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In [1], Bondy and Chvatal made the following definition: Let P be a property
defined for all graphs of order n and let k& be an integer. Then P is said to be
k-degree stable if, for all graphs G of order n, whenever G + uv has property P and
deg; u +degg v > k then G itself has property P. Among the results established
were the following. ' '

(1) G contains an sK;(2s < n) => (25 — 1)-degree stable
{2) G is hamiltonian == n-degree stable
(3) G contains a hamiltonian path == (n — 1)-degree stable
(4) G contains a C,(5 < s < n) == (2n — s)-degree stable
These results motivated the definition of the k-degree closure of a graph. The

" k-degree closure Dy (G) of a graph G of order n is the graph obtained from & by

recursively joining pairs of nonadjacent vertices whose degree sum is at least k (in
the resulting graph at each stage) until no such pair remains. Equivalently, Dy (G)
is the smallest graph H of order n such that ¢ ¢ H and

degy (u) + degy (v) < k

for all uv ¢ E(H).

Since, for n sufficiently large, the complete graph of order n has all properties
(1)-(4), it follows that if Dy(G) is complete, k = 25 — L,n,n—1, or 2n — s,
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respectively, then & contains an sKj, is hamiltonian, contwains a hamiltonian path,
or contains a C, respectively. '

In [2} and [3], the authors considered several problems for graphs satisfying
the condition _
|Na(u)UNa(v)| = s

for every pair 4, v of nonadjacent vertices of a graph G, where the neighborhood
Ng(u) of a vertex u is the set of all vertices adjacent to u. In this paper we examine
the analogs of degree stability and degree closure for neighborhood unions,

Let P be a property defined for all graphs G in a class g and let k& be an integer.
Then P is k-neighborhood stable in g if whenever G + uv has property P, where
G €g and |Ng{u) UNg(v)] > k, then G itself has property P. The k-neighborhood
closure Ni(G) of a graph G is then defined to be the graph obtained from G by
recursively joining pairs of nonadjacent vertices #, v for which the cardinality of
the union of the neighborhoods of u and v is at least k (in the resulting graph at
each stage), until no such pair remains. As with degree closures, it is of intevest to
know when Ni(G) is complete.

Our first results involve the neighborhood stability of the property of contain-
ing an s-matching sKs.

Theorem 1. Let n, s and § be integers satisfyingn > 2s+12>3. I g denotes
the class of graphs of order n with minimum degree §(G) > § then the property of
containing sKy is (2s — 1 — §)-neighborhood stable in g

Proof. Let G €& and u, v be nonadjacent vertices of G such that |Ng(u) U
UNg(v)| = 28 —1— 6§ and sK5 € G+ uv. If uv is not an edge in the s-matching
in G + uv, then sK; C (7. Thus we may assume that )

F = {uv,uivy,uavs, ..., u_10,—1}
is an s-matching in G + uw. Let-
W =V{(G) —-.{u, Ugyeeey Upe1y Uy U1y ee sy Vg1
Since n > 28+ 1, W # 0. If (W U {u,v}}g is nonempty, then again sK; C G.
Thus we may assume that WU {u, v} is an independent set of vertices in GQ. If, for

some i, ¢ is adjacent to one of the vertices u; and v;, say u;, and v; is adjacent to
a vertex w of W, then

{urve, ..oy tem1vpe1 } — {wivi} U {uu;, vw)

is an s-matching in G. Similarly, if, for some %, v is adjacent to one of the vertices
u; and v, say v;, and u; is adjacent to a vertex w of W, then sX> C GG. Now, let

N=Ng{u)UNg(v) C{t1,..., 81,015+, Us—1}

?
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andlet N={y: zy€ Fand z € N} C {ug,...,%—1,91,...,9—1}. Let w e W.

Then Ng{w) € {u1,.-+,%—1,1,...,%-1}. Since [N} > 2s—1— 6 and |[Ng(w)|>

> §, it follows that NN Ng(w) # § and the proof is complete. M

The result of Theorem 1 extends to graphs of order n + 2s if we restrict our
attention to connected graphs. The proof relies on Tutte’s theorem [4] which states
that a nontrivial graph G has a 1-factor if and only if for every proper subset S of
V(G), the number of odd (order) components of G — S does not exceed |S|.

Theorem 2. Let n, 3, and § be integers satisfying n = 23 > 2, If & denotes the
class of connected graphs G of order n with minimum degree §{G) > 6, then the
property of containing sKy is (28 — 1 — §)-neighborhood stable in g.

Proof. Assume, to the contrary, that there exists G € with nonadjacent vertices
u and v such that sKy € G+ uv and |Ng(u) UNg(v}] > 25— 1— 6, but sK, ¢ G.
Thus G does not satisfy Tutte’s theorem but G + uv does. Necessarily, then, there
is a set S of t > 1 vertices of G such that G — & has ¢t + 2 odd components
01, C‘g, . ,Cg+2 with u & V(Ct+1) and v & V(Ct+2). Since

Ng(u) U Ng(t)) c V(Ct+1) UV(OH..z) us,
we have .
|V(C¢+1) UV(OH.z) U Si 2 25— 6 + 1.

Certainly [V (Cy) U ... UV{C:)| = t. Now, suppose § > t. Let w; € V(C;), 1 <
<1 £ t. Then degnw; > §(G) = 6. Since Ng(w;) C V(C:) U S, it follows that
[V(C;)| 2 6 —t + 1. Thus we conclude that

V(Ci)u...uV(C)| > max{t,t(§ —t + 1)},

implying
V(G)| =25 > 25 — 6§ + 1+ max{¢,t{6 ~ t + 1)}

and so

6> 1+ max{t,t(6 -t + 1)} (1)

If § < ¢, then equation (1} yields § > 1+ t, a contradiction. Assume, then, that
6 > t. In this case, equation (1) becomes

§21+¢(6—t+1),

and so ‘
2+ (1+6)t+(1-6) <0,

where 1 < < § — 1. However, it is easily verified that —¢* 4+ (1+ §t+(1-6)>0
for all ¢ satisfying 1 £ £ £ 6 — 1, again producing a contradiction. W
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The results of Theorems 1 and 2 are best possible in the following sense. Given
integers n and s satisfying 1 < s < 5 — 1, let ¢ be a nonnegative integer such that
g < min{s,n—s—1}. Let A be a copy of K3,11, B a copy of K,.q and C a copy
of fn_,_q_l. Construct a graph @ of order n by adding all possible edges between
A and B and between B and C, Then sK; C G} an s-matching F can be obtained
by selecting ¢ independent edges from A and s — ¢ independent edges joining
vertices of B and C. However, (s + 1)K, ¢ G. Now, let § = §(G) = s — q. Then
25—1-§ = s+q—1. Let u be the vertex of A incident with no edge in F and let v be
a vertex of C incident with no edge in F. Then |Ng(u)UNg{v)| = s+¢ > 2s~1-§
and (s + 1)Kz C G + uv; but as observed above, (s + 1) K3 ¢ G.

Combining the results of Theorems 1 and 2 we obtain the following sufficient
condition for a graph to contain sKo. '

Theorem 3. Let n, s, and § be Integers satisfying n > 2¢ > 2. If G is a graph of

order n with §{G) > & and N;,-1_5(G) is complete, then G contains sK;, provided

n > 2s+ 1 or @ is connected.

Theorem 4. Let n and s be positive integers satisfying n > 2s. If G is a graph of
order n without isolated vertices for which N2,2(G) is complete, then G contains
s K- provided n > 23+ 1 or G is connected.

The corresponding result for degree closure states that if G is a graph of order
n > 25 > 2 and Do,—-1(G) is complete, then G contains sK3. Consider the graph
@ obtained from two disjoint copies A and B of K, —e, s > 3, where two vertices of
degree s — 2, one from A and one from B, are joined by an edge and the remaining
two vertices of degree s — 2 are joined by a path of length 2. Then G has order
n = 25-+ 1. Furthermore, No,_2{G) is complete and, consequently, G contains s K3
by Theorem 4. However, since the maximum degree of G is s — 1, the (2s — 1)-
degree closure Dy,.1(G) of G is not complete and so the Bondy-Chvatal result
does not offer any new information when applied to G. By adding vertices to G,
maintaining a maximum degree of at most s — 1, we obtain graphs G' of all orders
n > 23+ 1 for which Np,—2(G’) is complete but Dz,_1(G’) is not complete and, in
fact, Dg,—1(G") = G’ :

Although Theorem 4 is distinet from existing results for graphs of order at

least 2s + 1, in the case of connected graphs G of order n = 2s, we have that if
Nao—2(G) = Ka, then Dg,_1(G) = K3,. This follows from our next result.

Theorem 5. Let G be a connected graph of order n > 2 for which D,1(G)=G.
If G # K,,, then N,_2(G) # K,.

Proof. If @ contains 3 mutually nonadjacent vertices, say u, v, w, then |Ng(u) U
UNg(v)| < n— 3 and, consequently; Ny,.2(G) # K,. Thus we may assume that
K3 is not an induced subgraph of G. Let = be a vertex of G of minimum degree
and let H = V (G}~ {z} — Ng(2). Then |H| = n—1—m, where m = |[Ng(z}{ > 1.

NE
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Since G # K,,, we have that 2n — 1 — m > 1. Furthermore, since K3 is not an
induced subgraph of G, the graph {H)g is complete. Suppose there exists an edge
uw, where u € Ng(z) and w € H. Then

deggztdegow=m+[(r-1-m—-1)+1]=n-1,

which contradicts the assumption that D,._1(G) = G. However, if no edge exists

between Ng(z) U {z} and H, then G is disconnected. Thus if @ is a connected

graph of order n > 2 for which D,,_1{G) = G and G # K, then N,_2(G) # K;.
||

Corollary 5. Let @ be a connected graph of order n > 2. If N,_2(G) = K,, then
D,_+(G) = K,.

For n even, the graph 2K 2 shows that a graph G of order n must be connected
for the condition N,_(G) = K, to imply that D,_(G) = K,.

In light of Corollary 5, it is reasonable to ask whether, for a connected graph
G of order n, the condition N,_3(G) = K, implies D,,_2{G} = K, and, more
generally, if Ny—i(G) = K, implies D,_;11(G) = K,.. (Clearly, if N,(G) = K,
then D,,_;(G)} = K,,.) This, however, is not the case as our next examples illustrate.

For odd integers n and ! satisfying 3 < I < (n + 2)/3 let G be the connected
graph constructed from two disjoint copies A and B of K(yr42)/2— (L:z—l) K3 in the
following manner. Introduce I—2 new vertices, each adjacent to one vertex of A and
one vertex of B so thatthe resulting graph has ! —2 vertices of degree 2, two vertices
u and v of degree ";;"—2 —~ 2, and n — I vertices of degree -“—'%“'—2 — 1. Finally, add
the edge uv. Then @ has order n, N,,_{G) = K,,, but Dy_;+1{G) = G. Similarly,
for even integers n and [ satisfying 4 < ! < {n + 4)/3, G is constructed from two
digjoint copies A and B of K(n—142)/2 — (%) K by adding [ — 2 new vertices,
each adjacent to one vertex of A and one vertex of B so that the resulting graph
has [ — 2 vertices of degree 2 and all remaining vertices of degree L;“’—z — 1. Then,

. again, G has order n, N,,_i(G) = K,,, but Dp..141(G) = G.

We next turn our attention to hamiltonian properties. Bondy and Chvatal
showed that the property of being hamiltonian is n-degree stable. We see next
that if @ is the class of 2-connected graphs of order n then the property of being
hamiltonian is {n — 2)-neighborhood stable in .

‘Theorem 6. Let g denote the class of 2-connected graphs of order n > 3. Then

the property of being hamiltonian is (n — 2)-neighborhood stable in §.

Proof. Let G €g and u, v be nonadjacent vertices of G such that [Ng(u)} U
UNg({v}| = n — 2 and G+ uv has a hamiltonian cycle C. If uv is not an edge of C,
then C is also a hamiltonian cycle of G. Thus we may assume that G contains a
hamiltonian path u.= uy,us,...,v = u,. Since [Ng(u) UNg(v)| = n — 2, we have
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that Ng(u) U Ng(v) = {u2,43,...,4n_1}. If, for some 1, uy; and vu;_, are edges
of G, then G contains the hamiltonian cycle '

U=t Uz Ui— 1y ¥ = U, Uy 1y ..o U U = Uy,

If this is not the case, then for some £, 2 <t < n — 2, we have that uy; € E(Q),
2<i<t,andvy; € E(G),t+1<e<n—-1.

Case (i). G contains an edge joining a vertex in {u = uy,..., %~} with a vertex
in {usqo, ..., up = v}, say uyuy, where 1< j<t—1andt+2<1<n

Then G contains the hamiltonian cycle
U= U, Uy ey Uy Uy Ul dy e e ey U= Uny U1,y U2y 000y Uyl U = UL

Case (ii). Case (i) does not occur.

Then, since G is 2-connected, G must contain edges uju;41 and wu,, where
1<j<t—1andt+ 2 <!<n. Butthen G contains the hamiltonian cycle

U W, Uy ee g Uy Uit 1y g2y o ooy Y 1, ¥ = Uy U1y 0005 Uy il-f,

gl ey Uity ¥ = UL |

Since every hamiltonian graph is 2-connected, the connectivity condition in
Theorem 5 cannot be weakened; consider, for example, the connected graph G
obtained by adding an edge between disjoint copies of Ky and K;,—;. Then for
any two nonadjacent vertices u and v of G we have |Ng(u) U Na(v)] = n — 2
(the strongest possible neighborhood condition for a graph of order n) and G + uv
is hamiltonian. However, G is not hamiltonian. For n > 7, let G be the graph
obtained from the path P, : ¥ = u,up,...,v = u, as follows. Let ¢ satisfy
4<t<n—3and

E(G) = E(P)U{uu;: 2<i<t-2}Uf{vy: t42<4 < n—1}U{unet1, vue_1}.

Then G is a 2-connected graph of order n, |[Ng(u) U Ng(v)| =n—3, and G+uv is
hamiltonian. However, G is not hamiltonian.! Thus Theorem 6 cannot be improved.

It is easy to show that the property of containing a hamiltonian path is (n—1)-
degree stable by using the corresponding result for hamiltonian cycles, Similarly,
we have the following

. Theorem 7. Let & denote the class of connected graphs of order n > 2. Then the
property of containing a hamiltonian path is (n — 2)-neighborhood stable in g.

Proof, If n = 2 then the theorem is vacuously true. Thus we may ‘assume n = 3.
Let G €2 and u, v be nonadjacent vertices of G such that |Ng(u) UNg(v)| =n—2
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and G + uv has a hamiltonian path P. Consider the graph G' obtained from G
by adding a vertex w adjacent to every vertex of G. Then ' is a 2-connected
graph of order n + 1. Furthermore, |Ng/(u) UNa(v)| =n—1=(n+ 1) — 2 and
G' -+ uv is hamiltonian. Thus, by Theorem 4, G' is hamiltonian and, consequently,
(G contains a hamiltonian path. H

As was the case with the property of being hamiltonian, here we cannot
weaken the connectivity condition; consider, for example, Kj UK, ;. Furthermore,
consider the connected graph G of order n > 4 obtained from disjoint copies of
Ps:v = vy,vs,v3 and Py_3 : u = %3,Uz,...,Un~3 as follows. Add all edges of

. the form uu;, 2 < i < n— 3, and an edge of the form vou;, 1 < 7 <n—3. Then

|No(u) U Ng(v)| = n— 3 and G + uv has a hamiltonian path; however, G contains
no hamiltonian path. :

The next two results are directed applications of Theorem 6 and 7.

Corollary 6. Let G be a 2-connected graph of order n 2> 3. If N,_2{G) is’
complete, then @ is hamiltonian.

Corollary 7. Let G be a connected graph of order n 2.2. If N.—2(G) is complete,
then G contains a hamiltonian path.

The corresponding results for degree closures state that if G is a graph of
order n and D, (@) is complete (D,_1(G) is complete), then G is hamiltonian
(respectively, G contains a hamiltonian path). By Corollary 5, for a connected

_ graph G of order n > 2, the condition N,_3(G) = K, implies that Dp—1(G) is

complete. Thus Corollary 7 in fact follows from a known result for degree closures.
Similarly, for a 2-connected graph G of order n > 6, the condition N,—2(G) =K,
implies that Dy, (@) is complete, so that Corollary 6 can be obtained from a degree

closure result. This follows from Theorem 8.

Theorem 8. Let G be a 2-connected graph of order n > 6 for which D.(G)=G.
If G # K,,, then N,,_2(G) # K. :

Proof. If K is an induced subgraph of G, then N,_2(G} # K. Thus we may
assume that Kg is not an induced subgraph of G. We note that if w € V/{G), then
(V (@) — {w} — No{w)) is complete since there are no induced K3’s. Now, let v be
a vertex of G such that degg v < n—4. (Certainly §(G) < % and for n > 6 we can
thus find such a vertex v.) Let m = degg v and W = V(G) — {v} — Ng(v). Thus,

~ {W) is complete. Since G is 2-connected, there exist a,b € Ng(v) and ¢,d € W

such that.ad, bc € E(G). (Note that a, b, ¢, d are all distinct.) Since D,.(G)=G,
we see that Ng(c) = W — {c} U {b}; for otherwise,

degsv+degge™> m+tn-—-m—2+2=mn,

2 contradiction. Similarly, No(d) = W — {d} U {a}.
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" Thus,
V(G) = {c} -~ Ne(c) = Ne{v) U {v} — {5}
and
V{(G) — {d} - Na{d) = Ne(v) U {v} — {a}.
Consequently, (Ng(v) U {v} — {8}} and (Ng(v) U {v} — {a}) are complete.
However, if ab € E(G), then degy @ > m + 1. Therefore,

degma+tdeggezm+1+n—m-—1=n,

a contradiction since ac ¢ E(G).

Thus, ({v} U Ng(v)} = K,uq1 — ¢, where e = ab, (W) is complete, ad,bc €
€ E(@), and ac, bd ¢ E(G).

Now, for every w € W — {c,d}, the edge bw is not in @ for otherwise,
degq b > m+1 and degg b+degg d > m+1+n—m~—1=n, again a contradiction
since bd ¢ E(G). Thus, for each w € W — {c,d} we have that ab,bw ¢ E(G)
which implies that aw € E(G) since there are no induced K3’s in G. But then,
degra =n —3 and thus, :

deg;a+degge2n—-34+n—m-—1
=In—-m-—4
=n—(n—m—4)}

>n, a contradiction. [ ]

The next result follows directly from Theorem 8.

Corollary 8. Let G be a 2-connected graph of order n > 6. If N,—3(G) = K,
then D,,(G) = K.

For n odd, the graph obtained by identifying a vertex of one copy of K(ni1)/2
with a vertex of a second copy of K(n1)/7 shows that a graph G of order n must
be 2-connected for the condition N,,_2{(G) = K,, to imply that D,(G) = K,,.

.- We next turn our attention to a generalization of Theorem 6, that is, the

neighborhood stability of containing the cycle C, 3 < k < n, where new results
are obtained.

We first note that for ¥ = 3, 4, and 5 there exist 2-connected graphs G of
order n with nonadjacent vertices « and v such that |Ng(u) U Ng(v)| = n — 2
and @ + uv is pancyelic but G contains cycles of all possible orders except Cy.

For k = 3 and n > 5 let G be the graph obtained from the complete bipartite .

n—3

graph K (Lﬂué_-ﬂj ,[—2—]) by adding a vertex u adjacent to all vertices in one of
the partite sets, a vertex v adjacent to all vertices in the other partite set, and a

N
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vertex w adjacent only to v and v. For k=4 and n = 4t + 2, ¢ > 2, we construct
G as follows. Let

V(G) = {u:v: Uy, Uy .0y Uzt Vi, V2. ‘luzt}

and
E(G) ={wuip1: 1=1,3,...,2t =1} U{nyvy41: 1=1,3,...2¢~ 1}
Ufurg s 1< <2t} U {oy; : 154 <2t} '
U{u.-v;.,.i 1< <2t~ 1} U {ugtvl}.
Finally, for k = 5 and n > 9, we construct G by beginning with disjoint copies
of Pg:u = g, tg,...,t5 = v and Pp_g : v1,v9,...,0,—5 and add the edge uus.

The construction is completed by adding the edges

Uty , Uvg, UV, VU4, V5, Vg, ULy, Ulg, UYg, UV;1q, V11, VU1, ete.

Theorem 9, Let g denote the class of 2-connected graphs of order n > 6. Then
the property of containing Ck, 6 < k < n, Is (n — 2)-neighborhood stable in 8.

Proof. Let G €8 and u, v be nonadjacent vertices of G such that |[Ng(u) U
UNg(v)] = n—2 and Cx € G + uv. As in the proof of Theorem 6, we can assume
that G contains a path v = 3, ug,...,t; = v, and that for some £, 2 <t < k— 2,
we have that uu; € E(G), 2 <1 < ¢, and vy; € B(G), t + 1 <1{ < k. Furthermore,
there exists no 7 such that uy; and vu;_, are edges of G, 2 <31 < k.

Case (i}). There exists a u;—w; path Pin G, where1 < j <t—landt+2<1<k,
such that V(P) N {u = uy,uaz,...,v = ug} = {u;, %}, Assume that P has been
chosen as the shortest such path. If P has length 1, then

U= Uy, Ugy ey Uy UL Up ey o ) U= g, Uiy UE—2y ¢ 00y Ugp1, W= UL

is a k-cycle of G. Suppose, then, that P has length 2, say P : uj, w, u;. Since
| Na(u) U Ng(v}] = r — 2, it follows that at least one of u and v is adjacent to w.
Without loss of generality, assume uw € E(G). If | > £+ 3, then

U= UL W U U]y ey U= uk,uggg,u;_a,...,u=ﬁ1
isakcycleof G.fl=¢t+2and t+2# k— 1, then

U= 1 WU UL < U2y Yk Uet Ly Uty ooy § S 2
is a k~cycle of G. Finally, f l = t-+2 = k~1, then u = uy, w, thypo, Ug41,..., U = Uy

is a k-cycle of G. Thus we may assume that P has length 3 or more. Again, since
|Na{z) U Ng(v)| = n — 2, every internal vertex of P is adjacent to at least one of
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u and v. However, it then follows that since P was chosen to be a shortest path
from Uy, Uny ooy Ug—q to U2y g3y 000y YR such that lV(P) N {u,]_, Uy vy uk}l = 2,
there exists a & — v path P’ of length 3 such that [V (P') N {u,ug, ..., ux}| = 2.
Clearly, then, G contains a k-cycle.

Cage (ii).. Case (i) does not occur. Then, since G is 2-connected there exists a
uj~upy path P, 1 <7<t —1, and a u; — u; path Pz, t +2 < [ £ k, such that
V(Pl) n V(Pz) =@ and (V(Pl} L V(Pg)) N {ul, U T ,Uk} = {u,_,-, ty, Ui, ut+1}.

Asgume that Py and P, have been chosen to minimize their total length. Since
|Ng(#) U Na(v)] = n — 2, every internal vertex of Py and P; is adjacent to at
least one of u and v. However, since Case (i) does not occur, it follows that u is
adjacent to'every internal vertex of P; and v is adjacent to every internal vertex
of P,. Thus, without loss of generality, we may assume that if [V/(P;)]| > 3 then,
in fact, Py @ u,w,u;yy and, similarly, that if [V(P,)[ > 3, then Pp : v,2,u;. If
[V{P)| = [V(P2)| = 2, then
U= g, Yoy ey Uy Up4 1, Y2y -0y Ui—1, U= UpyUk—1y« 0~y W, Uty
Up—3yae-y U1, U= Ul

is a k-cycle of G. Suppose then, [V(P)| = |V (F:)| =3. Kt >4, then-

U= U, W U1, U2y o U= ‘Uk,z, u;,ut_l, , Ug, U = Ug
is a k-cycle of G, Similarly, if k — ¢ > 4, then

_ U= U, W, U1y U2y » - oy UpwaB, U = Upy 2, Uiy Ue—1,5 .04y U= Uy
is a k-cycle of G. If t < 3 and k —¢ < 3 then, since k > 6, we must have ¢ = 3 and
k—1t=3, Thus k== 6 and [V(P,)| = 3. If § > 3, then
=S Uy, U3, .., Uy U 1y U2y o v e g V= Upy 25 Uty Ypmgy ooy Ug41, U = UL
i a k-cycle of G. If 7 = 2 then
Ug, Upped, Uity e vy V== Uk, 2, Uty U —1,y. .-, U2
is a k-cycle of G. Lastly, if y = 1, then either £ > 8 and
U= Uy, Ust1y Uty oo oy U= Up, Wy thy, Ug—1,..., U3, U = U]

is a kcycleof Gork—t >3 and

U= Ug, U1y Yt 2y o ooy Yke— 2, U = Uk, 2, Upy U1y -0 U = Uy

"isakcycleof G. &

For n > k > 8, consider the graph G obtained from the path P : u =
= Uy, tgn,...,v == u as follows, Let ¢ satisfy 3 < ¢ < k— 2. Add the edges uuy,
2 <4< t—1, the edges vu;, t+1 <7 < k—1, and the edges uugyq, vue—3. Finally,
add n — k additional vertices, each adjacent to u; and ug if £ > 4 or to uz—z and

‘g if ¢ = 3. Then G is a 2-connected graph of order n, |Ng{u) U Ng(v)] = n -3,
and Oy C G+ uv. However, Ci ¢ G. Thus Theorem 9 cannot be improved by
weakening the neighborhood condition.
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Theorem 10, Let G be a 2-connected graph of order n > 6. If N,_2(G) is
complete, then O, C G for6 < k < n,

We close by observing that the corresponding result for degree closure states
that for integers n and s satisfying n > s > 5, if Da,_,(G) is complete, then
C, C @. For even n > 8, let G be the graph obtained from two disjoint copies
A and B of K,z by adding n/2 edges from vertices of A to vertices of B so that
the resulting graph is (n/2)-regular. Then N,_2(G)} = K, so that it follows from
Theorem 9 that Cz C G for all s satisfying 6 < s < n. However, Dg,—,(G) is

~ complete only if 2n — ¢ < n, that is, only if s = n,
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