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Abstract, It has been conjectured that if a graph & has (",J_,rl) edges, then the edge set of G
can be partiticned into n graphs Gi, Gy, ..., Gn such that Gy has ¢ edges (1 <1 < n), and G;
is isomorphic to a subgraph of Gyyq {1 < i < r). Such a graph @ is said to have an ascending
subgraph decomposition (ASD). It will be shown that any forest with (";1} edges has an ASD

such that zll the graphs in the decomposition are star foresss,

1. INTRODUCTION

A graph G is decomposed into subgraphs G1,Gs,..., Gy if the edge set B(G) of G
is partitioned into the n sets B{(Gy), (1 € i £ n). A graph G with ("",;1) edges has
an ascending subgraph decomposition (abbreviated ASD) if G can be decomposed into
subgraphs G; {1 < i < n) such that & has size ¢ and G, is isomerphic to a subgraph of
Giy1 for ¢ < n. The most important problem concerning an AS 1) is given in the following

conjecture which was stated in [1].
CONJECTURE: [1]. I/ G is a graph with (*}') edges, then G has as ASD.

The conjecture has been verified for several spécial classes of graphs. In [3], star forests

and dense graphs were considered and the following two theorems were proved.
THEOREM A (3], If F is a star forest with (") edges, then F has an ASD.

THEOREM B [3]. IfG is a graph with (n',;l) edges, and at most n+ 2 vertices, then G
has an ASD,
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In each of the two previous theorems, as well as the following theorem, all of the graphs
in the decomposition are star forests. Using matchings as the graphs in the decomposition,

the following theorem and some related results were verified by Fu in [4].

THECREM C [4]. If a graph G has (nl:l) edges and maximum degree A(G) <
l{n — 1}/2], then G has an ASD.

This last result was generalized in (2] by increasing the upper bound on the maximum
degree condition that implies an ASD and by allowing the graphs in the decomposition
to be the vertex disjoint union of short paths, and not just matchings. In particular, the

following theorem was proved.

THEOREM D {2]. IfG is a graph with (n;'}‘) edges, and A(G) < [{2 - \/2)n|, then
G has an ASD. Also, each of the graphs in the decomposition of G is the disjoint union of
paths of length at most 3.

If the graph G is a forest, a weaker restriction on the maximum degree can be shown
to imply an ASD.

THEOREM E [2]). IfG is a forest with ("'ZH) edges, and A(G) < |(3— /3)n/2], then
G has an ASD. Also, each of the graphs in the decomposition of G is the disjoint union of
paths of length at most 2.

We will generalize this last result with the following theorem, which verifies that all
forests have an ASD.

THEOREM 1. If F is a forest with (nTle) edges, then F has an AS D, Also, each of the

graphs in the decomposition of F Is the disjoint union of stars.
2. MAIN RESULTS

Notation and definitions not explicitly mentioned will follow [5). Frequently used no-

tation will be described in the first part of this section, and any other special notation or
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definitions will be presented as they are needed. In preparation for the proof of Theorem
1, we introduce some terminology.

‘An ASD of a forest F' with ("’é‘l) edges, which we will denote by P, is a partition of
the edge set E(F) of F into n sets B(F), (1 £ { £ n) such that F; has { edges and F;
is isomarphic to a subgraph of Fi4q for ¢ < n. It is sometimes convenient to consider the
decomposition [ as a coloring of the edges of F with n colers {1,2,--- ,r} such that the
F; is the subgraph of edges colored i, We will routinely use the coloring intrepretation in
the proof of the main theorem.

If a graph & is the union of two vertex disjoint subgraphs Hy and Hg, then this will
be denoted by G = Hy U Hy, Thusif ¢ is any edge of a forest F, then F' — e = Hy U Hy for
appropriate {not necessarily unique) subforests H; and Hy. Of course, if F is a tree, then
the subtrees Hy and H; are unique.

In the proof of the main theorem an induction proof will be used, and subforests will be
obtained by deleting vertices and edges from the initial forest. Thus, it will be convenient to
develop rather specialized notation to easily describe such graphs, Associated with a vertex
v of degree ¢+ 1 in a tree T are ¢+ 1 edges ey, e3,+-- , €441 and corresponding components
Cy,0C,--+ ,Cryq such that

T—v=ClUCU---UC .

The edge e; joins v and the compeonent C;. These edges and components depend on the
vertex v and the tree T, but no reference will be made to v or 7', when this leads %o no
confusion,

Another decompesition of T' is obtained by deleting the edge e = e¢y1, {or any other
edge e;) which gives the following:

T —e=C;UH,,

where Ce = Ci4 and H, is the tree spanned by e star of degree ¢ with center at the vertex
v and the ¢t subtrees C; UCy U+« U ;. Some of the components C; could consist of just
a single vertex, so we will assume for sach ¢ that ¢; = |Cyf, that ¢y > ¢y > -+ > ¢, and
that for some s {possibly t} ¢s > 1, but ¢4 = 1. Thus, in this case, the tree H, hast — s
endedges adjacent to the vertex v, and there are s nontrivial components in H, ~ v. Note
that in the remainder of the paper, anytime a vertex v and incident edge ¢ is selected in a
forest F, we will assume that we have the associated e;’s, Cy’s, c;’s and H, without having

to explicitly describe them,
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Since any edge ¢ of a forest F' is in some tree T that is a compenent of the forest, there

is a natural decomposition of F — ¢ given by
F—e=H, UC,UF',

where F' is the forest of components of F distinct from 7, and H, and C, are the trees
of the previous paragraph. If ¢ and f are distinct edges such that H, and Hy are vertex
disjoint, then there is a subforest F! of F such that

Fee—f=H/UH;UF.

We are now prepared to give the proof of the following theorem,

THEOREM 1. If F is a forest with (n;l) edges, then F has an ASD. Also, each of the

graphs in the decomposition of F is the digjoint union of stars.

PROOF: The proof will be by induction on n. It is trivial to verify the result for n = 1, 2,
and 3. We proceed by induction on n, and assume that all forests with (m;—l) edges for
m < n have an ASD with star forests for each of the terms. Several cases, which we will

show are exhaustive, will be considered.

Case 1t For some edge e of F, the forest F—e= F'UH, where H is a subgraph with n—1
edges,

The forest F' has (";1) —n = (’2") edges, so by induction, P! has an ASD of star
forests, which we will denote by D', The ASD for F! can be extended to D, an ASD, for
F by replacing for each  the i*® color in D’ by the (¢ + 1) color, colozing the edge e with
1, and arbitrarly coloring the n — 1 edges of H with the colors {2,8,:++ ,n}, Note that a
vertex disjoint edge has been added to each of the color classes, so P consists of star forests,

which completes the proof of case 1.

Case 2: For some edges {f1,f3,--+,[+} end ¢ union of components H of F, the forest
F—{fifo,-- fr}=Hp UHp U~ UH; UHUF jor some subjorest F! withn —2 >
|ECH ) 2 [E(H) z - 2 |E(Hp )| 2 1, n-2 2 |E(H)|, end |E(H)|+ 20 | B(Hy,)| 2

n—1.
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We can assurmne, with no loss of generality, that a set 4 of n edges can be selected that

contain ey, all of the edges H and of the Hy for 1 <4 < r, and an appropriate number of

*edges from Hy, . The forest P = F — A has (g’) edges, and therefore by induction has a
atar forest ASD, which we dencte by P’

Change the celor of each edge in F! from { to ¢ + 1. Next, we describe an assignment
of a different color to each edge in A such that an independent edge is added to each color
class of the translated color classes of 2!, which will result in = star forest ASD for F. Color
edge e; with I. For each 1 (1 < ¢ < r), assign the colar of edge €41 in P if it has not
already been assigned, to an edge in He,. For each of the colors of an edge in He, n F" if it
has not already been assigned, assign this color to an edge of H,,. This can be done since
|B(H )| =2 |E(H )|, Assign the remaining colors arbitrarly to the remaining edges of A.
This gives a coloring that implies that F has a star forest ASD, and completes the proof

of case 2.

Case 8: There is o verter v of degree t + 1 with essociated edges {ey,en, -+ epqr = e}
and components {C,Cy, ++ ,Cpy1} such thatt <n—1,n-22> €p 23 2o 2 ey, and
|E(He}| 2 n— 1.

Subcase it There s an integer r < s such that n—l-itts < cytegt - teptr < n-1,

Select a set A of n edges that contains {e,e;, e, - ser}, the edges of the components
{C1,Cpy v+ Gy}, and n—r—1— 2oiq ¢ edges e; for § > s (these will be endedges). The
forest F! = F — A4 has (g”) edges, and therefore by induction has a star forest ASD, which
we dencte by D',

We will change the color of each edge in F' from i to {1+ 1, and show that an assignment
of 2 distinet color can be made to each edge in A such that an independent edge is added
to each color class of the translated color classes of £, This will give a star forest ASD for
F. In this assignment, color edge e with 1. There are t ~n+1+ 307 4 ey < 2 oieq o edges
in F' that are adjacent to v, Assign the colors that appear on these edges of F! te edges in
Utle Ci, and assign-the remaining colors arbitrarly to the remaining edges of A. This gives

the required result, and completes the proof of subcase 5.

Subcasge iit There is an inleger + < s such that cgtepg+ it etr<n—1<
it e+t oppr Fr L

We will again select a set A of n edges that contain {e1,€3,+ ,erq1}), the edges of

the components {C1,Ca, -+ ,Cy}, and n—r —1 — 2oi=1 ¢ arbitrary edges from Cr41. The
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forest F! = F — A has (;) edges, and therefore by induction has a star forest AS D, which
we denate by £’

"As in the previous subcase, we will change the color of each edge in F' from i to
7+ 1, and show that an assignment of colors can be made to the edges in A such that an
independent edge is added to each color class of the translated coler classes of D', Start by
coloring th edge erqq with 1. There are t —» < n—r — 1 edges in F' that are adjacent te v.
Assign the colors that appear on these edges of ! to edges in U:;Lll (C;NA). In making this
assignment, make sure that any color assigned to an an edge in Cyp41 N A is distinct from the
colors of the edges in Cye1 M F'. This can be done, since ¢; > ¢p41, S0 any color appearing
in Cre1 N F' can be assigned to an edge of Cy. Assign the remaining colors arbitrarly to
the remaining edges of 4. This is a coloring that implies that ¥ has a star forest ASD, and

completes the proof of subcase 7.

Since the conditions of either subcase 1 or subcase ¢ must be satisfied, this completes

the proof of caze 3.

Case 4: There are vertices v and v' such that v is of degree t + 1 > n with associated
edges {e1,e0, €141 = e} end componenis {Cy,Cy, - - y Oy with op -2 cg 2 o0 > o

and Ele c; < n—2, and such that v' hes corresponding paramelers that are marked by
[

Let e = epy), & = e;,_H {possibly ¢ = &), g = 2521 ¢;, and ¢' = Zf;l c}. With no loss
of generality we can assume that t > t' and the subtrees H, and H,), which have t + g and
' + ¢’ edges respectively, are vertex disjoint. Let m=t+t' + ¢+ ¢' + 1+ & [where § =0
if e = ¢! and § = 1 otherwise), which is the number of edges in the graph H spanned by
He U H,y U {ee},

Select p and r such that

m=n+{n—1++{n—p+1)+r,

for 0 < r < n — p, We will select an appropriate subgraph I, of # with m — r edges, and
consider the subforest F/ = F — L, which has (’H’E'H) edges. By induction F' has a star
forest ASD, and we will show that this can be extented to be a star forest ASD of F. Two

subcases will be considered.
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Subcase it r > ¢+ ¢'

et X be aset of r edges that contain all of the edges in C1UCHU- « WCUCTUC- - LG,
and en additional » —g— ¢’ edges of H that are not adjacent to any of the previously chosen
edges, Let L = H — X, and consider the forest F! = F — [ that has (n7§+1) edges. By the
induction assumption F' has a star forest ASD, which we will denote by [, Change the
coloring of each edge in F' from 7 to ¢ + p+ 1. We will extend this coloring to = star forest

ASD of F.

The graph Lhas m—r=n+{n—1)+- 4 (n—p+1) edges that are in twe stars. We
want to color these edges with n colors such that for 1 < ¢ < p, the edges of color ¢ form
a star with 7 sdges, and that the edges in each of the remaining colors form a star with P
edges. This can clearly be dene. In addition, we want to make this eoloring such that any
edge assigned color 7 is not adjacent to an edge of F' with color j, and such that edges e
and ¢ have colors from {1,2,++ ,p}. This can be done using the same colering techniques
employed in cases 2 and 3, since there are at most r < n — p colors on the edges in X,
but it may require that the edges of X adjacenst to v or v’ be appropriately chosen. This

completes the proof of subcase i%.
Subcase ii: r < g+ ¢'

Order the edges in Cy UCy U+ Uy U C{ U C; Ul C;, by starting with the edges
in C1, following with the edges in U3 and continuing until reaching the edges of C‘Lf,. Select
the first r edges in this order, and delete these edges from H to cbtain a graph L that has
at(n—1++{n—p+1)=pn+ (g) edges, Therefore, the forest I = F — [ has
(’VEH) edges, so by the induction assumption F' has a star forest ASD, which we will
denote by P'. Change the color of each edge in F¥ from ¢ to § + p.

As in the previcus subcase, the graph L has m — r = n 4+ (n=1)+ -+ {(n—p+1)
edges. We want to color these edges wilh n colors such that for 1 < 1 < p, the edges of
color 1 form a star with { — 1 edges, and an independent edge, and that the edges in each
of the remaining colors form a star with p — 1 edges and an independent edge. In addition,
we want to make this coloring such that any edge assigned color 7 is not adjacent to an
edge of F! with color 7, and such that edges e and ¢ have colors from {1,2,-+,p} Just as
in the previcus case, this can be done since r < n — p, This completes the proof of subcase

i1, and of case 4.
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Case 5: For some vertez v of F, the forest F — v has at most n — 2 edges.

If v has degree t, then associated with v are edges eg, ez, -+ , €1 along with corresponding

components €y, Ce, -, C}, and therefore

Twpv=CuCyu-- U,

where Cp is the subforest of components (possibly empty) of F distinct from the component
containing v, By assumption, there are at r < n — 2 edges in all of the C;’s,

Arbitrarly assign colors {n,n — 1,--- ,n — r 4+ 1} %o the r edges that are not incident
te v. Since r € n ~ 2, an assignment of colors {1,2,-++ ,n} can be made to the n edges
€1,¢3,"+* ,en, such that the color assigned to ¢; is different from all of the colors assigned
to edges in €. Note that at most the first » components C1,Cy,++- ,Cr have an edge, so
the ej-’s for n < j <t are not incident to any edges of the components of F' — v, Assign
colors to these remaining edges such that there precisely % edges of color k for each k. This
coloring implies that F' has a star forest AS D, and completes the proof of case 5.

To complete the proof, it is sufficient to show that any forest F will fall intc one
of the five cases considered. To do this we make the following observation. If v is a
vertex of degree t+ 1 in a forest ¥ with associated edges ey,eg,: -, €41 and corresponding

components Cy,Cq, -+, Ciyy, then

Pov=Culhu. - JC iy,

where Cj is the forest of components of £ not containing v, Then cbeerve that if | E{#,, )| >
n, then either |0;] £ n— 2 for 1 < ¢ < ¢, or one can consider the vertex vy of Cy that
is adjacent to v and look at the decomposition of F obtained from this vertex. A repeti-
ticn of this argument will eventually yield a vertex, say v, such that |E(H,,,,)| > n, and
|Gyl <n—2forl<¢<t.

If the ferest F does not satisfy the conditions of case 1, or case 3, then by the observation
of the previous paragraph there must be a vertex v of degree exceeding n such that the
components associated with », with one possible exception, all have at most n — 2 edges.
If there are two such vertices v and o' with this property, then the conditions of case 4
are satisfied. Therefore, if none of the conditions of the first four cases are satisfied, case
5 must apply. Thus the five cases exhaust all the possibilites for F, and so £ must have a

star forest ASD. This completes the proof of Theorem 1. B
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3. OPEN QUESTIONS

‘There are numerous open questions eoncerning the existence and nature of ASD’s for
graphs. The major and most difficult question is, of course, to determine if every graph
with (n-%-l} edges has an ASD. There is an interesting class of graphs related to forests for
which the same question can be considered; for example, do all “sparse” graphs (or unicyclic
graphs) have an ASD7 One can also restrict the nature of the graphs that are allowed in
the decompositions of the ASD. There is some evidence to indicate that any graph has an
AS D with star forests as the decomposition graphs.

Since it seems to be difficult to prove that every graph G has an AS D), one approach
is to determine how closely one can “approximate”an ASD for 3. If one only requires that
the subgraphs &; (1 < 7 < n) in the decomposition of & satisfy the subgraph property and
that G; has size at mast, 1, then the decomposition has ab least n terms. How small can
you make the number of terms with this definition? On the other hand, if you require that
each G; has size at least 7, then the number of terms in the decomposition is at mast n.
How large can you make the number of terms in this case? Thus, there are natural upper

and lower bound questions on the length of an ASD for a general graph.
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