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ABSTRACT: For sets of vertices, we consider a form of generalized degree based on
neighborhcod unions. In particular, for a graph G, the degree of the set
S = {xy,..., x; }is defined to be

k
deg § = | 'UIN(xi) |
[

where S is a set of k vertices in & and N (x) denotes the neighborhood of the vertex x.

In this paper, we consider an added restriction involving neighborhood intersections,
Let IC4(G) = t, mean that for all pairs of nonadjacent vertices, the intersection of their
neighborhoods contains at least ¢ vertices. Using restrictions of these types, we obtain a
generalization of the well-known result of Ore concerning hamiltonjan-connected graphs.

Section 1. Introduction.

For standard terms and notation not found here see [11].

The study of cycles and paths in graphs has long been one of the major subfields in
graph theory. Degree conditions have always been fundamental to this study. Over the
last five years a new approach has been introduced, beginning with the work in [7].
Rather than considering degrees of vertices, a more general count is taken. The
cardinality of the neighborhood union of pairs {or larger sets) of nonadjacent vertices is
considered. This is a natural extension of the idea of degree and it is also natural to relate
this parameter to various cycle and path problems. Several papers followed [1, 3, 6, §,
97, suggesting a connection between neighborhood unions and other properties of graphs.
The combination of a generalized degree condition with other graph properties has
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produced generalizations of some fundamental theorems involving ordinary degrees, as
well as new types of results. This paper continues this line of investigation,

We define the degree of a set § of vertices as

deg § =] w NI,
ve S

where N(v)={x € V(G) | xv € E(G) }, the usual open neighborhood of a vertex. For
convenience, when the set S is a singleton, we will abbreviate this notation with deg x,
the standard notation for the degree of a vertex.

Several different forms of generalized degree for sets of vertices (where the sets
considered satisfy various conditions) have been used to further the study of a variety of
graph properties. In [5] and [7], hamiltonian properties were studied using sets of
independent vertices of various sizes and a form of generalized (independent) degree.
These generalized degrees were also used in [6] to study matchings and extremal path
and cycle lengths. In [3], a Turan-type extremal result was obtained. A survey of recent
results using several types of generalized degrees (neighborhood vnions} can be found in
[13].

Two of the most fundamental results on hamiltonian-connected graphs use ordinary
degrees and are due to Dirac [2] and Ore [14].

Theorem A[2). If G is a graph of order p such that deg x 2 P ; 1 for each vertex

x € V(G), then G is hamiltonian-connected.
Theorem B [14]. If G is a graph of order p such that for each pair of distingt
nonadjacent vertices x and y

degx + degy 2 p+1,

then & is hamiltonian-connected.

Implicit in the hypothesis of Ore’s Theorem is the fact that any two independent
vertices have at least three common neighbors. In this paper we further explore the
effects of this neighborhood intersection condition. We say that G satisfies IC,(G) = k, if
for any set of ¢ independent vertices, x4, x5 ,..., X,

St
| ﬂlN(x,-) | 2 &
i=
We simply use /C, 2 k£ when the context is clear. In the next section we shall combine

independent generalized degree conditions with this neighborhood intersection condition
to attain a generalization of Ore’s Theorem for hamiltonian-connected graphs.
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We denote as A,, an independent set of ¢ vertices. We say a collection of sets
Apsees Ay, where | Ay | = t,, are distinct independent sets if for each i, Ay is an
independent set of #; vertices and the intersection of any two of these sets is empty. This
terminology generalizes the usual idea of distinet vertices.

Using generalized degrees and the above intersection condition, a generalization of
Ore’s Theorem for hamiltonian graphs was obtained in [12].

Theorem C. [12] Let G be a graph of order p satisfying [Co(G) 2 &k 2 2. If for
some pair 1, I, of positive integers satisfying 2 < ry +¢2 S k+1, each pair of distinct
independent sets A, , A,, satisfies

deg A, + deg Ay, 2 p,

then G is hamiltonian.

Section 2. Main Results

We begin with a few simple cbservatons concerning the intersection condition.
First, observe that if IC,(G) = k, then IC(G) 2 &, for any 5 <. Also note that if
IC,(G)Y 2 1, then G is connected and has diameter at most two. We next tam our
attention to connectivity, The following simple Proposition was presented in [12].

Proposition 1.  If fC3(G)=k (k = 1), then G is k—connected.

This tesult can be seen to be sharp by considering the class of graphs obtained by
identifying two complete graphs at & — 1 vertices.

In considering paths (or cycles), the following notation will be useful. Let [, b]
denote the segment of a path from the vertex g to the vertex b (including both g and b).
Similarly, (g, ) refers to the segment but does not include either g or b. We will also
find it convenient at times to refer to the successor of a vertex a along a path simply as
a + 1, or to the predecessor of @ along a path as a — 1.

We now present our main result.

Theorem 2. let G be a graph of order n satisfying JC,(G) = & = 3. If for some pair
2

ti, ty of -positive integers satisfying 2 < ¥ # < k—1, each pair of distinct
i=1
independent sets 4,, , A, satisfies
deg A, + deg Ay, 2 n 1,

then (7 is hamiltonian-connected.
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Proof. First note by Proposition 1 that G is k—connected (k = 3). Now suppose that &
is not hamiltonian-connected. Then there exists a pair of vertices, say x and y, that are
not joined by a hamiltonian path in G, letPix=x1,%2,..., Xn =y be alongestx —y
path in G, Choose some z € V{(G)— V (P) which is adjacent to some vertex on P, Such
a vertex exists since G is 3—connected. Without loss of generality, suppose that x, is the
closest adjacency of z to x along P. (Note that x, could be x.) Clearly, z is not adjacent to
consecutive vertices of P, for then an x — y path longer than 7 would immediately result.
Since the pair xj, . ; = ¢ and z are independent and /C, 2 k, they must have at least k 23
common neighbors. If any of these common neighbors is off P, an x — y path longer than
P is immediate. Thus, all common neighbors of z and ¢ are on P.

Let vy, va,..., ¥ be k — 1 other common neighbors of z and f on P (as x, = v is
already known) given in order with respect to the orientation of P from x to .

O~
Ot

Figure 1. The adjacency situation.

Denote by p; and s5; the predecessor and successor of v;, (2 <i <k) respectively,
Note that z is not adjacent to any of the vertices p; or 5; (1 £¢ < %) or a path longer than P
results. Also note that s; and 5; (i # /) (as well as p; and p;) must be nonadjacent, for
otherwise, assuming { < j

X Vi, 2, Vj, A D) Sj,... vy
would be an x ~y path longer than P, a contradiction to our assumptions.

We now consider the distinct independent sets

All = [z’p21'°'!p11]
and
sz = {S:]+i:---s5r1+r1 1

where A, ={z ] when t; =1. Note that #; + £ < k—1 and these sets are distinct.
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We proceed by showing that there is a 1-1 correspondence between vertices in N (4, ),
and distinct vertices not in N{A,,). Ta do this we consider each adjacency, say w, of
either z or an arbitrary vertex p € A, . We show that comresponding to each such w,
there is a distinct vertex that cannot be in N(4,,). Using this fact, we obtain a
contradiction to the degree sum condition.

Without loss of generality, suppose that 5 = 5; is an arbitrary member of 4,, and that
we N(A, ). We now consider several cases based on the location of w with respect to
P

O

Figure 2. The arbitrary vertices from each set.

Casel, Supposethatwe [x, t).

If we [x, vy ), then the fact that z has no neighbor in [x, v{ ) implies that w is
adjacent to some vertex pin 4;, - { z }. Also, w +1 ¢ N{s), for otherwise,

xnx+lo..,wp, WV L YL YLV~ Laawt s s+ 1L,y

is an x —y path longer than P, contradicting our assumptions. f w=v, then w+1=7
and we already know that ¢ ¢ N(A4,,) (as ¢is a successor of v1). We also note that z has
no adjacencies in the region [ x, v1). Since z is adjacent to v (but not to ¢) and since
t¢ N(A.,), we have verified the following:

For every w € N(A,, YN [x, 1), the vertex w + L is notin N (A, ).
Case 2, Supposethatwe [t p).

Ifwp € E(G), then (w + 1)s ¢ E(G), for otherwise
x, x+1,., v, 2, vj,...,v,-,t,t+1,...,w,p,p—l,...,w+1,s,s+1,...,y

is an x—y path longer than P. If, however, wz € E(G), then again (w + 1)s ¢ E (@), for
otherwise,
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nx+1l,...,wz vj,vj—l,...,w+1,s,s+1,...,y
is an x—y path Ionger than P, again a contradiction.

Thus, for each w € N(4,, )N [t, p ), wesee thatw +1 ¢ N(Ay,).

Case 3. Suppose that w € [p, v;).
Clearly, p ¢ N(4;,). If wp is an edge of G, then again (w + 1) cannot be adjacent to

s, for otherwise,
x)x+1:-n:v1, Zy VinVi"']-;u-sW,p:P_l,m': [ Vj,Vj_l,...,W+1,S, S+ls°v':y

is an x—y path longer than P, a contradiction. If, however, wz is an edge of G, than once
again w + 1 cannot be adjacent to s, for otherwise

nx+1l,....wznv, -1, w+l, 5 s+1,...,¥
is an x —y path longer than P, again a contradiction 1o our assumptions.

Thus, ifw e N4, )N 1p, vj), thenw + 1 ¢ N(A.)

Case d, Suppose that w € [v;, ¥).

If w=vj, then w+ 1=y, but we already know that 5 ¢ N(A,,)). Further, we also
know that ps ¢ E (G), for otherwise,

x,x+l,...,vl,z,vj,vj—l,...,v;,t,t+1,...,p£,s,s+1,...,y

is a longer x —y path than P, a contradiction. Thus, suppose that pw € E((7), where
we (8 7). Then (w+ 1) cannot be adjacent to 5 for otherwise,

Xovovy V0sZ Vjpouos Vis t+5L...,pww—1L . .., w+l, o,y
is an x~y path longer than P, a contradiction. If wz is an edge of G, then w + 1 cannot be
adjacent to s, for otherwise
X Vpzwow—L..., 5w+l .,y
iz an x—y path longer than P, which is again a contradiction,

Thus, if w e N(4;,) N[ v,y ), thenw +1¢ N(4,,).

Case 5. Suppose that w € V(G) - V(P).

Then it is easy to see that if either z or p is adjacent to w, then § is not adjacent to w,
or a path longer than P is immediate.

Thus,ifw e N(4; )N (V(G)-V(P)) thenw ¢ N(A,,).
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From these five cases we see that the function f(w)=w+1ifwe V{P)~{y } and
Siw)y=wif we V(G)-V(P)is a 1-1 function from V(G)— { y } onko itself that maps
adjacencies of A,, onto nonadjacencies of A;, .

Hence, since z ¢ N (A,,) and since f is defined for ail the remaining n —1 vertices
except y, (adding back one for possible adjacencies to y) we see that

deg A;, < (n—1)—deg 4y + 1
or, since ty 2 1,
deg Ay, + deg 4y, £ 1,

contradicting our hypothesis. Hence, G must be hamiltonian-connected. B

We now consider several immediate corollaries.

Corollary 3.(Ore[14]) ¥ G is a graph of order p such that for each pair of distinct
nonadjacent vertices x and y,

degx + degy 2 p+1,
then G is hamiltonian-connected,

Proof. letr; =1 and 15 = 1 and recall that /C; 2 3 (see observations before
‘Theorem 2), B

ptl for each

Corollary 4, (Dirac[2]) If G is a graph of order p satisfying deg x =

vertex x, then G is hamiltonian-connected.

We next present a new generalization of Dirac’s Theorem (Theorem A).

Corollary 5.  If G is a graph of order p which satisfies

IC, 2k 23 and deg A, 2 p;rl
for each independent vertex set A, where 1<¢< k;l , then @ is hamiltonian-

connected.

Examples: We first note that the complete bipartite graph K, , has order n =2r and

satisfies IC, 2 r = % for2<r< % However, this graph fails to satisfy the generalized

degree sum condition and it is not hamiltonian-connected. Thus, the intersection
condition alone can be very large without forcing the graph to be hamiltonian-connected.
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Next, consider the graph formed by taking f copies of the graph X, where r 2 3 and
joining each vertex in each copy of X, to each of £+ 1 other vertices. This graph has
order # =1r + ¢ + 1 and satisfies /C; > ¢ + 1. Further, it is easy to verify that the degree
sum of two sets of independent vertices (whose cardinalities total t vertices) is exactly
n + 1. Finally, this graph is hamiltonian-connected. However, if we remove one vertex
from the set of # + 1 common neighbors, the graph is no longer hamiltonian-connected.

Section 3. Conclusions

This paper continues the investigation of the significance of neighborhood
intersection conditions begun in [12]. Other properties of graphs should be considered,
as has been done with degrees and generalized degrees {of several types). Such
conditions include matchings, (nonhamiltonian) path and cycle lengths and chromatic
number just to mention a few. Additionally, as has been done for generalized degrees,
there is no reason to restrict attention to just nonadjacent vertices. Sets of adjacent
vertices and arbitrary sets of vertices should certainly be considered.
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