panconnected and u, v e Bo.

Since G is 2-connected, there is a pathin G-y between B; and Bo U A, Let
P =(w =wp, W1, ..., wt=w'} be such a path of minimal length. We claim that t < 2.
If this is not true, then consider the independent vertices wy, wa, and x, and observe
that N(x) n (N(wp) W N(w2)) # &. This verifies the claim. It is easily seen that
H U P contains cycles of each length from 3 to [Hl + t — 1, independent of whether
w' isin A or Bo. Note that all cycles of length greater than |A w Bol + 2 will use the
path P. |

If ue A; m By and v € Az N By, then we get the same result. Thatis, HUP
contains cycles of each length from 3 to [HI + t - 1, independent of whether w' is in
A1 W A7 or Ba.

Case 3 The vertices u,ve Az m Ba.

Since G 1s 2—connected, there is a path in G—y between By and A U Bj. Let
P = (w = wg, Wi, ..., w;= W'} be such a path of minimal length, We claim that t < 2,

If this is not the case, then consider the independent vertices wp, wo, and X, and
observe that N(x) N MN(wq) W N{w2)) = &. This verifies the claim.
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Subcase i Let w'e Aj.

Just as in the previous cases, H U P contains cycles of each length from 3 to [HI +
t—1, since p 2 14. The remaining cycles of length = 6 can be constructed using the
path P, '

Subcase ii Let w'e Ay UBj3.

A repeat of the argument exhibiting P implies the existence of a corresponding path
P from A to Ay U By of length t £2. There are several possibilities that must be
considered, but it is straightforward to verify that H« P U P' contains cycles of each
length from 3 to [Hi+t+t' =2, '

This completes the proof of Theorem 2. O

Theorem 3 If G isa 2-connected K(1,3)free graph of order p = 14 with
NC > (2p - 3)/3, then G is hamiltonian. :

Proof -Consider nonadjacent vertices x and y'. Then IN(x) v N{y) > (2p — 3)/3.
Thus there exist disjoint subgraphs A and B with |A U Bl > (2p-3)/3 and with x
adjacent to each vertex of A and y adjacent to each vertex of B.

Since G is 2—connecied, there exist vertex disjoint paths Py and P> from A to
B (avoiding x and y). By Lemma 1, either A +x is panconnectedor A=Aj U A2
where A; and Ao are disjoint complete graphs. The same is true of B with disjoint
subgraphs B; and Bj. Alsoif A+x (B +y) is not panconnected, then the paths Py
and P, come from Aj and Ay (B; and Bp), respectively.

Clearly, G contains a cycle of length at least AU B) U (PUP) +2 2 (2p 4+ 4)/3.
From Lemma 5, we see that G is hamiltonian. (A

We note here that we have obtained this same result for 3 < p € 13 with other

- techniques. _ ‘

A variation of a graph used in [10] illustrates the sharpness of our theorem. Let G
be the graph of order p = 3n + 6 in Figure 2. Then G is 2-—connected and
K(1,3)-frec. Notice also that G is not hamiltonian. For nonadjacent vertices u and v
in G,

INQu) U N(W)l =20 + 2 = 2((p— 6)/3) + 2 = 2p/3— 2.
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Figure 2 A nonhamiltonian K(1,3)free graph illustrating i_
- the sharpness of Theorem 2. : :

We feel that from the nature of the proof technigues and related results in this area
that a generalization of Theorem 3 to sets of more than two vertices is imminent.
Theorern 3 and a result of Fraisse [4] lead usto the following conjecture:

Conjecture Let G bea K(1.3 )free graph of order p and connectivity k. Suppose
there exists some t, t <k, such that for every independent set S < V(G) of cardinality t

we have:
IN(S) 2 tp-Di(t+ 1)
then G is hamiltonian.

From Theorem 3 we get the following result for connected K(1,3)-free graphs:

Theorem 4 If G is a connected K(1 ,3)free graph of order p 2 14 with
NC > (2p—5)/3, then G is traceable.

Proof Consider the graph H=G +v for some vertex v & V(G). Then
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NCQH) > (2p — 4)/3 + 1 =—2etD=3

Since |HI = 14, and H is 2-connected, then H is hamiltonian which implies that
G is traceable. O

A graph is homogeneously traceable if for every x € V(G) there exists a path
beginning at x and containing all of the vertices of G. In general, there are not many
results dealing with homogeneously traceable graphs. It appears that sufficient
conditions for a nonhamiltonian graph to have this property are not easy to find due to
the theoretical closeness of homogeneous traceability and hamiltonicity. As with the
hamiltonian—connected property, we need the 3—connectivity stipulation to prove this

result. We also point out that Matthews [8] has proven that if G is a 3-—connected

K(1, 3)-free graph of order p <20, then G is hamiltonian. ¥ G is hamiltonian, then
G is homogeneously traceable, hence our result for K(1, 3)-free graphs is only
interesting when p = 20.

Theorem 5 If G isa 3-connected K(1,3)-free graph of order p such that
NC > (2p-5)13,
-then G is homogeneously traceable.

Proof We proceed by contradiction. First, we define an xn~hamiltonian path to be a
pathin G thathas xm asan end vertex, and that contains all of the vertices of V(G).
Suppose there is some vertex Xg such that there exists no xp—hamiltonian path in G.
Let P:xi, X2, ..., Xm be a longest xp~path. . ‘

Since G is 3—connected, for some vertex x not on P, there exist two disjoint
(except at x) paths from x to P such that the end vertices X, xj, of these paths satisfy
i# j # m. Moreover, xi can be chosen so that there are no endpoints of x-paths
between xj and xj. Once xi is chosen, then we select xj so that there are no
endpoints of x-paths between x; and xj. (Note that xx, Xj+1X, Xi+2X € E(G) by the
maximality of P and since G is K(1, 3)-free.)

Consider the nonadjacent pair of vertices x; and xj+1.= Let

S = {xx : xk € N(x1) U N(xj+1)}-
Then since G is K(1, 3)-free and N(x) N V(P) c {xi, Xj, Xj+1, .., Xm}, we see that
IS N N(x)I £2. (Itcould be that S N N(x) = (xj, xm}.) Hence,
. INGN<(-1D-((2p~5)/3-2)-3=(p-1)/3.

We subtract three at the end since xj+1 € N(X), Xi+1 & N(x), and x; &€ N(x). (Note
that xj+1 € N(xj41) and x1 € N(xj31) 50 xjs1 is notin N(xj1)© N(x1).)

In addition, x and x1 are nonadjcent which implies that

INGDI>(2p=-5)/3-(pp-1/3=(p-4)/3.
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‘We use this fact to contradict the cardinality of N(xjs1) W N(x).
For every xx e N(x1),j+3<k<m-1, xg31 € N(xis1)} or the path
Xms oo Bkt 1s Kitls wsvs Xks X1y ceer Xjp veen X
is alonger xp—path. Analogously, xx+1 € N(x) or we obtain
Xftts woes Xk+1s X5 eves Xjs wns Xk X1y ey Xj1
which is also a longer xp-path. Observe that x; is not adjacent to any vertex in
{Xis Xi+1s Xit2s Xj=25 Xj=1» Xjs Xj+1> Xj42}
because G is K(1, 3)-free.
For xx e N(x1),i+3 <k<j-3,then xp1 € N(xj1) or alonger xy-path is the
following:
Xms ceey Xkt 1y Xid1s ooer Xky X3 vevs Xfp ooy Xu
Lastly, for xx € N(x1),2<k<i-1,xk_1 € N(xi+1). Since we have no corresponding
nonadjacency to subtract from IN(x) W N(xj 1)l if perhaps x1xy € E(G), we have that
ING) W NEis )l <p-{(p—-4)/3-1)-4=(2p-5)/3.
We subtract four at the end since xj42, Xj+1, %i+1, and x have not been counted and are
notin N(x)  N(xj+1). Since NC > (2p -~ 5)/3 we have our contradiction. Therefore,
G is homogeneously traceable. 0l

From the nature of homogeneously traceable graphs and the strength of the
neighborhcod condition, we believe the following is true:

Conjecture If G isa 3—connected K(1, 3}free graph of order p such that
NC > (2p-5)13,
then G is hamiltonian,
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