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1. INTRODUCTION.

One of the most elementary results in graph theory is that a graph on n vertices must have
at least two it its vertices with the same degree. Thus, it seems natural to consider those graphs
in which no more than two of its vertices have the same degree for each possible degree, and
we call such a graph 2—irregular.

In this paper we consider the following question: Which graphs G of order n are embeddable
in a 2—irregular graph of order n? Clearly an arbitrary such graph G must have size at most
3n — 7, since the graph in which 3 vertices have maximum degree cannot be embedded in a
2—irregular graph of the same order. A question left unanswered is whether each (n,q) graph
with ¢ < 3n — 7 is embeddable in a 2~irregular graph of order n.

In this paper we follow standard notation similar to that of [1] and [2]. In particular, we
let d(z) denote the degree of z in G and Ng(z) denote the neighborhood of z in ¢¢. When the
graph G is obvious, the subscript G will be deleted.

2. RESULTS.

There are two principal results in the paper, each of which give sufficient conditions for a
graph to be embeddable in a 2—irregular graph of the same order. We state these results first.

THEOREM 2. Let G be a graph of order n > g—d4, where d > 8. If A(G) < d, then @ is
embeddable in a 2—irregular graph of order n.

THEOREM 3. For all n > 8'3%/2 any (n,q) graph G with
3 12v/4 1/
<2 (2
¢S gnt+5(3)0n
is embeddable in a 2—irregular graph of order n.

In order to establish the above theorems we need the following three results.
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LEMMA 1. Let G be a 2—irregular graph with £ vertices of degree > ¢. Then, G contains a
k—matching where k = min{ec, [%J}

THEOREM 1. Let G be a graph of order n containing two vertices ¢ and ypwitb disjoint
neighborhoods, each neighborhood of order at most d < | f5] — 2. If the graph G — ¢ — y is
2~irregular, then G is embeddable in a 2—irregular graph G* of order n.

LEMMA 2. Let G be a graph of order n and let V(@) be partitioned into sets H 1 and Hy with
Hy={z1,239,--- » T /3] }. If Hy is an independent set of vertices and for each £,1<£<n/3],
the set of vertices {z; | 1 < ¢ < £} has at most 2¢ adjacencies in the set Hy, then G is embeddable
in a 2-—~1'rregu1ar grapﬁ L of order n,

3. PROOYFS.

PROOF OF LEMMA 1: The k—matching will be found by a greedy algorithm that we now
describe. Let S be the £~set of vertices of degree > ¢.

Choose the edge 1y such that z; is a vertex in S of smallest degree and {when SNN{z;) #
f) v1 is a vertex in S N N(z;) of smallest degree. If S W N (z1) = 0, then let y; be any
vertex of N (z1). Given that _7 independent edges x1y;, z3yz, - , Z;Y; have been selected, choose
£;41¥j+1 such that Z;y1 is a vertex in § {z1,91,29,y5,++ ,:nj,yj} of smallest degree and
Yj+1 is a vertex of smallest degree in (S — {z1,¥1, z3,y7,- - »Z5,¥; 1) N N(z;41) (when this set
is nonempty). Let y;,; be any unused vertex in N{z;11) when S —{z1,y1,7s,y3, - ' T5, Y5 30
N(zjpq1) =0

Suppose that this process stops after edges T3Y1,TaYn, - ,TmYm have been found with
m < min{e, [%J} Then, S — {z1,y1,22,¥3,"** ,Zm,ym} # B and it follows that the vertex
Emi1 in S — {z1,y1,22,¥2,"** , Tm, Ym } of smallest degree has all of its adjacencies in the set
{z1,91,2,92,** , Tm, ym}. Let b= d(zpm11). _ 7

Further, suppose that x,,1} is adjacent to t vertices in the set {z1,23,-+ ,&m}, %o that
b < m+t. By the algorithm, if zp412, € E(G) for some 1 < r < m, then y, € S and
d(yr) < d(Tm+1). Also, from the algorithm ¢ < d(z)) < d(zg) < -+ < d{zm) < d(zm+1),
so that ther are at least m + ¢t + 1 vertices of § of degree at most b. Therefore, since G is
2—irregular, b > ¢+ (m~+1t —2)/2+41/2, which implies m +¢ > b > ¢+ (m-+1)/2—1/2. Hence,
2m > m+t > 2c — 1, from which it follows that m > c. This contradicts that m < ¢ and
completes the proof of Lemma 1. B

PROOF OF THEOREM 1: For convenience let G/ = @ — z — y and let z be a vertex in G’
of largest degree. Since the neighborhoods of z and y are disjoint, we assume that zz ¢ E(G).
The method of proof is such that there is no loss of generality in assuming that dg(z) < dg(y).

We first prove that the theorem is true when there is a matching of order [n/4] in the
complementary graph G’ — (Ng(z) U Ng(y) U {2}). Later we show for d < [n/48] — 2 that this
is an appropriate assumption.




Let M be a matching of order [n/4] in G' — (Ng(z) U Ng(y) U {z}) and set
Dy = Ng(z) nV(G')

Dy = Ng{y)nV(G'), and
D=V(G") - (D;UDyuV(M)U {2}).

Then [n/2] —2 > |D| > |n/2] — 2d — 4. Set d* = |D| and partition D into two sets D; and
Dy and let |Dy| = ¢, Form the sequence of graphs Go, Gy, - ’GLd* /2] such that for each 1 :
V(G)=V(G) and

E(Gy) = E(G)U {aw |we D} U {yw | w e Dy} U{yz} U {uw | vw € E(M)}.

We assume throughout (since it does not effectively alter the proof) that zz ¢ E(G), and
yz € E(G). The cases where vz € E(G) or neither z nor y is adjacent to z can be handled in a
similar way. |

Clearly G is a subgraph of G; and @, is 2—irregular, unless it contains three vertices of
degree dg, () (one of which is z) or three vertices of degree dg,(y) (one of which is y). Observe
that dg, (z) = dg(e) +i < dg,(y) =dg(y) + d* —ifor 0 < i < [d*/2].

Let V(M) = {uy,v1,ug,v3,-++ ,us,v:} and E(M} = {ujvy,ugvy,- - , 004} with ¢ = [n/4].
Suppose for some 1, 1 < 1 < {d*/2], that G’ does not contain two vertices of degree dg, (z) ~ 1.
Then either G is 2—irregular or there exist two vertices in @' of degree dg, (y) — 1. Since the
proof is complete (under the original matching assumption) when G; is 2— —irregular, suppose
the contrary. Thus @' contains two vertices of degree dg,(y) — 1.

| Next, we sequentially alter G; to show that there are more vertices of relatively “low”
degree in G'. For each 5, 1 < 5 < ¢, let Gij be the graph with V(G,;) = V(G;) and

E(Gij) = (E(Gy) — {uge | 1 <2< i) U{ugy |1 < £< JYU{wy|1<e< g}

But dg, (w) = dg,,;(w) for eachw e V(Gy;) - {4}, so if G;; is not 2~irregular, then G contains
two vertices of degree dg,(¥)+27~1. Thus, if G5 is not 2—irregular for each 7, then G’ contains

two vertices of each of the following degrees:

dGi(y) - lidG,-(y)+ 1,--- ,dG'.(y) +2t—1.

Now the above discussion applies as well to the similar graph G obtained from @y by
inserting the edge zz. Since z is a vertex of highest degree in G', G} is 2-irregular unless
it contains three vertices of degree dG’ (2) or three vertices of degree dG" (v). Also, de (z) =
dg, (x)+1. Since it has been assumed that G' contains at most one vertex of degree dg, (:r:) 1=
dgy(z) -2 = dgy_ () — 1, this means that G)_, is 2—irregular unless G’ contains two vertlces
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of degree dey  (y)—1=dg, (y)-1= dg,;(y). Assuming G%_, is not 2—irregular, this means,
by defining graphs G/_, ; from G::—l in the same way that G;; was defined from G}, that ¢/

contains two vertices of each of the following degrees:

dG',-_ (y)s dG{ (y) +2,-.- ’dG,' (y) + 2t.

In summary, we have that G’ contains two vertices of each of the degrees

dG,' (y) - 15 dG’,' (y)) v :dG‘- (y) + 2t,

and so G' contains at least 4t + 4 vertices. Since ¢ = [n/4], G’ contains at least n+4 > n — 2
vertices, a contradiction. This means that for each ¢, 1 < ¢ < [d*/2], G; contains two vertices

of degree dg, () = dg{z) + 1. Hence G contains two vertices of each of the following degrees:
dG(x): d(;(ﬂ:) +1,-- ,dg(flt) + ’.d*/z.] - L

By a similar argument, altering the degree of = when forming the graph Gy from Gy rather

than the degree of y, it follows that G’ contains two vertices of each of the degrees:
dg(y) +d" - 2,dg(y) + &* - 3, ,dg(y) + [d*/2] - 1.
Since dg(z) < dg(y), this implies that G’ contains
20d*-1)=2d"-2>2(|n/2| -2d—4) - 2> n—4d 11
vertices of degree at most
da(y) +d* ~2<d+[n/2] -2-2=d+[n/2] — 4.

It is easy to show that G’ cannot have such a large number of vertices of this bounded
degree. To see that this is the case, first enlarge both Dz and Dy in V{(G") to disjoint subsets
D! and ny , each of order d. Next select two disjoint £—element subsets By and Cy of smallest
degree in V(G') ~ (D}, U D)), for 1 < £< s, where s = [n/6]. Finally, let 4, =V (G") - (D, U
DL UByuUCy), 1 <£< s Form the graphs Hy, 1 <2< s, from G by making z adjacent to
AU D; UDyUByand y to 4, U DL, U Dy U Cy. Then, dp,(2) = dg,(y) > [2n/3] - 2+ ¢,
since |Ay| > [2n/3] - 2d — 2. Since H, is 2—irregular, unless G’ contains a vertex of degree

dg,(2) — 2, the theorem follows unless G contains vertices of each of the degrees:

dHl(a:) — 2« de(m) —2 < dH,(-"") - 2.
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But [2n/3] — 8 < dg, () ~ 2, so that G’ contains at least n — 4d — 11 vertices of degree at most
d+ [n/4] — 4 and at least 8 = |n/6] vertices of degree at least [2n/3] ~ 3, a contradiction for
d< [n/48] - 2.

We complete the proof by showing for d < In/48) — 2 that there is a matching of order
[n/4] in the graph G’ = (Ng(z) U Ng(y) U {z}). First observe that G' a 2—irregular graph
implies that it contains at most [(n — 2)/2| vertices of degree > [3(n — 2)/4] — 1. Therefore,
G’ contains at least [(n — 2)/2] vertices of degree > |(n — 2)/4]. By Lemma 1, G/ contains a
> {(n — 2)/4] matching M.

Set M' = G'— (Ng(z) UNg(y) U {z}) n M. As was done earlier, let D; = Ng(z) N
V(G@"),Dy = Ng(y) nV(G'), and D = V(G") —(Dg U Dyu V(M) U {2}), and let D; U D,
be a partition of D into two sets with |Dy| = i and |D| = d*. Form the sequence of graphs
Go,G1,++ ,G|g+/g) such that for each i, V(Gi) =V(G) and

E(G))=EB@G)U{zw|we Di}U{yw|we Do} U{yz} U {uvw | uw € B(M')}.

Again, it is clear that @ is a subgraph of Gy, and G; is 2—irregular unless &/ contains two
vertices of degree dg,(z) — 1 or two vertices of degree dg, (y) — 1. But, for each i,

dg,(z) — 1=dg,(z) +i—1< dg(y) +d* —i-1<dg,(y) ~ 1< d+[(n—2)/2] —+.

Therefore, G’ contains at least 2(|d*/2]) +1 > d* > [(n —2)/2] — 2d - 1 vertices of degree
<[(n-2)/2] +. |

We partition V' (G) into three sets A, B, and C as follows: Let A be any set of [(n—2)/2] -
2d — 1 vertices of degree < [(n — 2)/2] + d, let B be those vertices of degree > |7(n — 2)/8],
and let C = V(G') — (AU B). Observe that |B] < [n/4] +1, 80

IC 2 n -2~ ([(n—2)/2] - 2d — 1) ~ ([n/4] + 1) zll_n/dlj +2d-3.

Also, each vertex of C has degree < |7(n — 2)/8), 5o that in G’ the vertices of C are of degree
> [(n —2)/8]. In G’ the vertices of A are of degree > |(n—2)/2| —d — 1.

~ Since |C| > |n/4] ++ 2d — 3, with each vertex of degree > [(n — 2)/8] in G’, G' has a
[(n — 2)/8] matching M; with at least [(n ~ 2)/8] vertices of the matching in the set C.
Further, each vertex in A — V(M;) has degree

2 [(n~2)/2] -d-2-[(n-2)/4]

in G' — M;. Also

A~V ()| 2 [(n - 2)/2] ~ 24— 1~ [(n - 2)/8] > [3(n - 2)/8] — 2d — 2.
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Therefore, by Lemma 1, Gf — M; contains a matching My of order |3(n—2}/16| —d~ 1. Then
M1 U M; is a matching of order

[3(n—2)/16] —d — 1+ [{n - 2)/8) > |5(n —2)/16]| —d —1
in G7. Since at most 2d + 1 of the vertices of M U M, are in Ng(z) U Ng(y) U {z}, if |5(n -

2)/16] — 3d — 2 > [n/4], then G' — (Ng(z) U Ng(y) U {#}) contains the required matching,
But this follows when d < [n/48| — 2. W

PROOF OF LEMMA 2: Let H; = {z1,23,+++ ,:L'Lnlgj} and Hy = {y1,y2, -~ ,y[zn/:ﬂ}. We
sequentially label the vertices of Hy with yp, 99, Y2n/3] such that the adjacencies between
Hy and Hy (in G) satisfy the conditions of the Lemma. It is easy to see that the labelling of

Hj can be done such that these adjacencies will be preserved in the graph L that is described
below, ‘

There are two different descriptions for L depending upon whether 2[n/8] < [2n/3] or
2|n/8] = [2n/3]. In the first case the edge sct of L is

B(L)={uiyj 1 1< 4,5 < [20/3],4 # 7} U {my; |1 <5< 2%, 1 <i < [n/3]).
In the second case
B(L) ={viv | 1< 4,5 < [20/31,4 # 5} Ufogyy | 1 < 5 < 2, 1 <4 < [n/3] — 1}
U{zyp/)-1%5 | 1 < 5 < [2n/3] — 1 U{@|nsa ;| 1 <5< [2n/8),5 # [2n/8] — 1}.
Observe that in the first case the degree sequence of L is
dr{eg) =20 for1 <4< |n/3), .
dL(y]) = dL(yj-f-l) =n- (-7+ 1)/2 for j = 153:' ) [211/3_' -1,
dr(y;) = [2n/3] — 1 for 2[n/3] < j < [2n/3].
In the second case the degree sequence of [ is
dp(z;) =2f forl1<i<|n/3[-2,
dL(x[n/?»j-—l) = dL(x[n/SJ) = [2n/3] - 1,
dL(yj) = dL(yj-}-l) =n- (.7"" 1)/2 forj=1,3,--. s LG/?’.l -5,
dr(Y[2n/3]-3) = dr(¥[an/a)—1) = [2n/8] + 1,

ar.(Y2n/3]) = AL{Y[2n/3]-2) = [2n/3].
6



In each case the graph L is 2—irregular and contains @ as a subgraph. B

PROOT OF THEOREM 2: The proof uses Theorem 1. Let S be a largest independent set
of vertices in @. Since the independence number B(G) > n/(d + 1), the cardinality of the set
|8} > n/(d+ 1).

Sequentially remove pairs of vertices in V(GQ) — S that have disjoint neighborhoods in the
present graph obtained from @ by the deletions. Continue this removing of pairs of vertices
until a subgraph H of G is obtained such that each pair of vertices in V (H) — $ have a common
neighbor in H. But then § C V(H) and any vertex z in V(H) — § is at a distance < 2 from any
other vertex of V/(H) — S. Also, since S is maximally independent, each vertex in V(H)-Sis
adjacent to some vertex of S. Let z be a fixed vertex of V(H) — § and assume z is adjacent
to t, t < d, vertices of S. Since A(G) < d and z is at distance < 2 from each vertex of
V(H) - 8, V(H) — 8 has at most

(d=)(d—-2)+td—1)+(@d-8) +1< (d—1)d+1
vertices, Further, these (d — £)(d — 2) +#(d — 1) + (d — t) + 1 vertices have at most
(d=t)(d-2)(d-1)+#d-1)(d-1)+d<d(d— 1) +d

adjacencies in S,

Let T denote the vertices of S adjacent to some vertex in V(H) — 8. By Lemma 2, if
S—T| > %|V (H)|, then H is embeddable in a 2—irregular graph H'. Further, if the pairs of
vertices of G removed to form H are replaced a pair at a time, the 2—irregular graph H' can
be enlarged, through repeated use of Theorem 1, to obtain a 2—irregular graph G’ containing
o .

Thus the proof is complete if |§ — 7| > %—|V(H )| and as long as each graph obtained by
replacing the pairs of removed vertices satisfies Theorem 1. But

1
IS —7T| 2|8 - d®+2d% - 2d > US|+ +1) > %|V(H)|

as long as 2[S| > 3d% -~ 5d% 4 6d + 1. Also, 2[S| > 2n/(d+1). Hence the above inequalities hold
as long as n > %d“ — &+ %dg + %d—i— 1. Also, for n > %d" and d > 8, we have that

V) 2 BG) 2 n/(d+1) >~ > 48d+ 144,

2(d+1)
But n' > 484 + 144 implies |n'/48] — 2 > d, so that H satisfies the conditions of Theorem 1,

as well as those graphs obtained by replacing pairs of removed vertices. Thus, under the given
conditions, Theorem 2 holds, M




PROOF OF THEOREM 3: There is no loss of generality in assuming G has n vertices and
the maximum number of edges allowed. Observe from Theorem 2 that we may assume there
exists a vertex z such that dg(z) > (%)1/ 1,1/4, Throughout the proof we assume z is the vertex
of largest degree. Since dg(z) > (%)1/4111/4 and ¢ < 3n+ %(%)1/4:11/4, G must contain either
a vertex of degree 0,1 or 2.

‘The first stage of the proof consists of repeatedly deleting a set of 3 (or 4) vertices incident
to a total of at least 5 > (3)3 (or 6 > (%)4) edges such that if the deleted graph is 2—irregular,
then the graph prior to deletion is embeddable in a 2—irregular graph. We first describe one
step in this deletion process and then discuss how ofter the deletion process is repeated. There
are several possibilities to consider in the deletion process, each of which dictates the choice
of the 3 (or 4) vertex set to be deleted. We consider these possibilities as separate cases. It
is assumed that the graph to which the deletion process is applied is a (ny, ;) graph G; with

nm < q1.
 Case I: Gy contains an isolated vertez u.

Since G| contains an isolated vertex and n1 < qi, there exists a pair of vertices v and
w in G which together are incident to at least 5 edges of Gy. Let G3 = Gy — {u,v,w}, and
assume that G"2 is a 2—irregular graph of order n; — 3 containing G3. Let Gj be the graph with
V(G3) =V (G1) and

B(G3) = B(Gy) U{vz |2 V(G}) - {o}} U{wz |2 € V(GE) - {w, u}}

U {wu | when G} has at most one isolated vertex}.

It is clear that dgs(u) =1 or 2. If dgz(u) = 1, then G4 has at least two isolated vertices,
so that for z € V(G )s

2 < dgj (=) < V(@) - 4, dgg(v) = [V(G3)] - 1, and dgs(w) = [V(G})| - 2
If dgx(u) = 2, then G has at most two vertices of degree 2. Also, then for z € V(G}),
dgy(z) < [V(G3)] - 2, and dgy (v) = dgz(w) = [V (GF)| - 1.

Thus, for either possiblitity, when G' is 2—irregular, then so is G with G; a subgraph of
Gs. Also Gy is a (ng,¢3) graph with ng = n; — 3 and g2 S q1— 5.
Case II: §(G4) =1

Let u € V(G1} such that dg, (u) = 1, and let vu E(Gy). If dg,(u) > 2, then since
ny < g1, there exists a vertex w in G7 such that v and w are together incident to at least
5 edges of Gy. In this case define Gy, GY and G} as was done in Case I. Then G contains
Gy, is 2—irregular when G}, is 2—irregular, and G5 is an (n2,q2) graph with ny = ny ~ 3 and
2 <q—5.



If dg, (v) = 1, then there exist vertices w and ¢ in G 1, each of degree at least 3. This means
that the set {u,v, w, t} is incident to at least 6 edges of G1. In this case let G = G1 —{u,v,w,t}

and assume that Gj is a 2~irregular graph of order n; — 4 containing G3. Define G} by
V(G3) =V (G1) and

B(G3) = E(G}) U {wz | z € V(G}) — {w,u,v}} U iz |z € V(G3) — {t,u,v}}

U {wu, vt | when G} has no isolated vertex}.

We check the degrees of V(G}). If G, has no isolated vertices, then dgs(u) = dgz(v) =
2, dgg(w) = de (t) =V (G3)| -2, and des (z) < [V(G3)| -3 forz e V(Gh). If G has 1sola.f;ed
vertices, then dgs(u) = das(v) = 1, dg*( ) = dgx(t) = |V(G3)| - 3, and 2 < dey (z) <
[V{G3)| — 4 for z € V(GS). Thus in cither case, if GY, is 2—irregular, then so is G} w1th Gia
subgraph of Gj. For this subcase Gy is an (n2,42) graph with ny = n; —4and g9 < q — 6.
Case III: §(G4) =2

Since n; < ¢, there exist vertices u,v,w € V{(G) such that uv, uw € E(G@,), da, (v) =2,
and the set {u,v,w} is incident to at least 5 edges of G1. We assume that this set {u,v,w} is
chosen so that dg, (v) < dg, (v) < dg, (w) with the degree of w as large as possible,

Let G = G1—{u, v,w} and assume that G}, is a 2—irregular graph of order nj—3 containing
G3. Let G be the graph with V(@3)=V(G1) and

E(G}) = B(Gy) U{vz | 2 € V(GF) — {v}} U {wz | z € V(G}) - {w}}
U {uz | when G4 has at least two isolated vertices with

z € V(Gz) — {r} and r a fixed isolated vertex of G}}.

If G has at most one isolated vertex, then doi(u) =2, 8 < dax(z) < [V(G3)| — 2 for all
but at most one vertex z € V(G}), and dgx(v) = th* (w) = [V(G})| — 1. If G has at least two
isolated vertices, then dgx(z) < [V(G3)} - 8 for each z € V(G2), dgy(v) = [V(G3)| - 2 and
dgy(v) = dg (w) = [V(GJ)] - 1.

It is clear that either possibility gives a graph G} which contains G; as a subgraph, is
2—irregular when G'2 is 2—irregular, and G is an (ng, g2) graph with ng = ny—3 and g9 < g1 —5.

When sequentially applying the deletion process to & it is assumed that the highest degree
vertex z will be deleted as soon as possible, This can, in fact, be done the first time the deletion
process is applied, unless §(G) = 2 and 2z is not adjacent to a vertex of degree 2. After enough
deletions, even when §(G4) = 2, vertex z will be deleted.

We next see that this deletion process can be stopped when the graph G, which results
after many deletions, satisfies

Chnllt < |V (Go)| < (3)1/4nt/4,

where €' = (2)1/4 — ¢ for some e, L3 /i<eg 1(2)Y/4. Assume that after repeated deletions,
a graph Gy results with [V (Go)| = C’'n!/4, Then n—C'nl/4 vertices and at least S(n—C'nl/t-
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4) + (?—,)1/4nl/4 + 2 edges have been deleted. Recall that at least (%)1/4711/4 + 2 edges were
deleted when z was deleted. This means that [V(Go)| = C'n/4 and

3 1.2 3 2
IE(G0)| < §n+ "2-(5)1/4111/4 _ E(" _c'pl/t 4) - (5)1/4’11/4 _9
< (gcf_ %(%)1/4),21/4 44 < C,ﬂ1/4.

The last inequality requires 4 < %enl/ 4, which holds since n > (8/€)* > 8435 /2.

Thus, a (no,¢0) graph Gy has been obtained by the deletion process with g5 < ng. We
complete the proof by showing that G is embeddable in a 2—irregular graph G} of order ng.
Clearly, Gjj can be enlarged, replacing the deleted vertices a 3—set (or 4—set) at a time in
reverse order to the deletion. At each step in the enlarging process, a 2—irregular graph is
obtained with G a subgraph of the enlarged 2—irregular graph.

To embed Gy in a 2—irregular graph we apply Lemma 2. Sequentially delete z UN*(z;), zoU

N*(z3),--- 2| no/3) Y N*(ann/3J)’ from Go, where z is the smallest degree in Gg — Uj-zll(s:j U

N*(z;)) and N*(z;) is the neighborhood of =; in Go-—Uj;ll(ijN*(wj)). Let Hy = {z1,23,-- -,
T|ny /3 J} and Hy = U}?_ﬂol/ 3 N*(z;). Clearly, Hy is independent. Also, since go < ng, the set
of vertices {2; | 1 < j < i} have at most 2i adjacencies in Hj. Thus, by Lemma 2, Gp is

embeddable in a 2—irregular graph G of order ng. This completes the proof of Theorem 3. M

4. CONCLUDING REMARXKS. _ '

It is not known whether the sufficient conditions given in Theorems 2 and 3 can be weakened
with the same conclusions, The sufficient conditions given in the theorems were determined by
the method of proof used. Probably the most interesting question is the one mentioned earlier,
namely, is each (n,q) graph with ¢ < 3n — 7 embeddable in a 2—irregular graph of order n?

-Another question of interest is whether there exists a “universal” 2—irregular graph of order
n that contains all graphs of order n and of bounded degree d, for fixed d and sufficiently large
n. One candidate for such a universal graph is the graph Hy, (for n even) obtained from the dis-
joint union of two complete graphs K, ;o with vertices {z),2,--- ,z, /2} and {y1,y2,°*- ,y, /2}
respectively, by adding the edges ziy; for 1 <i<nf/2and1<j5<i. Unfortunately Hy is not
universal. It can, if fact, be shown by probabilistic methods (for d > 17) that there exists a
graph Gy, of order n and maximal degree d such that K, J4,n/4 g_f Ghr. Since K, Janf4 C Tf;, it
is not possible for G, € H,, and thus H,, is not universal. It is true that H, is universal for
d<3.
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