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On a Neighborhood Condition Implying the Existence of Disjoint
Complete Graphs

RavLpH FAUDREE, MICHAEL S. JACOBSON, RONALD, J. GourLp AND LINDA LEsNIAK

The notion of considering properties in graphs which meet the condition that for all
independent pairs of vertices, x and y, deg(x) + deg(y) =s, for some integer s, was first done
by Ore. Recently, the concept of replacing degree sum by the order of the union of the
neighborhoods has been considered. This was generalized to considering neighborhood unions
for all sets of k independent vertices. In this paper, the result stated below is proved.
Furthermore, this is shown to be best possible.

TaeoreM. If G is a graph with sufficiently large order n, satisfying the condition for

all sets of k independent vertices, X, X3, .. . , Xk, K< n,
k (m=—-2n+t
N{x)| »——o
‘-,.LJ; (x)) p—
then
K, cG.
INTRODUCTION

In an attempt to better understand the structure of graphs there have been many
results relating the sum of degrees of pairs of independent vertices to the existence of
certain kinds of subgraphs, (for example, see {2] and [6]). In [4] and [5] the idea of a
neighborhood condition that was patterned after the Ore type degree sum was
introduced, This concept was extended in (1] and the following generalization was
given; for a graph G, the p-neighborhood condition is defined to be

I
NC,(G) =min HN(x,-)l ,
where the minimum is taken over all sets of p independent vertices {x;, X3, ..., x,} in

G. This will be abbreviated to NC, when G is understood. They prove:

THEOREM A. If G is a graph of sufficiently large order n=ny=ny(p) satisfying
NC, =[(m — 1)n]/m for some p, 1 <p <n, then

Km+1 cG.

It is the purpose of this paper to extend this result and determine an appropriate
neighborhood condition to assure that G contains ¢ disjoint copies of K,,,.

All graphs considered in this paper will be finite simple graphs. For terms not
defined here, see [3]. Let x be a vertex of a graph G; the neighborhood of x, which is
the set of vertices of G adjacent to x in G, will be denoted by Ng(x) or simply N(x)
when G is understood. We will denote by K(p; m) the complete m-partite graph, with
each part having p vertices. Also, by tK,, we refer to ¢ disjoint copies of the complete
graph K,,,. Finally, we define for two graphs G and H the Ramsey number r{G, H) to
be the smallest integer p so that in any graph on p vertices either it contains G or its
complement contains H.
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For convenience we define the join of two graphs, denoted by G = G; + G;, to be
the graph with

V(G)=V(G)UV(G)
and
E(G)=E(G)UE(G)U {xy |x e V(G\), y e V(Gr)}.

Mamn REsuLTS

Consider the graph G = K(p; m — 1) + K,_,, for a fixed positive integer p. This graph
has the following property: for every set of k independent vertices, k<p,

£
UN(x;)
=1

z2m—-2p+t-1

_m-2n t—1
m-—1 m-1’

where n = p(m — 1) +t — 1 is the order of G. Furthermore, ¢K,, ¢ G. It is the intent of
this paper to show that this is the extremal neighborhood value. We will prove the
following:

THEOREM 1. For fixed m and t, if G is a graph of sufficiently large order n = n(m,
t} and there exists a k < n, so that for all subsets of k independent vertices x,, x,, . . ., X
meet the condition

t
m-1

m-—2
= n+ ;
m-—1

. .
};JIN (x:)

then tK,,c G.

Before proceeding with the proof of Theorem 1, we state a useful result and give a
preliminary result which will lend insight to the proof of this theorem.

ProposrTION 2. Let m be a fixed positive integer. If G is of sufficiently large order n
with

m—2 mi
NCp = ( ) +
P\ =1/ w4
for 1<t<1t,, then tK,, < G (where t, is such that n — (to— 1)m =n, and n, is that of
Theorem A).

Proor, We proceed by induction on ¢. For the case ¢t =1, we assume that » is large
enough to apply Theorem A. Inductivity, we may assume (t—1)K,cG. Let
G* =G —(t— 1)K,,. It follows that |V(G*)| =n — (¢ — 1)m, which by the hypothesis is
greater than or equal to n,. Also

S P——1

>(222) gvam
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for all sets of p independent vertices x,, x;,...,x, and hence, by Theorem A,
K, = G*. Consequently, tK,, = G. 0O

The remaining results wili indicate that, at least for ¢ fixed and » sufficiently large,
this result is not best possible. In fact, the neighborhood condition can be decreased to

m-—2)n+ t
m-—1 m-—1
for some p =n.

Let ¢ be a positive integer, H a graph and x € V(H). Denote by H,(t) the graph

obtained from H by replacing x with ¢ independent vertices, each having the same
neighborhood as x. Note that |[V(H. ()| =|V(H)|+¢t—-1.

NCP'—‘}(

LemMma [1].  Let ¢ be a fixed positive integer and H a fixed graph of order p. If G is
any graph of order n, n sufficiently large such that there are m copies of H in G, then
there exisis a positive constant ¢ = c(p, t) such that there are at least

m!

¢ =DE-D
copies of H,(t) in G for any vertex x € V(H).

Note, in the case when m = kn” for some positive constant %, there are ckn?*'™!
copies of H,(t) in G for any vertex x € V(H).
The next result is the special case of Theorem 1 when m =3.

ProrositioN 3. Let G be a graph with sufficiently large order n. If G has the property
NC, = (n +1)/2 for some p, then
tK, = G.

Proor. Clearly, the result follows from Theorem A in the case when r=1. Now
suppose there is a vertex x such that (3¢t — 2)K, = (N(x)). It follows that |[V(G —x)| =
n—1 and NC,(G —x)={(n—1)+ (¢t +1)]/2 for all sets of p independent vertices in
G — x. Inductively, it follows that (¢ — 1)K, ¢ G — x. Clearly, there must be an edge in
{N(x)) with neither of its end vertices among the vertices forming the (¢ — 1)K, in
G — x. Consequently, by taking x and this edge and the (z — 1)K,’s, we have tK;c G,

We continue by showing that such a vertex must exist. If there are r(tK,, K,)
vertices of degree less than (n +¢)/2p, by the neighborhood condition of G, there
could be no set of p independent vertices among them. Hence, tK; g G. Thus, since
r(tKs, K,) is small compared to n, we may assume that nearly all vertices have degree
at least (n + £)/2p.

Next we obtain a lower bound on the number of K, ,’s contained in G. Since almost
all vertices have degree at least (n + £)/2p it follows that there are at least O(n?) edges
in G. By the lemma this implies that there are at least O(n*) copies of K, , in G. From
this lower bound we establish a lower bound on the number of K,’s in G. Suppose for
some positive &, en” of the K, ,’s contain at least one chord. Then each such X, ,
yields at least pK’s and any such K, can be counted in at most 3(;,-3) K, ,’s. Thus,
there would be at least én®/e'n¥ > K4’s in G. Hence, it would follow that G contains
O(n”) K3’s in this case. '

Suppose, on the other hand, that en® of the X, ,’s do not contain a chord; that is,
there are en® induced K, ,’s. Consider the two sets of p independent vertices in any
induced K, ,. Since each set has a neighborhood union of at least (n + ¢)/2 vertices, it
follows that the K, , generates at least tK,'s. Furthermore, any such triangle can be



430 R. Faudree et al.

generated in this manner at most 3($,_%) ~ O(n* %) times, since there are 3 vertices
necessary to form the K and (3,2%) ways to complete the K,,,. Subsequently, in this
case there are at least en®/e'n” %= 0(n*) K;'s in G, In either case we can conclude
that G contains at least O(n?) Ky's.

Now by induction, we may assume that H = (¢ — 1)K, c G. If there are no other K;'s
disjoint from this copy of H then it follows that all 6(n*) K;’s in G must have at least
one vertex in common with H. There are at most

(*33) Kj's having 3 vertices in common with H,
(n—3t+3)(¥7% K,'s having 2 vertices in common with H

and
(*~¥*%)(3¢r—3) Kj's having 1 vertex in common with H.
Clearly, O(n®) copies of K; must share one vertex with H since
(*'37) +(n~ 3t +3)(¥3%) = O(n).
But this implies that in the neighborhood of some vertex of H, say x, there are 0(n?)
edges, since x is in O(n?) Ky's.
It follows that there are at least 3¢ — 2 independent edges in (Ng(x)), for if there

were fewer, say 3t —3, there could be at most (¥3%)+ (3t —3)(n —3t+2)=0(n)
edges in {Ng(x)). Consequently, tK, c G, by the initial observation in the proof. O

We are now prepared to present the proof of Theorem 1. The steps of the proof
coincide with those of the previous resuit.

Proor oF THEOREM 1. Let G have the conditions given in the hypothesis for some
k =n. The result follows for the case t =1 from Theorem A. Suppose there exists a
vertex x such that ((t — )m + 1K,,_,; € {(Ng(x)). Consider G —x; |V(G~x)|=n-1
and
m—-2Yn—-1D+(@-1)
m—1 '

NC(G -x)=

Proceeding inductively, it follows that (¢ — 1)K, € G —x. Clearly, there must be a
K,,_; < {Ng(x)) with no vertex in common with this copy of (¢t — 1)K,,,. Thus x and this
K,,., along with the (¢ — 1)K, € G —x, imply that ¢tK,, < G.

We continue by showing that such a vertex must exist. As in the previous result, we
may suppose that there are less than r(zK,,, K;) vertices of degree less than
[(m = 2)n + £]/{(k)(m — 1)]. If this were not the case, among these vertices there would
exist a copy of ¢tK,, or a set of k independent vertices which would contradict the
neighborhood condition. Hence, we can assume that almost all vertices have degree at
least [(m — 2)n)/[k(m — 1)].

Now we show that G contains cn*™=" copies of K(k; m —1). We proceed
inductively. Since the neighborhood condition exceeds that of Proposition 3, there are
cn®™ K(k; 2)'s. We consider two cases; if there are en® K(k; 2)’s with a chord, it
follows that G contains at least 0(n”) copies of K.

Suppose, on the other hand, that G contains O(n**) K(k; 2)’s that are induced. Since
the neighborhood union of independent sets of & vertices is at least 2n/3, it follows that
for every K(k; 2) there is an edge in each K{k; 2) contained in n/3k* K’s. Thus there
are at least

(en®Ya)/ (5 =3) = O(n)
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Ky’s. Hence, we can conclude that, in either case, there are O(n’) Kj's and, by
applying the Lemma, G contains 0(n**) copies of K(k; 3) in G.

Continuing, we may suppose inductively that there are O(n*™~?) copies of K(k;
m —2), and we will show that there are cn*™~Y copies of K(k; m — 1).

As above, there are two cases. First, suppose that G contains a positive fraction,
en*®™=2  copies of K{k; m — 2) with at least one chord. Each such K(k; m — 2) yields
k™3 K,,_,’s; but such a K,,_, could be counted in ({75 ;) different K(k; m ~ 2)’s.
Thus, in this case there would be

Enk(m—z)km_sl((k -nlirrrfle} I T8

copies of K,,_; in G.

Suppose now, that a positive fraction of the G(n*™"~?) copies of K(k; m —2) are
induced. The m —2 distinct sets of non-adjacent vertices must each have a neighbor-
hood union of at least [(;m —2)n +1])/(m — 1) vertices. Since the intersection of the
union of the neighborhoods is =c,n, it follows that for each K(k; m —2) there are
O(n) copies of K,,—(. Any such K,,_; can be generated in at most (m — 1) 75022
ways; that is, by considering (m — 1)( " it~ 1)) Sc4n™ % copies of K(k; m—2).
Consequently, there are at least

n- nk(muz)
¢ Fmnem=g = 00n")

copies of K,,,_; in G.

Hence, in either case, we may conclude that there are at least O(n™ 1) K,,_,’s.
Applying the Lemma (m —1) times it follows that there are 0(n*""~V) copies of
K(k; m — 1) contained in G.

By applying an argument similar to that above and considering these O(n*“(™-1)
copies of K(2; m —1) in G, with or without chords, we can conclude that G must
contain at least O(n™™') copies of K,,.

_Reasoning inductively now, there must exist some H = (t — 1)K, < G. If it were the
case that tK,, ¢ G, then each of the cn™! copies of K, would necessarily contain at
least one vertex of H. There are at most (" /T ™) ("™ ;™) K,,’s having i vertices in
common with H (fori=1, 2, ..., m). Since

z (n—-mt+m) (mt—m) s
2 . . = c.n
[=2 m—i i
it follows that O(n™"") copies of K,, share one vertex with H, Since H has m(t - 1)
vertices, there must be a vertex x € V(H) such that O(n™"") copies of K,,_, are in
(Ng(x)).

I ((t ~ 1)m + 1)K,y & (Ng(x)) then there could be at most

mlimt—m\ fn—mt+m -
> . : =cn™?
i=1 i m—i+1

K,_y’s in (Ng(x)). Hence, a contradiction results and subsequently it follows that
((t - )m + 1)K,,_; € {Ns(x)). Consequently, tK,, < G from our initial observation. 0

CoONCLUDING REMARKS

We conclude the paper with a result implying the existence of multiple copies of any
graph. Unlike the results in the previous sections, we are unable to determine whether
or not these neighborhood conditions are best possible.
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For convenience we introduce the following notation: let H be a graph with a
chromatic number y(H) = x. The chromatic surplus (majority), denoted s{(H) (S(H)),
is the minimum order of the smallest (largest) color class in any critical coloring of the
vertices of H. Let H be a graph with y(H)=yx and s(H)=s. Consider the graph
G=K(p; x—1)+ K, for a fixed positive integer p. This graph has the following
property: for every set of k < p independent vertices

13

’HN(x,-) z(x—2)p+st—1
_x—2  st=1
Tx-1 g1

where . n=p(x —1)+st—1 is the order of G. Furthermore, tH ¢ G. Although we
can not prove that this is the best neighborhood condition, we give the following result;

PROPOSITION 4. Let G be of sufficiently large order n=n(y) with NC, =
[(x—=2n+n*}/(x—1) for some k<n and H any graph with y(H)=yx and
SHY=S8. If1-(xS/S¥)<a<lthen HcG.

Proor. Proceeding as in the proof of Theorem 1, we are able to improve the lower
bound on the number of copies of K,. We obtain 8(n® - n*™') copies of K, rather than
O(n*~") copies. For convenience, let § = 1 — a and say there are O(n* ) copies of K,,.

Applying the lemma x times shows that G contains at least n**~#* copies of
K(S; x). Subsequently, if xS — pS*=0 or 8 =< xS/S¥ it follows that K(S; x) = G and
hence Hc G. O

Finally, we mention the fact that this result can be used to give a neighborhood
union condition that would imply that tH c G, the graph tH having x(tH) = x(H) and
S(tH) <t(S(H)). The authors feel that, in general, the n® term cannot be replaced by
a constant term. This belief is substantiated by considering the extremal numbers for
complete bipartite graphs.
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