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ABSTRACT

For any graph G, let 1G) and wu{G) denote the smallest number of vertices
in @ maximal independent set and maximal clique, respectively. For positive
integers m and 1, the lower Ramsey number s{m, n) is the largest integer p
so that every graph of order p has AG} < m or w(G} < n. In this paper we
give several new lower bounds for s (m,n) as well as determine precisely
the valuss s{1,n}

INTRODUCTION

In [3], Mynhardt introduced the concept of lower Ramsey numbers, which
stemmed from the original idea of Ramsey numbers. For any undefined
terms, - sec Chartrand and Lesniak [2]. The independence (cligue) number
of a graph G, denoted B(G) (w(G)), is the largest number of vertices in a
maximal independent set (complete subgraph or clique) of G. The Ramsey
number, r(m, n), is the smallest integer p so that every graph of order p has
B(G) = m or w(G) = n. To introduce the lower Ramsey number, we de-
fine the parameters {(G) and u(G) to be the order of the smallest maximal
independent set and smallest maximal clique, respectively. The lower Ram-
sey number s(m,n) is the largest integer p so that every graph G or order p
has i(G) = m or u(G) = n. The parameter /(G) has previously been stud-
ted as a bound for the domination number of a graph, and has been given
the name independent domination number (see [1]).

In {3,4] Mynhardt gives several results for this new Ramsey-type
parameter, including a proof that these numbers do in fact exist and are
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well defined. That is, if for every graph G or order p, i(G) = m or
w(G) = n, then for every graph G of order less than p, {(G) = m or
p(G) < n. Furthermore, it is shown that

m+ n<simn) <2m+n).

In [4], the upper bound is improved in the case when m < n/2. In addi-
tion, some values for small m and » are given, as well as some questions
related to s(m, n).

It is the purpose of this paper to continue the study of these lower Ram-
sey mumbers, In particular, we determine precisely the vatues s(1, n) in the
next section, In the final section of the paper, we present two new lower
bounds for s(mt, ny, greatly improving the bound m + »n + 1. The first puts
s(m, n) within a range of 2m for m < n/4 while the second essentially an-
swers the question of finding s(r, ). We show if m is sutficiently large and
for any £ > 0, then

s(p,m) = (4 — eym.

THE NUMBERS s(1,n).
In [4], by construction Mynhardt shows the foellowing result:
Theorem. For any positive integefs m oand n,

s(m,n) € min{f(a,b)} — 1,

where a,b are positive integers, @ < b, ab < n < a(b -+ 1), and

m@+1) +n+ b if n=ab;
ma+1l)y+nrn+b+1, when n > ab.

fah) = {
By evaluating the minimum vahlue of f in this result, the case form = 11is

Corollary. Lets* < n{t + 1 and r = n — >, Then
r
sln) <n+2t+1+ L“

We show that these are the correct values for these lower Ramsey numbers.

Theorem 1. Lets* < n < (¢t + 1P andr = n — t% Then

s(Lny =n+ 2t + E:‘
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Proof. From the corollary above, it only remains to show that s(1, ) is
at least the stated values. To proceed in each of the three cases, we will as-
sume that we have a graph G on the desired number of vertices such that
i(G) = 2 and w(G) = n + 1. We will use the following helpful observation:
Let V(G) be partitioned into two pieces, 4 U B = V() so that the graph
induced by 4 is K,.1. By the choice of G, we know this can always be
done. Also, any complete subgraph of G, including a single vertex, can be
expanded to a K. If x € B is non-adjacent to k vertices of A, then K;
must be a subgraph of the graph induced by B. Also note, since {G) = 2,
this implies that no vertex of G is adjacent to all other vertices of G.

Case 1. Suppose r =0, p ="+ 2¢, G is a graph of order p with
{G) = 2, and u(G) = n + 1, and A and B partition V(G) so that K1 Is
precisely the graph induced by A. The graph induced by B must contain a
maximum clique, say of order t — &. Call that set of vertices B'. We will
show that this is true for no «, hence a contradiction. By our choice of G,
we must be able to extend B’ to an n + 1 clique, Thus, there are £* + 1 —
t + avertices, call them A’, in A adjacent to all of the ¢ — a vertices in B’.
Since each vertex of A4’ must be nonadjacent to some vertex, all the non-
adjacencies of A’ must be among the ¢ -+ « — 1 vertices of B — B'. But this
implies that there is a vertex in B — B’ nonadjacent {o at least

PF+l-t+a
F+a—1

vertices of A'. But as observed above, this implies that

P+l -+«
e =t —a,
t+a-—1
Prl—t4+asti—a"—1+a,
a’+1=0,

Since this is true for no real @, no such & can exist, and thus we can con-
clude when n = ¢* that s(1,n) = t* + 2¢.

Case 2. Suppose 0 < r =t p=1"+r+ 2t +1and G is a graph of
order p with i{(G) = 2 and u{G) = n + 1. We again choose A and B as in the
previous case, with the extra condition that over all possible choices for 4,
B has as large of a clique as possible. Again form B' and A" as in the previ-
ous case, with B' having # — a vertices and A" having £* + r + 1 — t + «
vertices. Now in addition to the #* + r + 1 — ¢ + « nonadjacencies from
A" toB — B, since 4’ U B' has order n + 1 and A — A" has the same or-
der as B', no vertex in B — B’ can be adjacent to all the vertices in4 — A"
Thus there are at least (f> + r+ 1 — ¢ + a) + (f + @) nonadjacencies
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from A to the vertices of B — B’. As in Case 1, this implies that
' +r+1+ 2e
— e — o,
r+ o
e+l +2est? - a2,

at+2a+1< ~r.
But this can never be true since r > (), and equality follows for 0 < r < 7

Case 3. Supposet < r < 2f,andp = £5 + r + 2t + 2, Choose G, A4, B,
A', and B’ as in Case 2. In this case we argue that the number of nonadja-
cencics fromA4 to B — B' isatleast (*+r+1—t+a)+(+a+1)
since the order of B — B’ ist + a + 1. Consequently, we get

ttrr+l—t+a+t+a+l
t+a+1

=l - w,

which yields
a’+3a+2=t—r.

Since 7 is an integer greater than ¢, and the minimum value of & + 3a + 2
is —, which occurs when o = £, the inequality is never true, thus com-
pleting this case, and with all possibilities of r exhausted, the proof is
complete, 1 '

Note that this result implies that s(1,#) is approximately # + 2V, which
is considerably larger than the previously known lower bound of n + 1,
The authors are trying to apply these techniques in order to determine
$(2,n), but have so far been unsuccessful in their attempts to determine this
number exactly. '

LOWER BOUNDS FOR s(m, n).

In this section, we present two new lower bounds, which improve the
bound given in [3]. It is uscful to observe again, as in Theorem 1, it G is a
graph with i(G) = m + 1 and p{(G) = n + 1, 4 U B partitions & where 4
induces a K1+ and x ‘€ B has k nonadjacencies in A, then K, must be a sub-
graph of the graph induced by B.

Theorem 2, Ifn =¢+r,0=r < 2¢, and 2 < m < n, then

simmy) = n + LZI‘/!EJ.
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Progf. Let G be a graph of orderp = [n + 21\/}@ with i{(G) = m + 1,
w(G) = n + 1. LetA, B, A, and B’ be chosen so that A4 induces a K,.,;, B’
a maximum clique in B of order t — «, while A’ is the subset of vertices of
A that are adjacent to all the vertices of B'. Since every vertex must be in
an independent set of order at least m + 1, each vertex of  is nonadjacent
to at least m vertices. Thus the number of nonadjacencies from A to B — B’
is at least

WC+r+l—t+am+(t—a)im-—1).
But this implies that there is a vertex of B — B’ nonadjacent to at least

rr+t—t+am+(—a)ym-—1
2tV — t+a—1

vertices of A, By the observation above, since ¢ — a was as large as a clique
in B could be, it follows that

(t2+r+‘i¥t+a)m+(t—a)(m—1)
25Vim| —t+a—1

St — o,

But this implies that
Ct+r+lm+a—i<s@t-a)@ZVn-—t+a-1t+a.
Consequently,
o+ (r + Dm + 12— 2at + o® — 20V + 2atVim < 0.

Since m is fixed and « is a function of ¢, say @ = ¢t, withc =2 1 — 2V,
we get

m+1—2c+c®—2Vin + 2Vm)t* + (r + hm < 0. 1
The coefficient ¢* + 2(Vin — e + {(m — 2Vm + 1) of ¢* attains a mini-
mum value when ¢ = 1 — Vin, which yields a minimum value of 0. Thus (1)
holds only when
r+1ms0.

Since this is never true, it follows that s(m,n) = n + LZI\/;J A

Theorem 2 implies that s{n, #) =2 7 + 2Va — r Vi — 1, which is a vast
improvement over m + n + 1, and in fact forces the range for s(n, m) to be
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quite small for small m. In [4] Mynhardt proves that
simp)<m+n+b+am

for any positive integers @ and b such that @ = b, ab < n, and
ab +1) = n.

Corollary 3. For positive integers m and r, m < n, except when m = 2
and n = 3,

s(m,n) < n+ 2VaVm + 2m.

Proof Leta = [Va/Vm|and b = inja). 1t is a simple exercise to show
that @ and b satisfy the necessary conditions, and thus it follows that

<m+n+|nfal + [Va/Vm)-m
Sm+n+n/a+(\/r;/\@+1)m

n+2Va-Vm + 2m. 1

s(m,p)

Using this result and the fact that for the range of r in Theorem Z,

Vn—rz‘\/ﬁ—l,rweget
n+ VANV — 2V — 1 < s(n,m) < n + 2VaVim + 2m.

The next bound attempts to suggest an answer to the question of whether
s(m,n) = 2(m + n)for m = n/2. The bound gives no information when m
is not a positive fraction of n (thus the necessity for this result, as well as
Theorem 2}.

Theorem 4. Given positive integers m and n with m = ¢n, 0 < ¢ < 1, if
£ > 1 — Vidc/(c + 1Y, then

simn) = 2 — e}(m + n)

for sufficiently large #.

Proof Let & > 0 and ¢ satisfy the given condition. Suppose there exists
agraph G oforder 2 — g)(m + n) = 2 — &)1 + on with i(G) =z m + 1
and w(G) = n + 1. Follow this procedure: Choose a maximum clique Z of
(7, which must contain at least » + 1 vertices since u(G) =z n + 1, and let
H,; be the graph induced by G — Z. Choose Z, to be a maximum clique of
Hyand let Z = Z U Z,, and let H; be the graph induced by H, — Z1.
Continue, let Z; ; be a maximum clique of H; ,,let Z = Z U Z;_,, and let
H; be the graph induced by H; , — Z; 1. We proceed by showing that, re-
gardless of j, for n sufficiently large, H; contains a clique of order xn, where
x is some appropriately chosen and fixed positive value. Note, this would
imply that {(G) = 4n/xn < cn = m since we would be able to cover the
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vertices of (¢ with fewer than cn cliques, and a contradiction would result.
Let Z; be a maximum clique of #f; and suppose Z; has order xn. We will
show that x is positive by our choice of ¢ and «.

Suppose, at this point, Z has order {1 + a)n, that is, the order of H; is
(2 — 21+ ¢) — 1 — an. Since each vertex is in an independent set of
order m + 1, we can assume that each of the (1 + a)n vertices of Z
has cn — j nonadjacencies to the vertices of H; — Z;. There must be a
vertex in H; — Z; nonadjacent to (1 + a){cn — jHn/(C - &)1 +¢) — 1 -
a — x)n) vertices of Z, This implies that (1 + e}(cn — jin = {2 — &) -
(1+¢) —1—a— x)nlx + ajn since if a vertex of H; — Z; were nonadja-
cent to more than (x + a)n vertices, a clique larger than x» would occur in
H;. Thus, by lettingy = (2 — &) (1 + ¢) — 1, we get

xt+al—yx+a)+—jnl+asi.

Let f(x) = (x + o) — y(x + @) + {c — j/m){1 + «a), and let X be the
smallest value such that f{x) = 0. it follows that

F=1/2(y — 2a — (y* — 4 ~ jm) {1 + a)**.

Observe that this implies that if f{(x) < 0 then the only such possible values
of x have x = 1. We claim that for n sufficiently large, X is bounded below
by some positive constant (independent of j, @, and ). Note the difference
of two quantities has a positive lower bound if the difference of the
squares of the quantities has a positive lower bound. So to verify this
claim, we show that

gla) = (y = 2¢)' = (y* — 4(c — j/m {1 + a))
‘has a positive lower bound independent of j, @, and » for large #.
Substituting for y gives that
1/4-gl@) =a*+ (¢ — D1 + c)a + ¢ — j/nl + a).
For n appropriately large, the expressioﬁ (1 + @)j/n is small, since j is

bounded by 4/x, so to verify that g{a) has a positive lower bound it will suf-
fice to show that

Mo)=a* +{c + Die—Da +c

has a positive lower bound. The minimum value of 4 occurs at a =
—(c + 1}{(1 — ¢)/2 and

G

ha) = ¢ p

0
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by assumption. Hence,

b = ¢ ( + 1)1(1 — &y

for all @. Thus the appropriate choice of large r gives that

o =20 - €7 1)22(1 -

which completes the proof of Theorem 4, |
As a special case, when ¢ = 1, we get
Coroilary 5. TFor sufficiently large m, and any ¢ > 0,
s{m,m) = (4 — g)m.

Since s(m, m) < 4m for all m, this essentially gives s(m,m) = 4m —
o(m), for sufficiently large m.

Alihough these new lower bounds are improvements over what was
known, there still is a significant amount of work that remains. There still
remains the question of whether s(m,n) = 2(m + n) when m = n/2, as
well as determining s(rm, #) for small values of m, m = 2. In addition, there
is the problem of comparing the lower bound of Theorem 4, when ¢ < 1,
with the upper bound given in [4]. These two may already essentially give
these lower Ramsey numbers.
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