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Abstract., We consider the following question: For a fixed positive integer ¢ and 2 fixed s-coloring

of the edges of Ky, what is the largest subset B of V(K,) monochromatically covered by some

t element subset of ¥V (Ky)7

1. INTRODUCTION.

Let G be a graph, 4,B C V(@). The set 4 is said to cover {or dominate) B if for every
y € B — A there exists an « € A such that 2y € E(G). Thus if A covers B then A covers
AU B. In what follows this idea of covering will be applied to the monochromatically
colored subgraphs of K, cobtained by co]oring each of its edges by one of & fixed set of
colors.

A problem of this type due to Erdds and Hajnal is given in the following conjecture.
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CONJECTURE. (ERDOS, HAINAL). For given positive integers n,t and any 2-coloring of
the edges of Ky there exists a set Xy C V(Ky), with at most t vertices, which monochro-

matically covers at Jeast (1 — 1/25n of the vertices of Kn.

This conjecture is trivially true for ¢ = 1, was proved by Erdds and Hajnel for ¢ = 2,
and proved in more general form in [1]. Before stating this general form we introduce
additional terminology. If the edges of a graph have been 2-colored, we assume the colors
are red and blue, and refer to a covering in the resulting red(blue) subgraph as an - covering

{b-covering). The result proved in [1] is the following.

THEOREM A. [1]. Let @ = [X,Y] be a 2-colored complete bipartite graph, t be a non-
negative integer, and B any real number satisfying 0 < 8 < 1. Then ai least one of the

following two statements is true.

{1) Some set of t vertices of X r-covers all but at mast #1(|X| + |Y|) vertices of
Y.
{(2) Some set of t vertices of Y b- covers all but at most (1 — g)H1{|X| + |Y|)

vertices of X,

This gives as an immediate corollary the following generalization of the Erdés - Hajnal

conjecture. (The case when = 1/2is the Erdis - Hajnal conjecture.)

COROLLARY [1]. Let the edges of Ky, be Z-colored, p a fixed vertex of Ky, k a positive
integer, and § € (0,1). Then there exists a set A C V(K,) such that p € A,|A] S &, and 4
either r-covers at least (1 — ,Bk)n verbices of Ky, or b-covers at least [1 — (1~ ﬁ)k}n vertices

of Hy,.

The proof of Theoremn A given in [1] is constructive. In fact a greedy low order palyno-
mial algorithm will find the covering set. Thus one might feel that the resnlt of Theorem

A is not sharp, but this is not the case as is shown by the nex result.
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THEOREM B [1]. For any fixed ¢ > 0 and positive integer t there exists an ny = na(e, t)
and a Z-coloring of the edges of Ky, for n > ng such that each t-element subset fails to

monochromatically cover at least (1/2t — €)n vertices of Kp.

This leaves as unsettled the general question of what happens if r-colorings of the edges
of Ky, are considered instead of 2-colorings. In particular if the edges of Ky, are r-colored,
then for which ¢ does there exist some set of ¢ vertices which monechromatically covers at
least {1 — (1 — 1/¢)%)n vertices of Kyn?

No such result can hold for arbitrary # and ¢, not even when »r = 3 and £ = 3, This
was first noticed by H. A. Kierstead who gave the following example. Three color the
edges of Ky by partitioning its vertex set into three sets Ay, Ay, Ag of equal order. If
1€£¢{£7<3andz € A,y € Aj, then color edge zy with color 1, Clearly any three vertices
monachromatically cover at most 2n/8 vertices of Ky, while in this case {1 — (1—1/s})n =
19n/27. We shall see in the next section that this generalization will essentially hold for
many values of r and ¢, Also we shall show when r = 3 that the expected number of vertices

menochromatically covered by a “small” set is 2n/3.

RESULTS (many colors).

The example of Kierstead shows no “small set” of vertices can be found which, in
general, monochromatically cove:s.substantialiy mere than 2r/3 vertices of Ky, under a
3-coloring of its edges. The first result of the paper shows that a covering of 2n/3 vertices

can be realized using a “small set” of vertices.

THEOREM 1. Three color the edges of K,,. Then there exists a set of at most k vertices

in Ky (k < 22) which monochromatically covers at least 2n/3 of its vertices.

The upper bound of 22 on k is only a consequence of the method of proof of the
theorem. A random 3-coloring of E(K ), with each color of equal probability, provides an

example of a 3-colored graph in which each pair of vertices monochromatically covers at
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most 5n,/9 vertices. Thus we know 3 < k < 22. Most likely k = 3 will suffice, but presently
we have no proof,

We next congider the general question mentioned earlier; for which r, ¢ does there exist
a t element set which monochromotically covers at least (1 — (1 — 1/r)t)n .vertices for any

r~coloring of E(K,)? With this in mind we prove the next theorem.

THEOREM 2. Let G be a graph on n vertices and cn2/2 edges, 0 < ¢ < 1, and let
t be a fixed positive integer. Set A(G) = An,N; = A, and define N; recursively by
Nt = ¢+ (1—A)N;_1. Then there exists t vertices of G which cover at least (max{A, N;})n

vertices of G. Furthermore max{A, N;} » min{l ~ (1 — ¢}*,/e}.

One should observe that if & is a regular graph, then A=cand Ne=c+{1-c)Ny | =
1~ (1-¢)f, whileif G = K f;,, then A = /c and N = c + (1 — /)Ny 1 = /<.

It can be checked that the following slight modification of Theorem 2 is also true. Let
the n vertex graph G have c{n — 1)2/2 edges and set A{G) = A(n — 1). Then (with ¢ and
N as defined) G contains a ¢ element set which covers at least (max{A, Ny})(rn—1) vertices
of G. The next corollary is a consequence of this modified from of Theorem 2 and gives a

partial answer to the question asked earlier.

COROLLARY 1, Let ¢t be a fixed positive integer and let r be fixed and large. If the edges
of Ky, are r colored and n is large with respect to r, then there exists t vertices of Ky, which

monochromatically cover at least (1~ (1 — 1/7)"){n ~ 1) of its vertices.

PROOF: The dominant color class in the colored Ky, has at least (n® —n)/{2r) > (1/r){(n—
1)2/2 edges. Setting ¢ = 1/r choose r large enough such that, for all large n, 1-(1-¢f<

+/¢ and apply the modified version of Thecrem 2. §

COROLLARY 2. Let Ky be edge colored with r colors and let t be a fixed positive integer.
If either t = 2 or if the color class with the majority of edges is a régu]ar graph, then there

exists t vertices of V (Kyn) which menochromatically cover at Jeast (1 — (1 — 1/r)t}(n ~ 1)
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of its vertices.

PROOF: If r = 2 and ¢t = 2 the result follows from the corollary of Theorem A, while if

r 2 3 and £ = 2 the result follows from the modified version of the theorem, since
2 1
1-{1-¢)? <+/c for ogcgg.

I the color class with the majority of edges is regular, then that colored graph has at
least e{n—1)%/2 edges with ¢ > 1/r so that N > 1-(1-1/7)*. Henco the modified version

of Theorem 2 again applies. E

PROOFS OF THEOREMS 1 AND 2.

Proof of Theorem 1;

Assume that the three colors with which E{K,) has been colored are named 1, 2, and
3. Throughout the proof we use the following notation. For B € V{Ky) and « € V(Kn)
let d;(z) denote the degree of z in the subgraph of K, induced by color £, and let d (a:)

be its degree relative to the set B.

The proof is indirect, so we suppoée the Theorem is false. For each #(1 < i < 3) select
a set A; of vertices that is covered by k vertices, let B; = V(K,) — A;. Choose A; such
that the maximum degree in color ¢ with respect to B; is &;n, a minimum.

Assume without loss of gererality that §; < 8, < 63. Further, since |4;| < 2n/3 by
assumption, |B;| = (1/3 + )n where ¢; > 0. Let C; = {zeB;|d;{2) = n/8}.

Since 3~ 4B () < 8,2,|Cy < Em3/(nf6) = 65m. U y € (By N By) — (Cy U Ca),
then dl(y)z€<( nn/)ﬁ and dy(y) < n/6, so that dz(y) > 2n/3. Since this is impossible,
|B1 N By| < |C1 U Caf < 8(8 + &3)n.

Next observe

3 di e Z &P (2) < (1/3 4 1) fn?
zeBy geBy

and
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3 P (@) = 3 dP () < (1/8 + e)din?.

1eBy zeBgp

Thus there exists a z;eBy such that

dB (1) 2 (13 + ea)n — (13 + e)ba + (/3 + €2)81)/[1/3 + e,

and a vertex z9eBy such that

B
dP () 2 (13 + e)n — ([(1/3 + )z + (13 + e)8r]/[1/3 + ).
Therefore {z;, 23} covers in By U By(in color 3) at least an vertices, where

= 2/34 (e3 +ea} — 6(61+ 8) — [1/3+ )b + (/3 + 52)51}/ [1/3+¢]

M 078+ e (1/5+ bl [ s+ e
> 2/3+ e + ep — 10(8; + &o).

Note that this later expression fmplies § + 82 > 0, since it has been assumed that the
theorem is false,

Next select vertices z3,24,..., 25 such that {z1,22,23,...,2;} covers as many vertices
in Ky as possible in color 3. Since no such set covers 2n/3 vertices, it follows from {I)
that at least one of the vertices in the set {zg,2y4,...,2;} covers (in color 3) at most
([10{81 + &) — (&1 + €2)]/ 1k — 2])n vertices not covered by the remaining ones. Hence if Ag

is the set covered in color 3 by {z1,22,...,25} and By = V{Kn) — A3, then for meV (K,)

B
d{P(s) < (11006 + &) — (e + )}/ [k = 2,
Therefore § < [10(6) + 82) — (e1 + €2)]/[k — 2], But then 0 < (6 + 82)/2 < 83 < 10(6 +
83)/{k — 2),  contradiction for k > 22. B
Before presenting the proof of Theorem 2 we prove the following needed polynomial

inequality.
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LEMMA 1. For k > 1 let P: be the polynomial of degree t + 1 given by
Pylz) = [1 - (1 &)zt (e~ )1 - 2)",

where 0 < ¢ < 1 satisfies 1 — (1 — ¢) < \/c. Then Py(z) < cforec <z < 4/b.

PrROOF: The equation 1— (1 — ¢}* = 4/Z has a unique solution ¢ = ¢ in the apen interval
(0,1) with 1 — {1~ ¢)! < /¢ if and only if ce{0,c¢). Tt can be shown that 1 — (1 — &)t » /2

for e=1/(t% 1) and 1 — (1 — ¢)* < /¢ for ¢ = 1/(t* — t +- 1), so that
(2) /{8 —t+1) < e < 1/(82 — 1)

Since Pi(e) = ¢ and Pi(3/c) = [L — (1 - ¢)¥]y/z < ¢, to show Py(z) < cfor ¢ < © < 4/, it
sulfices to prove J; has na relative maximum in {c,+/c).

We suppose P; has a relative maximum in (¢, 1/¢) and show this leads to a contradiction.
For ¢ = 2 this is easy to check, so we assume ¢ > 3. Suppose 21¢(c,/c) satisfies P[{z) =0
and Pf/(x1) < C. Using (2) cne can check that PJ{c) =1~ (1 - ¢} [#(t 4+ 1)c— 2] < 0 and
Py = (1 - e} 2[t(t + 1)e — 2] < 0. Tt follows that there is a point zpe(e, z1) such that
P/(zq) and P{(zg) > 0, so that P} must have one zero in (¢,2q) and another in (mo,21).
But P(z) = (1 - «)¥ 3[(t - 1)(t — 2)e ~ 2+ 4tz — ¢(t + 1)=%] so that the sum of these zeros

is 4/(t + 1). Thus 4/(t + 1} < 24/¢ so that from (2)

4/t + 1) <c< 1/t -1y,

which is impossible for ¢t > 3. B

The recursive definition of Ny given in Theorem 2 is such that Ny = N;(A) = ¢[1 -

(1A 1/A + (1- A}t_lA. Therefore P as defined in Lemma 1 satisfies

B(A)={1-(1-e))A +c— ANiA).
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Hence Pi(A) < ¢ if and only if Ne(A) > {1—(1- c)t}. This means that under the conditions

of Lemma 1, when t > 1 and 0 < ¢ < 1 satisfies 1 — {1 — ¢)! < /e,
then Ni(A)>1- (l—c)t for e< A</

One can also show by strzightforward calculations thatfor ¢ < A < v/eand 1-(1-¢}t > /e

that Ne{A) > /. Thusfor all e € A < /¢

(3) Ni(A) 2 min{1 - (1 - o), V).

Proof of Theorem 2:

We prove by induction on ¢ that there exists ¢ vertices which cover at least (max{A, Ni})n
vertices of G. This is clear for ¢ = 1, so we assume the result for £ - 1.

Let A denote the set of largest order covered by a t — 1 vertex set of G and let B =
V(@) ~ A. Choose & such that (Ni—1 + §)n = |A] and |B| = (1 — Ni—y — &)n. Further
chooss the smallest [ such that the degree d(B) (z) of each vertex = of G, relative to set B,
is at most In. Thus the maximum number N of edges in G (counting edges in A, from A

to B, and in B) is at most
N = [(Np—q + 8)(A — Dn®)/2+ (Ney + 8)In® 4 [(1 ~ Ny_y — 8)In?]/2.

Hence cn2/2 < N which is equivalent to ! > ¢ — Ny—1A — §A.

Since by assumption ¢ — I vertices of @& cover (Ne.i + 8)n vertices, t vertices cover
(max{A,l+Ni_1+6})n vertices of G, where [ > ¢— N;_1A—8A. Hence thers exist £ vertices
of G which cover at least (max{A,I+N;_1+6})n = (max{A,c+(1- A)N_1+8(1—-A)})n
vertices of G. Since this last expression is minimum for & = 0, it follows that there exist ¢
vertices of G which cover at least {(max{A, N¢})n vertices, where N; = ¢ + (1 — A)Ny1,

The fact that max{A, ¥;} > min{l — {1 — ¢)f,4/c} follows from (3) and from the fact

that the maximum degree of G is at least en. B
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4. CONCLUDING REMARKS.

It would be nice to improve the result of Theorem 1 and show that if E(K,) is 3-colored,
then there exist a 3-vertex set that monochromatically covers at least 2n/3 vertices. Some
evidence for this possibility is provided by Thecrem 2. Note that by Thecrem 2 there
exists 3 vertices which monochromatically covers at least n/\/g of the vertices. Also by
Theorem 2 & 3-colored Ky with as many as (4/9)(n?/2) edges in one color has 2 vertices
which monochromatically covers 2n/3 vertices. Thus it appears that Theorem 1 may hold
for k= 3.

Also a theorem parallel to that of Theorem 1 conld be considered for r colors, where
r > 4. To consider this parallel problem we modify the definition of cover to say that A
covers B in G if each vertex of B — A is adjacent to a vertex of A and each vertex of A
is incident to an edge of G. The vertices in A can not be isolated. With this alfernate
definition, define f(r} as the largest real number such that fer zll n and all r-colorings of
E(Ky) at least f(r)n vertices can be monochromatically covered by some set A € V(Ky).

In [2] this problem is considered in a different setting. It is shown there that f{r)

satisfies the following tabular results.

r 2 3 4 b 6 T 8 9 10 11 12 13

Fr) 1 2/3 3/5 5/0 172 3/7T 5/12 2/5 3/8 5/14 1/3 4/13

Thus, for example, if E{K,) is 4-colored, then does there exist a “small set” which monochro-
matically covers at least 3n/5 vertices?

An additional problem is to find the order of the smallest set which menochromatically
covers f(r)n vertices in any coloring of £(Ky). This order was shown in Theorem 1 to

be at most 22 for » = 3 and conjectured to be 8 for r = 3.
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