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Abstract

A graph G satisfies the neighborhood condition
NC(G} » m, if for each pair of nonadjacent vertices of G,
the union of their neighborhoods has at least m vertices.
For k & fixed positive integer, let G be a graph of
order n which satisfies the following conditions:
S{B) : 4k + 1, x1(B) 2z 2K, ki {B-v) > k +For any vertex v
in G, and NC{(B) 2z 2(n + C)/3 for some constant
C = Clk)», It is shown that if n |is sufficiently large,
"then B contains k edge disjoint Hamiltonian cycles.
Similar conditions are shown to give disjoint perfect

matchings.
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Introduction

Agraph G of order n is Hamiltonian if it has a
cycle C. containing all of the vertices of BG. Many
conditions, especially degree conditions, have been shown to
be sufficient for a graph to be Hamiltonian. One of the
earliest conditions invnlved the sum of degrees of
nonadjacent vertices and was due to 0. Drea. A graph G
satisfies the degree condition DC(E) 2 m, if for each
pPair of nonadjacent vertices u and v of G,
dalu) + dei{v) 2> m.

Theorem As (Ore [97) Let G be & graph of order n > 3.
I¥ DC(B) 2 n, then 6 is Hamiltonian.

The graph H of order n obtained from & complete
graph Kn—i - by adipining a new vertex that is adjacent to a
single vertex of the complete graph is not Hamiltonian.

This example implies the degree condition in Theorem A is

necessary, since DC(H) = n-1,

There have been numerous generalizations of this degree
condition that have been shown to be sufficient for a graph
to be Hamiltonian. Another condition that is patterned
after the one of Ore, is the following condition that
involves the neighborhoods of vertices. A graph &
satisfies the neighborhood condition NC{(G) > m, if for
each pair of nonadjacent vertices u and v of G,

INe (U) U Nat(v)i 2 M,y
where No(Ww) is the set of vertices adjacent to w and is

called the neighborhood of w in BG.

Theorem Br [4] If 6 is a 2-connected graph of order
R 2 3, and NC(G) » (2n - 1}/3, then G is Hamiltonian.

The result in Theorem B is also sharp in that neither

the connectivity condition nor the neighborhond condition
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can be weakened without losing the Hamiltonian property.

These conditions will be discussed in more detail later.

One way to generalize the result of Ore is to determine
a similar condition which gives, not just one, but multiple
edge disjoint Hamiltonian cycles. In this direction, the

following result was proved for large order graphs.

Theorem C: [51 Let k be a Tixed positive integer, &nd G
& graph of order n. If DC(G) 2 m + 2k — 2, and n is
sufficiently large, then 6 contains k edge disjoint

Hamiltonian cycles.

The degree condition in Theorem C is necessary. The
graph H obtained from & complete graph ¥a-: by adjoining
a new vertex that is adjacent to & 2k - 1 vertices of the
camplete graph does not contain k edge disjoint Hamiltonian
cycles, but DC(H) = n + 2k - 3. However, the reason the
graph H does not contain k edge disjoint Hamiltonian
cycles is because of the vertex of degree 2k - 1. It is
natural to ask if the degree condition DC can be weakened,
even to the condition of Dre, if some restriction ie placed
on the minimum degree in the graph. The following result

supports a conjecture of this type.

Theorem Dz £71 If G is & graph of order nm : 20 with
minimal degree &(G) » 5 ard DC(B) 2 n, then G <coptains

twe edge disjoint Hamiltonian cycles.

A natural extension of Theorem D is that any graph G
of sufficiently large order n with minimal degree
BiB) > 2k + 1 and DC(E) 2 n contains k edge disjoint
cycles. The correspanding extension of Theorem B would
involve determining appropriate connectivity and minimum
degree conditions that, along with the neighborhood
condition NC(&) > (Z2n—-1)/3, insure that the graph G has
k edge disjoint Hamiltonian cycles. In what follows k{(B)

is the connectivity, k. (B) is the edge comnectivity, and
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§(GB) is the minimum degree of a graph 6. We will prove
the following extension of Theorem B.

Theorew l: Let &k be a fixed positive integer, nnd‘ G =
graph of order n which satisfies the following conditons:

1} NCC(G) > 2(n + C)/3 for some C = C(k),

2) 5(6) 2 4k + 1,

3) katG) p 2k, and

4) k{6 - v} 2 &k for all vertices v of .
Then, If n is sufficiently large, G contains & edge

disjoint Hamiltonian cycles.

A immediate corollary of Theorem 1 is that if n is
even, then the graph & contains 2k edge disjoint perfect
matchings. In the case of matchings some of the
restrictions of Theorem 1 can be weakened or removed.

These weaker conditions are stated in the following

analogous result,

Theorem 2: Let m» be a Tixed positive integer, and G a
graph of even order n that satisfies the followsing
conditons:

1} NCeB) 2 (2n » C)/3 for some C = C(k),

2) &¢(G) : 2m, and

JI) Kk2(G) : m.
Then, If n I5 sufficiently large, G contains = edge
disjoint perrtect matchings.

The necessity and sharpness pf the conditions on
minimal degree, connectivity, and edge connectivity in both
Theorem 1 and Theorem 2 will be discussed in the next

section,

Examples

Any theorem that gives a sufficient condition for a

graph B to have k edoge disjoint Hamiltonian cycles, and
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iz based on & neighborhood condition NC, must have all of
the types of restrictions listed in Theorem 1. However the
restrictions on some of the parameters are not sharp. We
follow with four examples of graphs that do not contain k
edge disjoint Hamiltonian cycles, satisfy all but one of the
$our conditions of Theorem 1, and give a necessary lower
bound on the parameter considered in that condition. In
each case, n is considered to be gufficiently large in

order to avoid exceptions for a few small order cases.

(1) Let H be the disjoint union of complete graphs

Ke UKo UKe with Ln-2)/31 € a <b <c < Mn-2)/31 and
a+b+c=n-2, and let Bi: = H + Kz. The graph Ba
satisfies (2), (3) and (&), is not Hamiltonian, and
NC(B.) » 21L(n—2)}/3]1.

(2 The graph Gz 2 (Kzk—i UV Kn-zk-1) + K= has

§(G) = 2k, but it does not contain k edge disjoint
Hamiltonian cycles, because there are not enough edges in
the subgraph K=zw-i toO construct the necessary k edge
disjoint Hamiltpnian paths. Conditions {1y, (3, and (4
are satisfied by OG=.

(3 A Hamiltonian graph is 2-connected, but the
neighborbhood condition NC  does not imply any connectivity
in the graph. For example, the disconnected graph

H =K,z VEKm,=v has NC(H) =n - 2. The graph G=
obtained from H by adding & matching with 2k - 1 edges
betweén the components of H does not have k edge
disjoint Hamiltonian cycles, satisfies conditions (1},

(2) and (4), and k1(B) = 2k — 1.

(4) Let G be the graph obtained from the graph H,
which was just described in (3), by adding all of the
edges from a vertex v in the first component to all of the
vertices if the second component, and an additional k -1
edges betweem a second vertex in the first component and

k - 1 vertices of the second component. This graph daes

59



not contasin k edge disjoint Hamiltonian cycles, satiefies
conditions (1), (2}, and (3), and k.(B-v) = k — 1.

. The examples just described indicate that conditions
(3) and (4) of Theorem 1 cannot be weakened. Alsno,
probably conditions (1} and (2) can be weakened to agree
with the examples, but the proof techniques that will be
used require the additional strength.

Each of the types of conditions given in (1Y, (2) and
(3) of Theorem 2 are also necessary for a graph G to have
m perfect matchings, and the examples which verify this are
either identical or similar to those described for
Theorem 1. If n=3p +1 and p is odd, then
H =K + (Kp YV Ko V EKEg) contains no perfect matching and
NC(H) = (2Z2n -~ 5)/3. Clearly, any graph with m edge
disjoint perfect matchings must have minimum degree m.
Also, any graph which is made up of two vertex disjoint odd
order graphs with only m - 1 edges between them, cannot
have m edge disjoint perfect matchings, hence «,(8) 2> m.
Thus, condition (3) of Theorem 2 is sharp. However,
conditions (1) and (2} are probabley not sharp, with-
examples similar to those previously given suggesting

appropriate values for the parameters.

Preliminary Results and MNotation

In the proof of Theorem 1, disjoint Hamiltonian cycles
in a graph 6 will, in some cases, be constructed by
patching together paths that have been built in dense
subgraphs of B6. The following result is very useful in
proving the existence of such paths. Recall, a path in a
Qraph 6 that contains all of the vertices of B is called
a Hamiltonian path, and B is Hamiltonian Connected if
there is a Hamiltonian path between each Pair of vertices of

the graph.



Theorem E: (101 Let G be a graph of order n 3 3. ITf

DC(G) > n + I, then G is Hamiltonian connected.

Repeated application of Theorem A yielde the following

usaful corollary.

Corollary £: Let k be a fixed positive Integer and Ko &
complete graph of order m 2 4k = i. For any collection
(not necessarily distinct) of & pairs of vertices of Ka,
there are k edge disjoint Hemiltonian paths whose

endvertices are the &k pairs of vertices.

The previous result deals with the case when the paths
must terminate in predetermined pairs of verticeg. However,
in some rases such stringent conditions need not be placed
on the endvertices of the paths. Well known
2-factorizations of complete graphs give the following

result.

Theorem G: (81 Let k be & fixed positive integer and Ka

a complete graph of order ® 3> 2k + 1. Then Ko contains
k edge disjoint Hawiltonian paths wmhose epdvertices are

disjoint pairs of vertices.

Before giving the proof of Theorem 1, we will
introduce some notation that will be used, Most will be
standard and can be found in [2], but some will be

specialized notation that is convenient for this proof.

1¢ H is a subgraph of G and e i=s an edge of G,
them 6 - H will denote the graph with the same vertex set
as B and with edges that are in G but not H, and
G+ e is the graph with the edge e added te the edge set
of B. 1In general, we will not distinquish between G, the
vertex set WV(B), and the edge set E(B), wunless doing S0
will cause confusion. For x € B, HNnix) will denote the
vertices of H which are adjacent to x, and wi}l be

called the neighborhood of x in H. Also, the degree
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dnix) is the number of elements in Nuix). When H = G
#nd it is clear which graph is being considered, N& and

da will be shortened to just N and d.

An edge with endvertices x and y will be written
Xy. Likewise, a path FPe with t vertices
{Riy¥zyaeayXel will be expressed as Kik=...Xe« In sone
cases the nature of the intermediate vertices is obvious or
not crucial, but the endvertices of the path are important.
In situatians like this, P. will be expressad as just

Poistas ned.

Proofs

Proof of Theorem i: We suppose that there exists an edge
maximal counterexamplie graph G to the Theorem, and show
that this leads to a contradiction. The proof of the
Theorem will consist of a series of facts about G, ending

with the nonexistence of G.

The maximality of G 4implies that for any pair of
nonad jacent vertices x and y of B, G + xy contains k
edge disjoint Hamiltonian cycles. Associated with each edge
Ky € G, there are k ~ 1 edge disjoint Hamiltonian cycles
Hiy Hzy «vvy He—a in B. Let H denote the subgraph of &
generated by the edges of these cycles, and let L = 5 ~ H.
The graph L contains no Hamiltonian cycle, but it has a
Hamiltonian path P = XaiXz..u®n = PiXiy%n) wWith x = x,.

and y = x,.

In the remainder of the proof we will associate with
®ach pair of nonadjacent vertices x and y, the subgraphs
H and L, and the path P. Since it will be clear which
graphs G and L we are dealing with, deo and N= wWill
be shortened to just d and N respectively, and d_ and
N by d° and N° respectively. Thus,

d'(v}) = div) — 2k + 2 for all v € G.
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Fact 1: If xy ¢ B, then di(x) + dly) £ n + 4k - S-

14 this is not true, then d’(x) + d’ {y} 2 n. Qin:e L
contains no Hamiltonian cycles, xxs € L with i s n
implies yxis—1 & L. Therefore, d'i{x) +d'iy) < n, a

contradiction.
Fact 2t No two complete subgraphs of 6 6pan G.

Let A and B be a partition of the vertices of B
with 1Al £ I|Bl, suech that the vertices of A and the

vertices of B each form complete subgriphs.

First consider the subcase when |A1 2 &4k + 1. The
existence of k pairs of disjoint edges between A and B
follows from conditions (3) and (4) and a simple
induction proof. Denote the je~ pair by {a1sbssyB=3sb21).
By Corollary F there exists k¥ edge disjoint Hamiltonian
paths in each of A and B with FPs(ais,a=3) the ji*"
path in A and P3i(bia,b=s} the j=r path in B. Hence,
for each i, {Pstassyd=3)y A11Das, P5(bii,b=zs)y azsb=s}
determines a Hamiltonian cycle in B, and the k cycles

are edge disjoint.

iIn the second subcase, when 2k + 1 < [A] { 4k, each
vertex of A is adjacent to at least 2 vertices of B.
Theorem @ implies the existence of k edge disjoint
Hamiltonian paths Pstlais,azs), (1 £ 3 £ kY in A, such
that the 2k endvertices are distinct. For each j, there
are disipint edges aisbis and azsbzs with bss and b=s
in B. Just as in the previous subcase, there are k eadge
disjeint Hamiltonian paths Pitbaa,bzs) (1 £ £ k} in B.
For each j, the paths Pi(ais,azi) and Pitbys,vza)
along with the edges a:;b.s and axss b=y determine a
Hamiltonian cycle in 6. This implies there are k edge
disjoint Hamiltonian cycles of G.
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In the final subcase, when m = |A{ £ 2k, each vertex
of A is adjacent to at least 4k - m + 2 vertices of B.
There are t = |(m-1)/2] edge disjoint Hamiltonian Eyclea
tf the type described in the previous subcase. After the
deletion of the edges of these Hamiltonian cycles, each
vertex of A is adjacent to at least 4k -~ m + 1 vertices
of B. This fact, and a straightforward induction argument,
implies there are k - t edge disjoint (and disjoint from
the t Hamiltonian cycles just described) graphs R,,
{1 £ J £ k-t), where each Rs is the unieon of disjoint
paths, The paths in R,y alternate between vertices of A
and B, have their endvertices in B, and contein all of
the vertices of A. Bince B has large order, repeated
application of Theorem E implies that each Rs can be
extended to a Hamiltonian cycle of G. Also, this can be
accomplished such that all of the cycles, including the ¢+

Hamiltonian cycles previously described, are edge disjoint.

Therefore, a contradiction is reached in each of the
three subcases by exhibiting k edge disjoint Hamiltonian

cycles.
Fact 3¢ &(G) 2 n/é&.

Suppose Fact 3 +ails to hold, and v is & vertex with
div) = m < n/6. Let W be the vertices of B that are
nonadjacent to v, Then, diw) 2 n/2 + 2C/3 for w € W,
£0 the verticee of W form a complete graph of order
A —-m-1 by Fact i. Also, by Fact 1, any vertex of G of
degree at least m + 4k - 2 must be adjacent to each vertex
of MW, and hence must have degree at least n - m — 1.
Partition the vertices of 5 into two sets A and B,
where A is the set of vertices of degree at most
m+ 4k - 3, and B is the remaining set of vertices. It
has already been noted that the vertices of B form a
complete graph. BSince the union of the neighborhoods of

wach pair of vertices of A is less than 2n/3, these



vertices also form a complete graph, which contradicts
Fact 2.

Fact 4: L contains no cycle of length at least n -~ 4k.

Let C = vivza..¥mv: be a cycle of maximal length in
L, and assume that m 2 n - 4k, and that v is a vertex
mot on C. IFf wvve-y vwe € L, then vversiy VVesray
Vr+i1Ve+1 € L by the maximality of the length of ©C in L.
However, any of the last three edges could be in G.
Therefore, since div) 2 n/6, there is, with no loss of
generality, an integer r such that wvvi, vv. € L, but
VW2, VVr+1y VaVes: € B. In addition, r can be chosen to

be small} in particular, r < 24k.

Assume that d(vr+i) 2 divz), -and so
dives1) 2 (n + C)/3. Let 8 = {via: £ vi € (N (v} U N (vz))
and r £ 3 £ m}. Then, Ffor v, €85, v-+avs € L implies
that L bhas a cycle of length m + 1. This gives that
N'{vi+1) NS = &, which implies that
2{n + C)/3 - 32k +# (n + B)/3 - 30k { n, a contradiction.

Fact S: If diy) 2> n/3, then there does not exist a p < q,
such that KkXp € 6 but xx5 € L (along the path
P = P(xyy}).

Suppose p and q exists and select g is as small
as possible and p is a large as possible subject to p
being less than q. Hence, for p < i ¢ g, xx:« € H and
g - p < 2ke Let X = {xs 1 Hy+a € (N) U Nixgll. I1f for
Ky € X, yX3s €L, and Hxj+1y ¥aXs+a € H, then L has a
cycle of length at least n - 2k. Thus, X N Niy) 1 £ &k,
which gives the inequality 2¢(n + 8)/3 + (n + £)/3 - &k £ n.

This gives a contradiction.

Fact &: It is not possible that both dix}, d{(y) 2 n/3.

Suppose dix}), di{y) 2 n/3 and 1let p be the largest
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integer such that xx. € L, and let g be the smallest
integer such that yxg € L. By Fact S, xx: € 6 for each
i {p and yx, €6 for each j > g. Thus, P £ q. With
no loss of generality we can assume that % and y have
been chosen to minimize q — p in the path P associated
with % and y. Let A be the vertices of P which

precede x. and B the vertices of P which follpw xq.

No vertex of A is adjacent in L to a vertex of H,
because (since Fact 5 holds) this would give & cycle of
length at least n - 4k, which is prohibited by Fact 4.
However, if uv ¢ 6 for u and v in A, then

IN“(u) UN' ()] +d(y) 22(n + G)/3 + n/3 — &k > Ny
which implies that u or v is adjacent to a vertex of B.
Since this cannot occur, the vertices of A, and likewise

those of B, form a complete graph.

Select t such that p <t £q. If t < g and x: is
adjacent in L +to a vertex of A or B, then the
minimality of g — p would be rontradicted. If xexs ¢ G
for x4 € A, then by the same count used in the previous
paragraph either %« or X, is adjacent in L to some
vertex of B. Since this is impossible, t = q and and
there are no vertices between x. and xX,. The same
reasoning implies x5 is adjacent to each vertex of B and
X 18 adjacent to each vertex of A. This contradicts
Fact 2, and completes the proof of Fact 4,

Fact 7: B does not exist.

The vertices of B of degree less than n/3 form a
complete graph by assumption, and the remaining vertices
form a complete graph by Fact &. This is impassible by
Fact 2, which completes the proof of Fact 7, and of

Theorem 1.

The proof of Theorem 2 closely parallels the"prnnf of

Theorem 1. An edge maximal counterexample G can be chosen.
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Thus, asspriated with each edge xy € G, there are m edge
disjuint perfect matchings Hiy Hzy svsy Hm in B + %y

with X®y € Hn. Also, for each j < m, H, V (Hy, ~ Xy) is a
disjoint union of even cycles and a path Px,y). ﬁhen
neither % nor y have low degree, arguments similar to
those in Theorem 1 give a disjoint union of even cycles to
replace the cycles and a path. When there is a vertex of
low degree, the graph B can be shown to have two complete
subgraphs which span G. In this case, matehings of these
subgraphs have to properly patched to give perfect matchings
of G. BSince the nature of the proof is sp similar, it is

not included hera.

Open Buestions

Although the types of conditions listed in both
Theorem 1 and Thenrem 2 are necessary, not all are sharp.
1t would be of interest to determine the best possible
conditions of this type for both Hamiltonian cycles and

perfect matchings.

The neighborhood condition NC used in both Theorem 1
and Theorem 2 is defined for pairs of nonadjacent
vertices. A natural generalization is to consider a
neighborhood condition NC:, which considerg the union of
the neighborhopds of any set of t independent vertices,
and determine what is needed to insure Hamiltonian cycles
and perfect matchings. This more general neighbarhood

condition has been considered in [13, {31, and [é&1.

67



References

{13 N. Alon, R.J. Faudree, and Z. Furedi, On & Neighborhood
Condition and Cliques in Graphs, Bnnals N.Y. Acad.

Bci., (to appear).

{21 M. Behzad, G. Ehartrand, and L. Lesniak-Foster, Graphs
and Digraphs, Prindlie, Weber and Schmidt, Boston,
(1979) .

[3) R.J. Faudree, R.G. Bould, M.S. Jacobson, and L.
lLesniak, Orn a MNeighborhood Conditien Ieplying the
Existence of Disjolnt Complete Graphs, (to appear).

[4) R.J. Faudree, R.B. Gould, M.S. Jacabson, and R.H. _
Schelp, Heighborhood Unjons and Hawiltonian Properties
In Graphsy, Jd. Comb, Theory, (to appear).

[53 R.J. Faudree, C.C. Rousseau, and R.H. Schelp, Edge~

Disjoint hamiltonian Cycles, Graph Theory and its

fpplications to Algorithms and Computer Science, Wiley
Interscience, (1985), 231-250.

L41 P. Fraisse, A New Sufficient Condition for Hamiltonian
Graphs, J. Graph Theory, 10, (1986), 405-40%.

[7] L. Hao and Z. Yongiin, Edge-Disjoint Hamiltonian Cycles

in Graphs, Proceedings of the First China - USA

International Conference on Graph Theory, Jdinan, Ghina,

(to appear).

f81 F. Harary, Braph Theory, Addison Weseley, Reading,
Mass. (1%49).

[?) 0. Ore, Note on Hamiltonian Cycles, Amer., Math.
Monthly, &7, (1960), 55-5a.

C1Q] O. Ore, Hamiltonian Connected Graphs, J. de Math, Pures
Appl., 42, (1963), 21-27.

68



