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We investigate the relationship between the cardinality of the union of the
neighborhoods of an arbitrary pair of nonadjacent vertices and various hamiltenian
type properties in graphs. In particular, we show that if G is 2-connected, of order
p=3 and if for every pair of nonadjacent vertices x and y:

(a) |N{x)uN(»)=(p—1)/2, then G is traceable,

(b) |N(x)wN(y)| = (2p—1)/3, then G is hamiltonian, and if G is 3-connected
and

{c} |N(x)uw N{y)|>2p/3, then G is hamiltonian-connected. © 1989 Academic

Press, Inc.

INTRODUCTION

The study of graphs has given rise to many results relating the sum of
the degrees of pairs of nonadjacent vertices to various hamiltonian proper-
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ties (for example, see [2, 5]). The results obtained along these lines usually
apply only to graphs with high edge density. Often the degree sums are
large in order to guarantee that the vertex pair dominates a sufficient num-
ber of vertices, In this paper we wish to loosen these restrictions somewhat.
We consider the effect of lower bounds on the cardinality of the union of
the neighborhoods of pairs of nonadjacent vertices on various hamiltonian
properties. Since this cardinality lies between 0 and |V(G)—2| and the
graph K, v K, is disconnected, large cardinality will not force any
connectivity conditions. Thus, we shall always assume some minimum
connectivity condition in addition to our neighborhood union condition.
For a vertex v, the neighborhood of v is N(v)={x|xeV(G) and
xve E(G)}. If x e N(v) we say x is adjacent to v or v dominates x. A graph is
hamiltonian (traceable) if it contains a cycle (path) through all its vertices.
Such a cycle (path) is called a hamiltonian cycle. A graph is hamiltonian-
connected if each pair of vertices are the endvertices of a hamiltonian path.
For simplicity we sometimes list a set S of vertices in a path or cycle as

v Uy S, U,

but only when the order of the traversal of the vertices in § is clear. For
U < V(G) we denote the graph induced by U as {U). For terms not found
in this paper see [1].

MaiN RESULTS

The development of the theory of hamiltonian graphs has seen a series of
results based on controlling the degrees of the vertices of G. The inspiration
for this development was the classical result of Ore [5].

THEOREM A (Ore [5]). Let G be a graph of order p, p=3. If for each
pair of nonadjacent vertices u and v,

(1) degu+degvz=p, then G is hamiltonian.
(iil) degu+degvz=p—1, then G is traceable.

This particular result was generalized by several others (see [1] for an
outline of this development). The strongest known result of this type is the
Closure Theorem of Bondy and Chvatal [2]. Here a new graph called the
k-closure is formed from G by recursively joining pairs of nonadjacent
vertices whose degree sum is at least k£ (for some fixed integer k). Their
main result for hamiltonian graphs can be stated as:

TueoreM B (Bondy and Chvatal [2]). A4 graph G of order p is
hamiltonian if and only if its p-closure is hamiltonian.
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We now wish to change the point of view somewhat. That is, we wish to
determine the effective number of vertices that a nonadjacent pair must
dominate in order for a particular property to be obtained. This number
differs from the degree sum value since duplicate domination is ignored. It
will further be shown that the results obtained here are distinct from the
degree sum results for the same property.

We begin with a result on traceability.

THEOREM 1. Let G be a 2-connected graph of order pz 3. If for every
pair of nonadjacent vertices x and y,

IN(x)U NI 2 (p—1)/2,

then G is traceable.

Proof. Suppose the result is not true and among all nontraceable
graphs of order p which satisfy the hypothesis, let G be one with the
maximum number of edges. Thus G is not traceable, but G + wv is traceable
for every pair of nonadjacent vertices u and v. Then, in G, there exist two
disjoint paths P, and P, that together span V(G). If (V(P,)) and
{V(P;)> are both hamiltonian, then since G is connected, G is clearly
traceable. Hence, P, and P, cannot both induce hamiltonian cycles. We
now recognize two cases.

Case 1. Assume that both {(V(P,)) and {¥(P,)) are not hamiltonian.
Let P,:x,, %3 -nX, (kx1) and P,:y{, ys ..y, (where j21 and
j+k=p=3). Note that x, (and x,) is not adjacent to y, or y; or G would
be traceable. Also note that for every vertex x,e V(P;) 2<r<k~1)
adjacent to x,, the vertex x,_, ¢ N{y,} (and N(y,)) for otherwise G would
contain the hamiltonian path

FYisom Yy Xp_ g5 0n Xig Xpy ey Xgu

Since (V{P,)) is not hamiltonian, x,_; ¢ N(x,). A similar argument shows
that for every y,€ V(P,)n N(y,) (2<r<j—1), y,_, is not adjacent to any
of y;, Xy, O Xy.

Now suppose that y, is adjacent to x, on P; (2<s5<k—1). Then
X,_, & N(x,) or G would contain the hamiltonian path

yj! ey Vi g ooy Xpg Xy gy 0oy X0
Also note that x,_ ¢ N(y;) or G would contain the hamiltonian path
Xis ey Xg_1a yj!‘ ey Vs Xy oy Xpeo

Likewise y, € V(P,)n N(x,) (2<s<k—1) implies y, (& N(x,) v N(y)).
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Now define a bijection f: ¥(G)— {x,, y,} = V(G)— {x4, ¥;} by f(x,)=
X,_1, f(y,)=p,_:. Then we have shown that f{N(x,)u N(y,)) is disjoint
from N(x,)u N(y;). Also, neither of these two sets contain x, or y;. Thus,
the sets f(N(x;)UN(»)), N(x)wN(y;), and {x,,y;} are mutually
disjoint, which is a contradiction because the first two both have at least
(p—1)/2 elements.

Case 2. Assume {V(P,)) is hamiltonian for some i, and without loss of
generality assume i=2. Let C: y,, y,, .., ¥, ¥; (t=3) be a hamiltonian
cycle in {¥V{P,))> and, as in Case 1, P,: Xy, X4, ., X;. Clearly x, and x,
are not adjacent to any vertices of C or G would be traceable. Since G is
2-connected this implies £>4. From all vertices of C adjacent to some
vertex of P,, choose y, with an adjacent vertex closest to x, along P,
(relabel C if necessary). Let this closest adjacent vertex be x,,.

Since |N(x,) U N{x,)| =(p—1)/2 and all of the neighbors of x; and x,
are on P;, we see that 3<|V(C) <(p—3)/2. Let M be the set of those
vertices of C with either no neighbors on P,, or only x,, as a neighbor on
P,. Note that if p,, y,e M are nonadjacent, then |[N{(y,)u N(y,)<
I((C) = {3, 7DV {3} | < (p—3)2—~2+1=(p—5)2, which is a
contradiction. Therefore, every two vertices in M are adjacent. We will
show that M contains all vertices of C and hence that x,, is a cutvertex,
contradicting the 2-connectivity of G.

Suppose V(C)— {y,} — M # J and let y, be a vertex of this set closest to
y; along C (in either direction). Without loss of generality, assume
$<1/2+4 1, Observe that there exists a hamiltonian path in {(V(C)) with
endvertices y, and y,. This is clear if s=2 or s=t and when ¢ #s5# 2, then
Vis P2y s Yo ts Yis Yim1s - Vs 18 such a path. Let P denote this path.

Since y, ¢ M, y, is adjacent to some vertex x, (m<d<k) on P,. Choose
the minimum possible 4, so that y, has no neighbors x,,/<d In fact
m+ 1 <d, otherwise x;, X3, «v, X;ps Py X415 - X 18 @ hamiltonian path in
G. Also, x,_, and x, are nonadjacent, or otherwise

xlr’ xza ey xdﬁ]s xk’ xk*- Ly ey xrh P

would be a hamiltonian path in G.

Suppose x,e V(Py)n N(x,). Clearly x,_, is not adjacent to x,,
otherwise {V(P,}> is hamiltonian. Also x,_, is not adjacent to x,_,,
otherwise it can be shown (by examining individually the cases r<m,
m+l1<rgd—1, r=d+1, and d+2<r) that P can be extended to a
hamiltonian path for G. Also, if x, e V{P,}n N(y,) (considering separately
when r<d—1 and when d<r) we obtain that x,._, is not adjacent to
either x, |, or x,.

Next let y, be adjacent to y,. Then y,_, is not adjacent to x,_,. When
[=5-1 this follows from the minimality of d If I#s—1 and
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Vi1 € N(x,_ ), then by considering separately the three cases 2<</<s—2,
s<I<t—1, and =1, it can be shown that G has a hamiltonian path.

Now define a bijection g: V(G)— {x,, y;} = V(G)— {yi, %, } by g(x,) =
X1, &(¥)=Y41- Let A=N(x,)u N(y,) and B= N(x,})u N(x,_,). It has
been shown above that for all ze A4, g(z) ¢ B. Also, x, ¢ g(A4)w B. We know
that y, ¢ N(x,), and if y, e N(x,_,) then x,, .., x;_;, P, Xz ., X s @
hamiltonian path; thus y, ¢ B and hence y, ¢ g(4) v B. Therefore g(A), B,
and {x;,y,} are mutually disjoint, which is a contradiction because the
first two of these have cardinality at least (p — 1)/2. Thus V(C)— {y,} = M.

Since G is 2-connected, y, is adjacent to some x,, d>m, and there is
some y, {#1, adjacent to x,. But now the above argument can be
repeated with y, replacing y, and y, replacing y,, to again obtain a con-
tradiction.

Therefore G is traceable.

ExaMPLE 1. (a) A l-connected graph with |[N(x)U N{y)i=(p—1)/2
which is not traceable, Consider the graph H obtained by identifying a
vertex from each of three copies of the complete graph K, (n=5). The
order of H is p=3n—2 and for nonadjacent x and y, IN(x)u N(y}| 2
2n—3>(p—1)/2. However, H is clearly not traceable. Thus the connec-
tivity condition cannot be dropped from Theorem 1.

(b) To see that the neighborhood condition is sharp one need
only consider the complete bipartite graphs K(n,n—2) (n=4). Here
IN{x)u N(»)| = n— 2 while the order is p =2n — 2. Since n = 4 these graphs
are 2-connected, but not traceable.

(c) Now consider the graph G =3K,+ K,, that is, 3 copies of X,
joined to the two vertices of a X, This graph is clearly 2-connected and the
degree sum of any pair of nonadjacent vertices is 2n + 2 while the order of
G is 3n+ 2. Thus neither Ore’s Theorem [5] nor the (p—1)-closure of
Bondy and Chvatal [2] apply to G. However, Theorem [ can be used to
determine that G is traceable.

Next we determine a neighborhood condition that implies a 2-connected
graph is hamiltonian.

THEOREM 2. If G is a 2-connected graph of order p= 3 and if for every
pair of nonadjacent vertices x and y

IN(x)UN(p) =(2p—1)/3

then G is hamiltonian.

Proof. Since G is 2-connected it contains cycles, so let C:xy, x5, ..,
x,, x; be a cycle of maximum length in G. If C spans G we are done, s0
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assume there exist vertices in G not on C, Let x be a vertex not on C but
adjacent to vertices on C. Without loss of generality assume x is adjacent
to x, e V(C).

Since G is 2-connected, there exists at least one other path (besides the
edge xx,} from x to C that is vertex disjoint from C (except at the
endpoint), Over all such paths from x to C, let x; be the endvertex of such
a path with largest subscript on C. Note that i #» or a cycle longer than C
would be immediate. In particular then, x is not adjacent to x,,, and
hence |N(x)u N(x,, )| 2 (2p — 1)/3. Since this path from x to C may be a
single edge, in listing the cycles that follow we will indicate it simply as
X, x;, that is as if it were an edge.

We first show the number of nonadjacencies of x, is at least
|N(x)w N(x,, )| by considering the distinct neighbors of x and of x, ;.

Let ye N(x)— ¥(C). In this case y ¢ N(x;) or a cycle longer than C lies
in G. Similarly, if ze N(x,, ,}— V(C), then z is not adjacent to x,.

Next let x,e V(C)n N{x). By our choice of i, 1 <d<i Note that
d#i—1. Ford<i—1, x; ., ¢ N(x,) for otherwise

Xps Ko Xy vy Xy Xgg s v Xpy Xy

is a cycle longer than C.

Now if x,e N(x;,,) (1<s<i), then x, ¢ N(x,). This is clear when
s=1 and follows when 2 < s </, since x,, , € N(x,) implies there is a cycle
in G larger than C. For 2<s<i—1

Xy Xy Xy vy Xgg 1y Xy ey Xy Xig 19 os Xy Xy

is such a cycle.
Ifnzszi+2, then x,_, ¢ N(x,) or else

Xps Xy Xy oy Xgy Xg_ 1y oy Xip 15 Xgy vy Xy Xq

is a cycle in G longer than C, again a contradiction.

Define a bijection /% V(G)— {x;, X3, X,y 1, X142} = V(G)—{x,, X3, %3, x,}
by fx,)=x,,, f3<s<i, f(x,)=x,_ | ifi+3<s<n and f(z)=zif z is
not in V{C). Then the only elements of N(x,,,)w N(x), for which f is
undefined are x, and x,,, and for all other y € N(x,, ;) w N(x), f(») is not
in N(x,). Thus, f((N(x,, ) N(x))— {x,, x;,,}) Is disjoint from N(x,),
and neither of these sets contains x or x,. Therefore

INGe) < p— IfUNGxy 4 1) 0 N(x)) — {30, %502 1) = Hx, %0}
<p—(Qp-1)3-2)-2=(p+1)3.

Now x and x, are nonadjacent and share x, as a common neighbor.
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Thus |[N(x)I 2 (2p—1)3—(p+1)/3+1=(p+1)/3. For every x,e N(x)n
V(C), it is easily seen that x,_, ¢ N(x,_,) and x,_, € N(x,). These common
nonadjacencies include both of the vertices x, and x,;_, themselves. In
addition x is nonadjacent to both x,_, and x, and y e N(x) — V(C) implies
y¢ N(x;_;)u N(x,). Therefore the nonadjacent pair x, and x;_, satisfy

[N(x)) W N(x,_ )l <p—(p+1)3-1=(2p—-4)/3,

a contradiction. Thus, G must be hamiltonian.

ExampLiE 2. (a) The graph G=3K,+K, of example 1{c) is not
hamiltonian. The order of G is p=3n+2 and for nonadjacent x and y,
|N(x)uw N(y)| =2n. However, (2p —1)/3=2n+1>2n, To date, this is the
best known example.

(b) Let H be the graph obtained by taking three copies of K, (n>3)
and joining corresponding vertices in each copy by an edge. Thus each
vertex has degree n+1 so the degree sum of nonadjacent vertices is
2n+2 < 3n when n = 3. Thus, the Bondy and Chvatal closure process adds
no additional edges to this graph and hence no information is gained.

However, |N(x)u N(y)l=2n=2|V(G)|/3 and thus Theorem 2 states
that H is hamiltonian.

COROLLARY 3. If G is a connected graph of order p=2 and if for every
pair of nonadjacent vertices x and y,

IN(x)U N(y)| 2 (2p—2)/3,
then G is traceable.

Proof. Let G be as described and consider H=G +v, for some new
vertex v. Since G is connected of order p>2, H is 2-connected of order
p+123. Clearly x and y are nonadjacent in H if and only if x and y are
nonadjacent in G, Thus

INa(x) U Ny(p)| 2 (20 ~2)3+1=(2p+1)3=(2(p+1)—-1)/3

and so by Theorem 2, H is hamiltonian. Then clearly G is traceable.

We now turn our attention to a “highly hamilton” property, that of
being hamiltonian-connected, For this the graphs need to be 3-connected
to apply the usual neighborhood condition in a meaningful way, as
demonstrated by the 2-connected graph 2K, + K, (n large).

THEOREM 4. Let G be a 3-connected graph of order p = 3. If for every
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pair of nonadjacent vertices x and y, |N(x)u N(p)| >2p/3 then G is
hamiltonian-connected.

Proof. Suppose the result fails to hold, Then there exists a pair of ver-
tices x and y such that no hamiltonian x —y path exists in G. Among all
longest x — y paths, let P be one with a vertex z off P (choose if you wish
the one of largest such degree). Say P.x=x,, X;,..,x,=y. Since G is
3-connected, there exist at least three disjoint (except for z) paths from z to
P. Let T be a maximum collection of disjoint paths from z to P which
includes in the collection all edges from z to vertices of P.

Now there exist distinct vertices a=x, and b=ux; (i<j) that are
predecessors on P to the endvertices of two paths in T. Further, 2 and b
can be chosen so that z has no adjacencies between x,, ; and b on P and so
that neither @ nor b is x or y. _

Since P is of maximum length no pair of g, b, z is adjacent. Thus each of
|N(a} v N(B)|, IN(a)u N(2)|, IN(b)w N(2)| is greater than 2p/3.

Consider the set K= {x,[x,_;eN(@)nV(P) where r—1<i or
r—1zj+1}u{xlx, ., eNa)n V(P) and i<s+l<jlu{wlwe
N(a)— V(P)}. Note that | K| = |N(a)| — 2. This follows since the vertex a is
possibly adjacent to x,=y and a is both the successor of x;_, and the
predecessor of x;_ .

Since there are no neighbors of z on P between x;., and x;,;, it is
straightforward to check that both KnN(b)=¢ and KnN(z)=¢ or a
path longer than P results, Thus » and z are nonadjacent, have no
adjacencies in K, and neither are elements of K. This implies that
2p/3<|NB)UN(z)| €p—|K|-2<p—|N(a). This gives |N(a)| < p/3.
Since |N(a)w N(z)|>2p/3, we have |N(z}|>p/3. Form the set
K, ={x,_,|x,e N(z) n V(P)} u {wlwe N(z)— V(P)}. Again it is clear that
K,nN(a)=¢ and K,nN(b)=¢ with |K |2 |N(z)|—1. Also z¢ K, and
z¢ N(a)u N(b). Thus 2p/3<|N(@)uNB) <p—I|K|-1<p—I|N(z)| <
p—p/3=2p/3, again a contradiction, This contradiction completes the
proof.

The graph 3K, + K, is 3-connected, not Hamiltonian-connected with
|N(x)w N(y)| =2p/3—1 for each nonadjacent pair of vertices x and y.
Again this is the best known example. '

Remarks. Several interesting problems remain. Theorem 2 and that of
Dirac [3] lead us to the following conjecture,

Conjecture. Let G be a t-connected graph of order p, If for some fixed
t (1<t < B(G)), any collection x,, x,, .., x, of ¢ independent vertices has
the property that

[N ) - UN(x) > H(p—1)/(+ 1)
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then G is hamiltonian. In fact, a slight reduction in this bound is probably
possible. !

Certainly any of the hamiltonian type properties can be studied for
collections of more than two vertices. A wide range of highly hamiltonian
properties can also be investigated. As in [2], other properties may be
studied. In [4] the authors examine edge independence, path and cycle
length, and chromatic number among others.
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